Skip to main content

Weed Emergence Models

  • Chapter
  • First Online:
Decision Support Systems for Weed Management

Abstract

Weed emergence models are practical tools that aim to describe the dynamics of emergence in the field. Such models can be conceptualized from two main perspectives: a reductionist/mechanistic approach and an empirical modelling viewpoint. While the former provides a close description of the basic ecophysiological processes underlying weed emergence (i.e. seed dormancy, germination and pre-emergence growth), they usually require a large amount of difficult to estimate species-specific parameters, as well as sometimes unavailable or missing experimental data for model development/calibration/validation. Conversely, the latter aims to describe the emergence process as a whole by seeking a general mathematical description of field emergence data as a function of field environmental variables, mainly temperature and precipitation. As reviewed in the literature, most emergence models have been developed using nonlinear regression (NLR) techniques. NLR sigmoidal type models which are based on cumulative thermal or hydrothermal time have become the most popular approach as they are easy to develop and use. However, some statistical and bioecological limitations arise, for example, the lack of independence between samplings, censored data, need for threshold thermal/hydric parameter estimation and determination of ‘moment zero’ for thermal/hydrothermal-time accumulation, among other factors, which can lead to inaccurate descriptions of the emergence process. New approaches based on soft computing techniques (SCT) have recently been proposed as alternative models to tackle some of the previously mentioned limitations. In this chapter, we focus on empirical weed emergence models with special emphasis in NLR models, highlighting some of the main advantages, as well as the statistical and biological limitations that could affect their predictive accuracy. We briefly discuss new SCT-based approaches, such as artificial neural networks which have recently been used for weed emergence modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboutalebian MA, Nazari S, Gonzalez-Andujar JL (2017) Evaluation of a model for predicting Avena fatua and Descurainia sophia seed emergence in winter rapeseed. Span J Agric Res 15:e03SC01

    Google Scholar 

  • Ali HH, Kebaso L, Manalil S, Chauhan BS (2020) Emergence and germination response of and to different temperatures and moisture stress regimes . Plant Species Biology 35:16–23

    Google Scholar 

  • Allen BL, Vigil MF, Jabro JD (2014) Camelina growing degree hour and base temperature requirements. Agron J 106:940–944

    Google Scholar 

  • Bagavathiannan MV, Norsworthy JK, Smith KL, Burgos N (2011) Seedbank Size and Emergence Pattern of Barnyardgrass (Echinochloa crus-galli) in Arkansas. Weed Sci 59:359–365

    CAS  Google Scholar 

  • Barnes ER, Werle R, Sandell LD, Lindquist JL, Knezevic SZ, Sikkema PH, Jhala AJ (2017) Influence of tillage on common ragweed (Ambrosia artemisiifolia) emergence pattern in Nebraska. Weed Technol 31:623–631

    Google Scholar 

  • Behtari B, de Luis M (2012) Seedling emergence of tall fescue and wheatgrass under different climate conditions in Iran. Span J Agric Res 10:183–190

    Google Scholar 

  • Beltran JC, Pannell DJ, Doole GJ, White B (2012) A bioeconomic model for analysis of integrated weed management strategies for annual barnyardgrass (Echinochloa crus-galli complex) in Philippine rice farming systems. Agr Syst 112:1–10

    Google Scholar 

  • Blanco AM, Chantre GR, Lodovichi MV, Bandoni A, López RL, Vigna MR, Gigón R, Sabbatini MR (2014) Modeling seed dormancy release and germination for predicting Avena fatua L. field emergence: a genetic algorithm approach. Ecol Model 272:293–300

    Google Scholar 

  • Boddy LG, Bradford KJ, Fischer AJ (2012) Population-based threshold models describe weed germination and emergence patterns across varying temperature, moisture and oxygen conditions. J Appl Ecol 49:1225–1236

    Google Scholar 

  • Bonissone PP (1997) Soft computing: the convergence of emerging reasoning technologies. Soft Comput 1:6–18

    Google Scholar 

  • Bradford KJ (2002) Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science 50:248–260

    Google Scholar 

  • Breiman L (2001) Statistical modelling: the two cultures (with comments and a rejoinder by the author). Stat Sci 16(3):199–231

    Google Scholar 

  • Bullied WJ, Van Acker RC, Bullock PR (2012) Hydrothermal modeling of seedling emergence timing across topography and soil depth. Agron J 104:423–436

