Skip to main content

Myosin: Cellular Molecular Motor

  • Chapter
  • First Online:
Cellular Nanomachines

Abstract

Myosins are a superfamily of ATP-dependent, actin-based motor proteins. In addition to muscle contraction, myosins are involved in a wide range of motility functions in cells, including transport of intracellular cargo. Typically, myosin molecules are composed of a heavy chain having a tail, hinge, and head domain and light chain present near the myosin head that modulates calcium-dependent transduction of force by myosin. The myosin head has both actin binding and ATP binding and ATPase activity. In resting state, myosin is bound to actin. When ATP binds to the myosin head, the head dissociates from the actin filament. Hydrolysis of bound ATP to ADP and the release of phosphate establish the rigor state of myosin (reestablishes myosin–actin interaction), generating force in the process to walk along the actin filament. Binding of a new ATP molecule to the myosin head releases myosin from actin to repeat the cycle. The structure and function of myosin are globally conserved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kühne, W. (1859). Untersuchungen über bewegungen und veränderungen der kontraktileu substanzen. Archiv für Anatomie. Physiologie und wissenschaftliche Medicin, 1859, 748–783.

    Google Scholar 

  2. Engelhardt, W. A., & Ljubimowa, M. N. (1939). Myosine and adenosine triphosphate. Nature, 144, 668–669.

    CAS  Google Scholar 

  3. Banga, I., & Szent-Gyorgyi, A. (1941). Preparation and properties of myosin A and B. In Studies from the Institute of Medical Chemistry University of Szeged, edited by Szent-Gyorgyi A (Vol. I, pp. 5–15). New York: Karger.

    Google Scholar 

  4. Banga, I., & Szent-Gyorgyi, A. (1943). The influence of salts on the phosphatase action of myosin. In A. Szent-Gyorgyi (Ed.), Studies from the Institute of Medical Chemistry University of Szeged (Vol. III, pp. 72–75). New York: Karger.

    Google Scholar 

  5. Straub, F. B. (1942). Actin. In A. Szent-Gyorgyi (Ed.), Studies from the Institute of Medical Chemistry University of Szeged (Vol. II, pp. 3–15). New York: Karger.

    Google Scholar 

  6. Straub, F. B. (1943). Actin II. In Studies from the Institute of Medical Chemistry University of Szeged, edited by Szent-Gyorgyi A (Vol. III, pp. 23–37). New York: Karger.

    Google Scholar 

  7. Huxley, A. F., & Niedergerke, R. (1954). Structural changes in muscle during contraction: Interference microscopy of living muscle fibres. Nature, 173, 971–973.

    CAS  PubMed  Google Scholar 

  8. Huxley, H. E., & Hanson, J. (1954). Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature, 173, 973–976.

    CAS  PubMed  Google Scholar 

  9. Huxley, H. E. (1963). Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. Journal of Molecular Biology, 7, 281–308.

    CAS  PubMed  Google Scholar 

  10. Slayter, H. S., & Lowey, S. (1967). Substructure of the myosin molecule as visualized by electron micros- copy. Proceedings of the National Academy of Sciences, 58, 1611–1618.

    CAS  Google Scholar 

  11. Lowey, S., Slayter, H. S., Weeds, A. G., & Baker, H. (1969). Substructure of the myosin molecule. I. Subfragments of myosin by enzymic degradation. Journal of Molecular Biology, 42, 1–29.

    CAS  PubMed  Google Scholar 

  12. Kendrick-Jones, J., Lehman, W., & Szent-Gyorgyi, A. G. (1970). Regulation in molluscan muscles. Journal of Molecular Biology, 54, 313–326.

    CAS  PubMed  Google Scholar 

  13. Greaser, M. L., & Gergely, J. (1971). Reconstitution of troponin activity from three protein components. The Journal of Biological Chemistry, 246, 4226–4233.

    CAS  PubMed  Google Scholar 

  14. Huxley, A. F., & Simmons, R. M. (1971). Proposed mechanism of force generation in striated muscle. Nature, 233, 533–538.

    CAS  PubMed  Google Scholar 

  15. Lymn, R. W., & Taylor, E. W. (1971). Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry, 10, 4617–4624.

    CAS  PubMed  Google Scholar 

  16. Bremel, R. D., & Weber, A. (1972). Cooperation within actin filament in vertebrate skeletal muscle. Nature: New Biology, 238, 97–101.

