Skip to main content

Chaperonin: Protein Folding Machinery in Cells

  • Chapter
  • First Online:
Cellular Nanomachines
  • 364 Accesses

Abstract

As ribosomes initiate synthesis of a polypeptide chain, its precise folding into the functional three-dimensional protein structure is achieved either by spontaneous self-folding or by chaperonin-assisted folding requiring ATP. Spontaneous self-folding is achieved and dictated by its linear amino acid sequence and the existing intracellular environment (such as pH and temperature of the nano environment) to be thermodynamically favorable to assume a negative Gibbs free energy value. In contrast, chaperonin assists folding by preventing incorrect folding conformations and aggregation. Chaperonins are double ring structures stacked one over the other to form a protein-folding chamber in the center of the stack. In E. coli, the protein-folding chaperone machinery measures 18.4 nm in length and 14 nm wide and is comprised of two rings stacked one over the other, with each ring composed of seven subunits. Each subunit is composed of three domains, including an ATP-binding domain. The binding of ATP leads to the establishment of a hydrophilic cage for protein folding. Mutations in genes encoding chaperones, or changes in the expression levels of chaperones, have been identified to result in a wide range of disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Georgopoulos, C. P., Hendrix, R. W., Kaiser, A. D., & Wood, W. B. (1972). Role of the host cell in bacteriophage morphogenesis: Effects of a bacterial mutation on T4 head assembly. Nature: New Biology, 239, 38–41.

    CAS  Google Scholar 

  2. Georgopoulos, C. P., Hendrix, R. W., Casjens, S. R., & Kaiser, A. D. (1973). Host participation in bacteriophage lambda head assembly. Journal of Molecular Biology, 76, 45–60.

    CAS  PubMed  Google Scholar 

  3. Hendrix, R. W. (1979). Purification and properties of groE, a host protein involved in bacteriophage assembly. Journal of Molecular Biology, 129, 375–392.

    CAS  PubMed  Google Scholar 

  4. Georgopoulos, C. P. (2006). Toothpicks, serendipity and the Emergence of the Escherichia coli DnaK (Hsp70) and GroEL (Hsp60) Chaperone Machines. Anecdotal, Historical and Critical Commentaries on Genetics Edited by James F. Crow and William F. Dove. Genetics, 174, 1699–1707.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hemmingsen, S. M., Woolford, C., van der Vies, S. M., Tilly, K., Dennis, D. T., Georgopoulos, C. P., Hendrix, R. W., & Ellis, R. J. (1988). Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature, 333, 330–334.

    CAS  PubMed  Google Scholar 

  6. Bochkareva, E. S., Lissin, N. M., & Girshovich, A. S. (1988). Transient association of newly synthesized unfolded proteins with the heat-shock GroEL protein. Nature, 336, 254–257.

    CAS  PubMed  Google Scholar 

  7. Goloubinoff, P., Christeller, J. T., Gatenby, A. A., & Lorimer, G. H. (1989). Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and mg-ATP. Nature, 342, 884–889.

    CAS  PubMed  Google Scholar 

  8. Lindquist, S., & Craig, E. A. (1988). The heat-shock proteins. Annual Review of Genetics, 22, 631–677.

    CAS  PubMed  Google Scholar 

  9. Bukau, B., & Horwich, A. L. (1998). The Hsp70 and Hsp60 chaperone machines. Cell, 92, 351–366.

    CAS  PubMed  Google Scholar 

  10. Hartl, F. U., & Hayer-Hartl, M. (2002). Molecular chaperones in the cytosol: From nascent chain to folded protein. Science, 295, 1852–1858.

    CAS  PubMed  Google Scholar 

  11. Cheng, M. Y., Pollock, R. A., Hendrick, J. P., & Horwich, A. L. (1987). Import and processing of human ornithine transcarbamoylase precursor by mitochondria from Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 84, 4063–4067.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Cheng, M. Y., Hartl, F. U., Martin, J., Pollock, R. A., Kalousek, F., Neupert, W., Hallberg, E. M., Hallberg, R. L., & Horwich, A. L. (1989). Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature, 337, 620–625.

    CAS  PubMed  Google Scholar 

  13. Weissman, J. S., Rye, H. S., Fenton, W. A., Beechem, J. M., & Horwich, A. L. (1996). Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction. Cell, 84, 481–490.

    CAS  PubMed  Google Scholar 

  14. Braig, K., Otwinowski, Z., Hegde, R., Boisvert, D. C., Joachimiak, A., Horwich, A. L., & Sigler, P. B. (1994). The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature, 371, 578–586.

    CAS  PubMed  Google Scholar 

  15. Xu, Z., Horwich, A. L., & Sigler, P. B. (1997). The crystal structure of the asymmetric GroEL-GroES-(ADP) chaperonin complex. Nature, 388, 741–750.

