Skip to main content

Ubiquitin–Proteasome Machinery: Cells Garbage Disposal

  • Chapter
  • First Online:
Cellular Nanomachines
  • 385 Accesses

Abstract

Proteins are cells building blocks with a highly dynamic existence. Rates of synthesis and degradation dictate cellular protein levels at any given moment. Many proteins such as transcription factors or signaling molecules are rapidly degraded (min), while structural proteins have very slow turnover rates (days). Similarly, damaged or improperly folded proteins are rapidly degraded. Two major cellular pathways operate to mediate the degradation of cellular proteins. One involves the ATP-dependent ubiquitin–proteasome pathway and the other involves the non-ATP-dependent proteolysis that occurs in the lysosome. In this chapter, the discovery, structure–function, and disease resulting from impaired ubiquitin–-proteasome-mediated protein degradation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hershko, A., & Tomkins, G. M. (1971). Studies on the degradation of tyrosine aminotransferase in hepatoma cells in culture. The Journal of Biological Chemistry, 246, 710–714.

    CAS  PubMed  Google Scholar 

  2. Ciechanover, A., Hod, Y., & Hershko, A. (1978). A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. Biochemical and Biophysical Research Communications, 81, 1100–1105.

    Article  Google Scholar 

  3. Hershko, A., Ciechanover, A., & Rose, I. A. (1979). Resolution of the ATP-dependent proteolytic system from reticulocytes: A component that interacts with ATP. Proceedings of the National Academy of Sciences, 76, 3107–3110.

    Article  CAS  Google Scholar 

  4. Hershko, A., Ciechanover, A., Heller, H., Haas, A. L., & Rose, I. A. (1980). Proposed role of ATP in protein breakdown: Conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis. Proceedings of the National Academy of Sciences, 77, 1783–1786.

    Article  CAS  Google Scholar 

  5. Ciechanover, A., Elias, S., Heller, H., & Hershko, A. (1982). “Covalent affinity” purification of ubiquitin-activating enzyme. The Journal of Biological Chemistry, 257, 2537–2542.

    CAS  PubMed  Google Scholar 

  6. Hershko, A., Heller, H., Elias, S., & Ciechanover, A. (1983). Components of ubiquitin–protein ligase system. Resolution, affinity purification, and role in protein breakdown. The Journal of Biological Chemistry, 258, 8206–8214.

    CAS  PubMed  Google Scholar 

  7. Wilk, S., & Orlowski, M. (1980). Cation-sensitive neutral endopeptidase: Isolation and specificity of the bovine pituitary enzyme. Journal of Neurochemistry, 35, 1172–1182.

    Article  CAS  PubMed  Google Scholar 

  8. Wilk, S., & Orlowski, M. (1983). Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex. Journal of Neurochemistry, 40, 842–849.

    Article  CAS  PubMed  Google Scholar 

  9. Orlowski, M., & Wilk, S. (1988). Multicatalytic proteinase complex’ or ‘multicatalytic proteinase’: A high-Mr-endopeptidase. The Biochemical Journal, 255, 751–751.

    CAS  PubMed Central  Google Scholar 

  10. Rieder, R., Ibrahim, A., & Etlinger, J. (1985). A particle-associated ATP-dependent proteolytic activity in erythroleukemia cells. The Journal of Biological Chemistry, 260, 2015–2018.

    CAS  PubMed  Google Scholar 

  11. Waxman, L., Fagan, J., & Goldberg, A. L. (1987). Demonstration of two distinct high molecular weight proteases in rabbit reticulocytes, one of which degrades ubiquitin conjugates. The Journal of Biological Chemistry, 262, 2451–2457.

    CAS  PubMed  Google Scholar 

  12. Azaryan, A., Banay-Schwartz, M., & Lajtha, A. (1989). ATP+ubiquitin-dependent proteinase and multicatalytic proteinase complex in bovine brain. Neurochemical Research, 14, 995–1001.

    Article  CAS  PubMed  Google Scholar 

  13. Ikai, A., Nishigai, M., Tanaka, K., & Ichihara, A. (1991). Electron microscopy of 26 S complex containing 20 S proteasome. FEBS Letters, 292, 21–24.

    Article  CAS  PubMed  Google Scholar 

  14. Lowe, J., Stock, D., Jap, B., Zwickl, P., Baumeister, W., & Huber, R. (1995). Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 a resolution. Science, 268, 533–539.