    CAS  Google Scholar 

  17. Haselgrove, J. C., & Huxley, H. E. (1973). X-ray evidence for radial cross-bridge movement and for the sliding filament model in actively contracting skeletal muscle. Journal of Molecular Biology, 77, 549–568.

    CAS  PubMed  Google Scholar 

  18. Bagshaw, C. R., & Trentham, D. R. (1974). The characterization of myosin-product complexes and of product-release steps during the magnesium ion-dependent adenosine triphosphatase reaction. The Biochemical Journal, 141, 331–349.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hibberd, M. G., Dantzig, J. A., Trentham, D. R., & Goldman, Y. E. (1985). Phosphate release and force generation in skeletal muscle fibers. Science, 228, 1317–1319.

    CAS  PubMed  Google Scholar 

  20. Kron, S. J., & Spudich, J. A. (1986). Fluorescent actin filaments move on myosin fixed to a glass surface. Proceedings of the National Academy of Sciences, 83, 6272–6276.

    CAS  Google Scholar 

  21. Toyoshima, Y. Y., Kron, S. J., McNally, E. M., Niebling, K. R., Toyoshima, C., & Spudich, J. A. (1987). Myosin subfragment-1 is sufficient to move actin filaments in vitro. Nature, 328, 536–539.

    CAS  PubMed  Google Scholar 

  22. Laha, S., Naik, A. R., Kuhn, E. R., Alvarez, M., Sujkowski, A., Wessels, R. J., & Jena, B. P. (2017). Nanothermometry measure of muscle efficiency. ACS Nano Letters, 17, 1262–1268.

    CAS  Google Scholar 

  23. Kuhn, E. R., Naik, A. R., Lewis, B. E., Kokotovich, K. M., Li, M., Stemmler, T. M., et al. (2018). Nanothermometry reveals calcium-induced remodeling of myosin. ACS Nano Letters, 18, 7021–7029.

    CAS  Google Scholar 

  24. Kronert, W. A., Bell, K. M., Viswanathan, M. C., Melkani, G. C., Trujillo, A. S., Huang, A., et al. (2018). Prolonged cross-bridge binding triggers muscle dysfunction in a fly model of myosin-based hypertrophic cardiomyopathy. eLife, 7, e38e064.

    Google Scholar 

  25. Li, M., Ogilvie, H., Ochala, J., Konstantin, A., Iwamoto, H., Yagi, N., et al. (2015). Aberrant post-translational modifications compromise human myosin motor function in old age. Aging Cell, 14, 228–235.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Llsano-Diez, M., Renaud, G., Andersson, M., Marrero, H. G., Cacciani, N., Engquist, H., Corpeno, R., Artemenko, K., Bergquist, J., & Larsson, L. (2012). Mechanism underlying ICU muscle wasting and effects of passive mechanical loading. Critical Care, 16, R209.

    Google Scholar 

  27. Llsano-Diez, M., Gustafsin, A.-M., Olsson, C., Goransson, H., & Larsson, L. (2011). Muscle wasting and the temporal gene expression pattern in a novel rat intensive care unit model. BMC Genomics, 12, 602.

    Google Scholar 

  28. Norman, H., Nordquist, J., Andersson, P., Ansved, T., Tang, X., Dworkin, B., et al. (2006). Impact of post-synaptic block of neuromuscular transmission, muscle unloading and mechanical ventilation on skeletal muscle protein and mRNA expression. Pflügers Archiv, 453, 53–66.

    CAS  PubMed  Google Scholar 

  29. Larsson, L. (2007). Experimental animal models of muscle wasting in intensive care unit patients. Critical Care Medicine, 35(9 Suppl), S484–S487.

    PubMed  Google Scholar 

  30. Ochala, J., Gustafson, A.-M., Li, M., Aare, S., Qaisar, R., Llano Diez, M., et al. (2011). Preferential skeletal muscle myosin loss in response to mechanical silencing in a novel rat intensive care unit model: underlying mechanisms. The Journal of Physiology, 589(8), 2007–2026.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Akkad, H., Corpeno, R., & Larsson, L. (2014). Masseter muscle myofibrillar protein synthesis and degradation in an experimental critical illness myopathy model. Plos-One., 9(4), e92622.