    CAS  PubMed  Google Scholar 

  16. Anfinsen, C. B. (1973). Principles that govern the folding of protein chains. Science, 181, 223–230.

    CAS  PubMed  Google Scholar 

  17. Chakraborty, K., Chatila, M., Sinha, J., Shi, Q., Poschner, B. C., Sikor, M., Jiang, G., Lamb, D. C., Hartl, F. U., & Hayer-Hartl, M. (2010). Chaperonin-catalyzed rescue of kinetically trapped states in protein folding. Cell, 142, 112–122.

    CAS  PubMed  Google Scholar 

  18. Motojima, F., & Yoshida, M. (2010). Polypeptide in the chaperonin cage. Cell, 84, 481–490.

    Google Scholar 

  19. Kerner, M. J., Naylor, D. J., Ishihama, Y., Maier, T., Chang, H. C., Stines, A. P., Georgopoulos, C. P., Frishman, D., Hayer-Hartl, M., & Hartl, F. U. (2005). Proteome-wide analysis of chaperonin- dependent protein folding in Escherichia coli. Cell, 122, 209–220.

    CAS  PubMed  Google Scholar 

  20. Chaudhuri, T. K., Verma, V. K., & Maheswari, A. (2009). GroEL assisted folding of large polypeptide substrates in Escherichia coli: Present scenario and assignments for the future. Progress in Biophysics and Molecular Biology, 99, 42–50.

    CAS  PubMed  Google Scholar 

  21. Lundin, V. F., Leroux, M. R., & Stirling, P. C. (2010). Quality control of cytoskeletal proteins and human disease. Trends in Biochemical Sciences, 35, 288–297.

    CAS  PubMed  Google Scholar 

  22. Vainberg, I. E., Lewis, S. A., Rommelaere, H., Ampe, C., Vandekerckhove, J., Klein, H. L., & Cowan, N. J. (1998). Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell, 93, 863–873.

    CAS  PubMed  Google Scholar 

  23. Tian, G., Vainberg, I. E., Tap, W. D., Lewis, S. A., & Cowan, N. J. (1995). Quasi-native chaperonin-bound intermediates in facilitated protein folding. The Journal of Biological Chemistry, 270, 23910–23913.

    CAS  PubMed  Google Scholar 

  24. Lopez-Fanarraga, M., Avila, J., Guasch, A., Coll, M., & Zabala, J. C. (2001). Review: Postchaperonin tubulin folding cofactors and their role in microtubule dynamics. Journal of Structural Biology, 135, 219–229.

    CAS  PubMed  Google Scholar 

  25. Tian, G., Bhamidipati, A., Cowan, N. J., & Lewis, S. A. (1999). Tubulin folding cofactors as GTPase-activating proteins. GTP hydrolysis and the assembly of the alpha/beta-tubulin heterodimer. Journal of Biological Chemistry, 274, 24054–24058.

    CAS  PubMed  Google Scholar 

  26. Nogales, E., Wolf, S. G., & Downing, K. H. (1998). Structure of the alpha beta tubulin dimer by electron crystallography. Nature, 391, 199–203.

    CAS  PubMed  Google Scholar 

  27. Downing, K. H., & Nogales, E. (2010). Cryoelectron microscopy applications in the study of tubulin structure, microtubule architecture, dynamics and assemblies, and interaction of microtubules with motors. Methods in Enzymology, 483, 121–142.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rajagopal, A., Kulkarni, S., Lewis, K. T., Chen, X., Maarouf, A., Kelly, C. V., Taatjes, D. J., & Jena, B. P. (2015). Proteome of the insulin-secreting Min6 porosome complex: Involvement of Hsp90 in its assembly and function. Journal of Proteomics, 114, 83–92.

    CAS  PubMed  Google Scholar 

  29. Csermely, P. (2001). Chaperone overload is a possible contributor to ‘civilization disease’. Trends in Genetics, 17, 701–704.

    CAS  PubMed  Google Scholar 

  30. Slavotinek, A. M., & Biesecker, L. G. (2001). Unfolding the role of chaperones and chaperonins in human disease. Trends in Genetics, 17, 528–535.

    CAS  PubMed  Google Scholar 

  31. Soti, C., & Csermely, P. (2002). Chaperones and aging: Role in neurodegeneration and in other civilizational diseases. Neurochemistry International, 41, 383–389.

    CAS  PubMed  Google Scholar 

  32. Soti, C., & Csermely, P. (2003). Aging and molecular chaperones. Experimental Gerontology, 38, 1037–1040.

    CAS  PubMed  Google Scholar 

  33. Macario, A. J. L., & Conway de Macario, E. (2002). Sick chaperones and ageing: A perspective. Ageing Research Reviews, 1, 295–311.

    CAS  PubMed  Google Scholar 

  34. Macario, A. J. L., & Conway de Macario, E. (2000). Stress and molecular chaperones in disease. International Journal of Clinical and Laboratory Research, 30, 49–66.