    Article  CAS  PubMed  Google Scholar 

  15. Walz, J., Erdmann, A., Kania, M., Typke, D., Koster, A. J., & Baumeister, W. (1998). 26S proteasome structure revealed by three-dimensional electron microscopy. Journal of Structural Biology, 121, 19–29.

    Article  CAS  PubMed  Google Scholar 

  16. Nickell, S., Beck, F., Korinek, A., Mihalache, O., Baumeister, W., & Plitzko, J. M. (2007). Automated cryoelectron microscopy of “single particles” applied to the 26S proteasome. FEBS Letters, 581, 2751–2756.

    Article  CAS  PubMed  Google Scholar 

  17. Groll, M., Ditzel, L., Lowe, J., Stock, D., Bochtler, M., Bartunik, H. D., & Huber, R. (1997). Structure of 20S proteasome from yeast at 2.4 a resolution. Nature, 386, 463–471.

    Article  CAS  PubMed  Google Scholar 

  18. Sprangers, R., & Kay, L. E. (2007). Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature, 445, 618–622.

    Article  CAS  PubMed  Google Scholar 

  19. Rosenzweig, R., Osmulski, P. A., Gaczynska, M., & Glickman, M. H. (2008). The central unit within the 19S regulatory particle of the proteasome. Nature Structural & Molecular Biology, 15, 573–580.

    Article  CAS  Google Scholar 

  20. Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. Annual Review of Biochemistry, 67, 425–479.

    Article  CAS  PubMed  Google Scholar 

  21. Saeki, Y., & Tanaka, K. (2007). Unlocking the proteasome door. Molecular Cell, 27, 865–867.

    Article  CAS  PubMed  Google Scholar 

  22. Liu, C. W., Li, X., Thompson, D., Wooding, K., Chang, T. L., Tang, Z., Yu, H., Thomas, P. J., & DeMartino, G. N. (2006). ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome. Molecular Cell, 24, 39–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Verma, R., Chen, S., Feldman, R., Schieltz, D., Yates, J., Dohmen, J., & Deshaies, R. J. (2000). Proteasomal proteomics: Identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity- purified proteasomes. Molecular Biology of the Cell, 11, 3425–3439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guerrero, C., Tagwerker, C., Kaiser, P., & Huang, L. (2006). An integrated mass spectrometry-based proteomic approach: Quantitative analysis of tandem affinity-purified in vivo cross-linked protein complexes (QTAX) to decipher the 26 S proteasome-interacting network. Molecular & Cellular Proteomics, 5, 366–378.

    Article  CAS  Google Scholar 

  25. Wang, X., Chen, C. F., Baker, P. R., Chen, P. L., Kaiser, P., & Huang, L. (2007). Mass spectrometric characterization of the affinity-purified human 26S proteasome complex. Biochemistry, 46, 3553–3565.

    Article  CAS  PubMed  Google Scholar 

  26. Alsmadi, O., Muiya, P., Khalak, H., Al-Saud, H., Meyer, B. F., Al-Mohanna, F., Alshahid, M., & Dzimiri, N. (2009). Haplotypes encompassing the KIAA0391 and PSMA6 gene cluster confer a genetic link for myocardial infarction and coronary artery disease. Annals of Human Genetics, 73(5), 475–483.

    Article  CAS  PubMed  Google Scholar 

  27. Sjakste, T., Kalis, M., Poudziunas, I., Pirags, V., Lazdins, M., Groop, L., & Sjakste, N. (2007). Association of microsatellite polymorphisms of the human 14q13.2 region with type 2 diabetes mellitus in Latvian and Finnish populations. Annals of Human Genetics, 71(6), 772–776.

    Article  CAS  PubMed  Google Scholar 

  28. Sjakste, T., Eglite, J., Sochnevs, A., et al. (2004). Microsatellite genotyping of chromosome 14q13.2-14q13 in the vicinity of proteasomal gene PSMA6 and association with Graves’ disease in the Latvian population. Immunogenetics, 56(4), 238–243.

    Article  CAS  PubMed  Google Scholar 

  29. Esseltine, D. L., & Mulligan, G. (2012). An historic perspective of proteasome inhibition. Seminars in Hematology, 49, 196–206.

    Article  CAS  PubMed  Google Scholar 

  30. Hoeller, D., & Dikic, I. (2009). Targeting the ubiquitin system in cancer therapy. Nature, 458, 438–444.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jena, B.P. (2020). Ubiquitin–Proteasome Machinery: Cells Garbage Disposal. In: Cellular Nanomachines. Springer, Cham. https://doi.org/10.1007/978-3-030-44496-9_2

Download citation

Publish with us

Policies and ethics