    PubMed  PubMed Central  Google Scholar 

  32. Pette, D., & Staron, R. S. (2000). Myosin isoforms, muscle fiber types, and transitions. Microscopy Research and Technique, 50(6), 500–509.

    CAS  PubMed  Google Scholar 

  33. MacFarlane, I. A., & Rosenthal, F. D. (1977). Severe myopathy after status asthmaticus. Lancet, 2(8038), 615.

    CAS  PubMed  Google Scholar 

  34. Lacomis, D., Zochodne, D. W., & Bird, S. J. (2000). Critical illness myopathy. Muscle & Nerve, 23(12), 1785–1788.

    CAS  Google Scholar 

  35. Phillips, S. M., Glover, E. I., & Rennie, M. J. (2009). Alterations of protein turnover underlying disuse atrophy in human skeletal muscle. Journal of Applied Physiology, 107(3), 645–654.

    CAS  PubMed  Google Scholar 

  36. Cohen, S., Brault, J. J., Gygi, S. P., et al. (2009). During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. The Journal of Cell Biology, 185(6), 1083–1095.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lecker, S. H., Jagoe, R. T., Gilbert, A., et al. (2004). Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. The FASEB Journal, 18(1), 39–51.

    CAS  PubMed  Google Scholar 

  38. Sacheck, J. M., Hyatt, J. P., Raffaello, A., et al. (2007). Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. The FASEB Journal, 21(1), 140–155.

    CAS  PubMed  Google Scholar 

  39. Sandri, M. (2010). Autophagy in health and disease. 3. Involvement of autophagy in muscle atrophy. American Journal of Physiology. Cell Physiology, 298(6), C1291–C1297.

    CAS  PubMed  Google Scholar 

  40. Stevenson, E., Giresi, P., Koncarevic, A., & Kandarian, S. (2003). Global analysis of gene expression patterns during disuse atrophy in rat skeletal muscle. Journal of Physiology-London., 2003, 33–48.

    Google Scholar 

  41. Sasa, T., Sairyo, K., Yoshida, N., et al. (2004). Continuous muscle stretch prevents disuse muscle atrophy and deterioration of its oxidative capacity in rat tail-suspension models. American Journal of Physical Medicine & Rehabilitation, 83(11), 851–856.

    Google Scholar 

  42. Sandri, M., Lin, J., Handschin, C., Yang, W., Arany, Z. P., Lecker, S. H., et al. (2006). PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy- specific gene transcription. Proceedings of the National Academy of Sciences of the United States of America, 103, 16260–16265.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ruas, J. L., White, J. P., Rao, R. R., Kleiner, S., Brannan, K. T., Harrison, B. C., et al. (2012). A PGC-1alpha isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell, 151, 1319–1331.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Resnicow, R., Deacon, J. C., Warrick, H. M., Spudich, J. A., & Leinwand, L. A. (2010). Functional diversity among a family of human skeletal muscle myosin motors. Proceedings of the National Academy of Sciences of the United States of America, 107, 1053–1058.

    CAS  PubMed  Google Scholar 

  45. Schiaffino, S., & Reggiani, C. (1994). Myosin isoforms in mammalian skeletal muscle. Journal of Applied Physiology, 77, 493–501.

    CAS  PubMed  Google Scholar 

  46. Schiaffino, S., & Reggiani, C. (1996). Molecular diversity of myofibrillar proteins: Gene regulation and functional significance. Physiological Reviews, 76, 371–423.

    CAS  PubMed  Google Scholar 

  47. Pette, D., & Staron, R. S. (1997). Mammalian skeletal muscle fiber type transitions. International Review of Cytology, 170, 143–223.

    CAS  PubMed  Google Scholar 

  48. Staron, R. S., & Pette, D. (1987). Nonuniform myosin expression along single fibers of chronically stimulated and contralateral rabbit tibialis anterior muscles. Pflügers Archiv, 409, 67–73.

    CAS  PubMed  Google Scholar 

  49. Peuker, H., & Pette, D. (1997). Quantitative analyses of myosin heavy-chain mRNA and protein isoforms in single fibers reveal a pronounced fiber heterogeneity in normal rabbit muscles. European Journal of Biochemistry, 247, 30–36.

    CAS  PubMed  Google Scholar 

  50. Andersen, J. L., & Schiaffino, S. (1997). Mismatch between myosin heavy chain mRNA and protein distribution in human skeletal muscle fibers. American Journal of Physiology-Cell Physiology, 272, C1881–1889. 37.