    CAS  PubMed  Google Scholar 

  35. Snoeckx, L. H. E. H., Cornelussen, R. N., van Nieuwenhoven, F. A., Reneman, R. S., & van der Vusse, G. J. (2001). Heat shock proteins and cardiovascular pathophysiology. Physiological Reviews, 81, 1461–1497.

    CAS  PubMed  Google Scholar 

  36. Verbeke, P., Fonager, J., Clark, B. F. C., & Rattan, S. I. S. (2001). Heat shock response and ageing: Mechanisms and applications. Cell Biology International, 25, 845–857.

    CAS  PubMed  Google Scholar 

  37. Hay, D. G., Sathasivam, K., Tobaben, S., Stahl, B., Marber, M., Mestril, R., Mahel, A., Smith, D. L., Woodman, B., & Bates, G. P. (2004). Progressive decrease in chaperone protein levels in a mouse model of Huntington’s disease and induction of stress proteins as a therapeutic approach. Human Molecular Genetics, 13, 1389–1405.

    CAS  PubMed  Google Scholar 

  38. Stone, D. L., Slavotinek, A., Bouffard, G. G., Banerjee-Basu, S., Baxevanis, A. D., Barr, M., & Biesecker, L. G. (2000). Mutations of a gene encoding a putative chaperonin causes McKusick-Kaufman syndrome. Nature Genetics, 25, 79–82.

    CAS  PubMed  Google Scholar 

  39. Slavotinek, A. M., Dutra, A., Kpodzo, D., Pak, E., Nakane, T., Turner, J., et al. (2004). A female with complete lack of Mü̈llerian fusion, postaxial polydactyly, and tetralogy of fallot: Genetic heterogeneity of McKusick-Kaufman syndrome or a unique syndrome? American Journal of Medical Genetics, 129A, 69–72.

    PubMed  Google Scholar 

  40. Schwahn, U., Paland, N., Techritz, S., Lenzner, S., & Berger, W. (2001). Mutations in the X-linked RP2 gene cause intracellular misrouting and loss of the protein. Human Molecular Genetics, 10, 1177–1183.

    CAS  PubMed  Google Scholar 

  41. Bartolini, F., Bhamidipatis, A., Thomas, S., Schwahn, U., Lewis, S. A., & Cowan, N. J. (2002). Functional overlap between retinitis pigmentosa 2 protein and the tubulin-specific chaperone cofactor C. The Journal of Biological Chemistry, 277, 14629–14634.

    CAS  PubMed  Google Scholar 

  42. Stock, A. D., Spallone, P. A., Dennis, T. R., Netski, D., Morris, C. A., Mervis, C. B., & Hobart, H. H. (2003). Heat shock protein 27 gene: Chromosomal and molecular location and relationship to Williams syndrome. American Journal of Medical Genetics, 120A, 320–325.

    PubMed  Google Scholar 

  43. Evgrafov, O. V., Mersiyanova, I., Irobi, J., van Den Bosch, L., Dierick, I., Leung, C. L., et al. (2004). Mutant small heat-shock protein 27 causes axonal Charcot-Marie-tooth disease and distal hereditary motor neuropathy. Nature Genetics, 36, 602–606.

    CAS  PubMed  Google Scholar 

  44. Brady, J. P., Garland, D., Duglas-Tabor, Y., Robinson, W. G. J., Groome, A., & Wawrousek, E. F. (1997). Targeted disruption of the mouse alpha-A-crystallin gene induces cataract and cytoplasmic inclusion bodies containing the small heat shock protein alpha-B- crystallin. Proceedings of the National Academy of Sciences of the United States of America, 94, 884–889.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Litt, M., Kramer, P., La Morticella, D. M., Murphey, W., Lovrien, E. W., & Weleber, R. G. (1998). Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA. Human Molecular Genetics, 7, 471–474.

    CAS  PubMed  Google Scholar 

  46. Trent, J. M., Smith, L., & Brownstein, M. J. (1999). Progressive juvenile-onset punctate cataracts caused by mutations of the gammaD-crystallin gene. Proceedings of the National Academy of Sciences of the United States of America, 96, 1008–1012.

    PubMed  PubMed Central  Google Scholar 

  47. Sandilands, A., Hutcheson, A. M., Long, H. A., Prescott, A. R., Vrensen, G., Loster, J., et al. (2002). Altered aggregation properties of mutant gamma crystallins cause inherited cataract. The EMBO Journal, 21, 6005–6014.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Santhiya, S. T., Manohar, M. S., Rawlley, D., Vijayalakshmi, P., Namperumalsamy, P., Gopinath, P. M., Loster, J., & Graw, J. (2002). Novel mutation in the gamma-crystallin genes cause autosomal dominant congenital cataracts. Journal of Medical Genetics, 39, 352–358.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jena, B.P. (2020). Chaperonin: Protein Folding Machinery in Cells. In: Cellular Nanomachines. Springer, Cham. https://doi.org/10.1007/978-3-030-44496-9_3

Download citation

Publish with us

Policies and ethics