    CAS  Google Scholar 

  51. Eizema, K., et al. (2003). Differential expression of equine myosin heavy-chain mRNA and protein isoforms in a limb muscle. The Journal of Histochemistry and Cytochemistry, 51, 1207–1216.

    CAS  PubMed  Google Scholar 

  52. Smith, K., & Rennie, M. J. (1996). The measurement of tissue protein turnover. Baillière’s Clinical Endocrinology and Metabolism, 10, 469–495.

    CAS  PubMed  Google Scholar 

  53. Mann, M., & Jensen, O. (2003). Proteomic analysis of post-translational modifications. Nature Biotechnology, 21, 255–261.

    CAS  PubMed  Google Scholar 

  54. Kim, W., Bennett, E. J., Huttlin, E. L., Guo, A., Li, J., Possemato, A., et al. (2011). Systematic and quantitative assessment of the ubiquitin-modified proteome. Molecular Cell, 44, 325–340.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Edwards, A. V. G., Cordwell, S. J., & White, M. Y. (2011). Phosphoproteomic pro ling of the myocyte. Circulation. Cardiovascular Genetics, 4, 575.

    PubMed  Google Scholar 

  56. Hennet, T. (2012). Diseases of glycosylation beyond classical congenital disorders of glycosylation. Biochimica et Biophysica Acta, 1820, 1306–1317.

    CAS  PubMed  Google Scholar 

  57. Li, T., Evdokimov, E., Shen, R.-F., Chao, C.-C., Tekle, E., Wang, T., Stadtman, E. R., Yang, D. C. H., & Chock, P. B. (2004). Sumoylation of heterogeneous nuclear ribonucleoproteins, zinc finger proteins, and nuclear pore complex proteins: A proteomic analysis. Proceedings of the National Academy of Sciences of the United States of America, 101, 8551–8556.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Matafora, V., D’Amato, A., Mori, S., Blasi, F., & Bachi, A. (2009). Proteomics analysis of nucleolar SUMO-1 target proteins upon proteasome inhibition. Molecular & Cellular Proteomics, 8, 2243–2255.

    CAS  Google Scholar 

  59. Flick, K., & Kaiser, P. (2009). Proteomic revelation: SUMO changes partners when the heat is on. Science Signaling, 2, pe45.

    PubMed  PubMed Central  Google Scholar 

  60. Tatham, M. H., Rodriguez, M. S., Xirodimas, D. P., & Hay, R. T. (2009). Detection of protein SUMOylation in vivo. Nature Protocols, 4, 1363–1371.

    CAS  PubMed  Google Scholar 

  61. Galisson, F., Mahrouche, L., Courcelles, M., Bonneil, E., Meloche, S., Chelbi-Alix, M. K., & Thibault, P. (2011). A novel proteomics approach to identify SUMOylated proteins and their modification sites in human cells. Molecular & Cellular Proteomics, 10, M110.004796.

    Google Scholar 

  62. Norman, H., Nordquist, J., Andersson, P., Ansved, T., Tang, X., Dworkin, B., & Larsson, L. (2006). Impact of post-synaptic block of neuromuscular transmission, muscle unloading and mechanical ventilation on skeletal muscle protein and mRNA expression. Pflügers Archiv, 453, 53–66.

    CAS  PubMed  Google Scholar 

  63. Lee, S. Y., Ahn, S., Kim, Y. J., Ji, M. J., Kim, K. M., Choi, S. H., et al. (2018). Comparison between dual-energy X-ray absorptiometry and bioelectrical impedance analyses for accuracy in measuring whole body muscle mass and appendicular skeletal muscle mass. Nutrients, 10, 738.

    PubMed Central  Google Scholar 

  64. Mitsiopoulos, N., Baumgartner, R. N., Heymsfield, S. B., Lyons, W., Gallagher, D., & Ross, R. (1998). Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. Journal of Applied Physiology, 85, 115–122.

    CAS  PubMed  Google Scholar 

  65. Reeves, N. D., Maganaris, C. N., & Narici, M. V. (2004). Ultrasonographic assessment of human skeletal muscle size. European Journal of Applied Physiology, 91, 116–118.

    PubMed  Google Scholar 

  66. Mourtzakis, M., Parry, S., Connolly, B., & Puthucheary, Z. (2017). Skeletal muscle ultrasound in critical care: A tool in need of translation. Annals of the American Thoracic Society, 14, 1495–1503.

    PubMed  PubMed Central  Google Scholar 

  67. Mercuri, E., Pichiecchio, A., Allsop, J., Messina, S., Pane, M., & Muntoni, F. (2007). Muscle MRI in inherited neuromuscular disorders: Past, present, and future. Journal of Magnetic Resonance Imaging, 25(2), 433–440.

    PubMed  Google Scholar 

  68. Mercuri, E., Jungbluth, H., & Muntoni, F. (2005). Muscle imaging in clinical practice: Diagnostic value of muscle magnetic resonance imaging in inherited neuromuscular disorders. Current Opinion in Neurology, 18(5), 526–537.

    PubMed  Google Scholar 

  69. Zaidman, C. M., Holland, M. R., Anderson, C. C., & Pestronk, A. (2008). Calibrated quantitative ultrasound imaging of skeletal muscle using backscatter analysis. Muscle & Nerve, 38(1), 893–898.

    Google Scholar 

  70. Lai, C. H., Melli, G., Chang, Y. J., Skolasky, R. L., Corse, A. M., Wagner, K. R., & Cornblath, D. R. (2010). Open muscle biopsy in suspected myopathy: Diagnostic yield and clinical utility. European Journal of Neurology, 17(1), 136–142.

    PubMed  Google Scholar 

  71. Collins, M. P., Mendell, J. R., Periquet, M. I., Sahenk, Z., Amato, A. A., Gronseth, G. S., et al. (2000). Superficial peroneal nerve/peroneus brevis muscle biopsy in vasculitic neuropathy. Neurology, 55(5), 636–643.

    CAS  PubMed  Google Scholar 

  72. Tarnopolsky, M. A., Pearce, E., Smith, K., & Lach, B. (2011). Suction-modified Bergström muscle biopsy technique: Experience with 13,500 procedures. Muscle & Nerve, 43(5), 717–725.

    Google Scholar 

  73. Giagnacovo, M., Cardani, R., Meola, G., Pellicciari, C., & Malatesta, M. (2010). Routinely frozen biopsies of human skeletal muscle are suitable for morphological and immunocytochemical analyses at transmission electron microscopy. European Journal of Histochemistry, 54(3), e31.

    CAS  PubMed  Google Scholar 

  74. Bossen, E. (2000). In R. Wortmann (Ed.), Muscle biopsy in disease of skeletal muscle (pp. 333–348). Philadelphia, PA: Lippincott Williams and Wilkins.

    Google Scholar 

  75. Dalakas, M. C. (2002). Muscle biopsy findings in inflammatory myopathies. Rheumatic Diseases Clinics of North America, 28(4), 779–798.

    PubMed  Google Scholar 

  76. Scola, R. H., Pereira, E. R., Lorenzoni, P. J., & Werneck, L. C. (2007). Toxic myopathies: Muscle biopsy features. Arquivos de Neuro-Psiquiatria, 65(1), 82–86.

    PubMed  Google Scholar 

  77. Rifai, Z., Welle, S., Kamp, C., & Thornton, C. A. (1995). Ragged red fibers in normal aging and inflammatory myopathy. Annals of Neurology, 37(1), 24–29.

    CAS  PubMed  Google Scholar 

  78. Jungbluth, H., Sewry, C. A., & Muntoni, F. (2011). Core myopathies. Seminars in Pediatric Neurology, 18(4), 239–249.

    PubMed  Google Scholar 

  79. Huizing, M., & Krasnewich, D. M. (2009). Hereditary inclusion body myopathy: A decade of progress. Biochimica et Biophysica Acta, 1792(9), 881–887.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Pernal, S.P., Liyanaarachchi, A., Gatti, D.L., Formosa, B., Pulvender, R., Kuhn, E.R., et al. (2019) Differential expansion microscopy. bioRxiv. doi:https://doi.org/10.1101/699579.

  81. Gatti, D.L., Arslanturk, S., Lal, S., Jena, B.P. (2019) Deep learning strategies for differential expansion microscopy. bioRxiv. doi:https://doi.org/10.1101/743682.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jena, B.P. (2020). Myosin: Cellular Molecular Motor. In: Cellular Nanomachines. Springer, Cham. https://doi.org/10.1007/978-3-030-44496-9_7

Download citation

Publish with us

Policies and ethics