    Google Scholar 

  • Cao R, Francisco-Fernandez M, Anand A, Bastida F, Gonzalez-Andujar JL (2011) Computing statistical indices for hydrothermal times using weed emergence data. J Agric Sci 149:701–771

    Google Scholar 

  • Cao R, Francisco-Fernández M, Anand A, Bastida F, Gonzalez-Andujar JL (2013) Modeling Bromus diandrus seedling emergence using nonparametric estimation. J Agric Biol Environ Stat 18:64–86

    Google Scholar 

  • Cardina J, Herms CP, Herms DA, Forcella F (2007) Evaluating phenological indicators for predicting giant foxtail (Setaria faberi) emergence. Weed Sci 55:455–464

    CAS  Google Scholar 

  • Cardoso VJM, Pereira FJM (2008) Germination of Drymaria cordata (L.) Willd. ex Roem and Schult. seeds: effect of water potential. Rev Bras Bot 31:253–261

    Google Scholar 

  • Chantre GR, Batlla D, Sabbatini MR, Orioli G (2009) Germination parameterization and development of an after-ripening thermal-time model for primary dormancy release of Lithospermum arvense seeds. Ann Bot 103:1291–1301

    PubMed  PubMed Central  Google Scholar 

  • Chantre GR, Sabbatini MR, Oiroli GA (2010) An after-ripening thermal-time model for Lithospermum arvense seeds based on changes in population hydrotime parameters. Weed Res 50:218–227

    Google Scholar 

  • Chantre GR, Blanco AM, Lodovichi MV, Bandoni AJ, Sabbatini MR, López RL, Vigna MR, Gigón R (2012) Modeling Avena fatua seedling emergence dynamics: an artificial neural network approach. Comput Electr Agric 88:95–102

    Google Scholar 

  • Chantre GR, Blanco AM, Forcella F, Van Acker RC, Sabbatini MR, Gonzalez-Andujar JL (2014) A comparative study between non-linear regression and artificial neural network approaches for modelling wild oat (Avena fatua) field emergence. J Agric Sci 152:254–262

    Google Scholar 

  • Chantre GR, Vigna MR, Renzi JP, Blanco AM (2018) A flexible and practical approach for real-time weed emergence prediction based on artificial neural networks. Biosyst Eng 170:51–60

    Google Scholar 

  • Clay SA, Davis A, Dille A, Lindquist J, Ramírez AHM, Sprague C, Reicks G, Forcella F (2014) Common sunflower seedling emergence across the U.S. Midwest. Weed Sci 62:63–70

    CAS  Google Scholar 

  • Cochavi A, Goldwasser Y, Horesh A, Igbariya K, Lati RN (2018) Impact of environmental factors on seed germination and emergence of wild poinsettia (Euphorbia geniculata Ortega). Crop Prot 114:68–75

    Google Scholar 

  • Colbach N, Dürr C, Roger-Estrade J, Chauvel B, Caneill J (2006) AlomySys: Modelling black-grass (Alopecurus myosuroides Huds.) germination and emergence, in interaction with seed characteristics, tillage and soil climate. European Journal of Agronomy 24:95–112

    Google Scholar 

  • Costea M, Tardiff FJ (2005) The biology of Canadian weeds 131. Polygonum aviculare L. Can J Plant Sci 85:481–506

    Google Scholar 

  • D’Amico MB, Calandrini GL, González-Andujar JL, Chantre GR (2018) Analysis of different management strategies for annual ryegrass (Lolium rigidum) based on a population dynamic model. Int J Bifurcation Chaos 28(12):1830041

    Google Scholar 

  • Das SK, Kumar A, Das B, Burnwal A (2013) On soft computing techniques in various areas. Comput Sci Inform Technol 3:59–68

    Google Scholar 

  • Davis AS, Clay S, Cardina J, Dille A, Forcella F, Lindquist J, Sprague C (2013) Seed burial physical environment explains departures from regional hydrothermal a model of giant ragweed (Ambrosia trifida) seedling emergence in U.S. Midwest Weed Sci 61:415–421

    CAS  Google Scholar 

  • Derakhshan A, Gherekhloo J, Vidal RA, De Prado R (2014) Quantitative description of the germination of littleseed canarygrass (Phalaris minor) in response to temperature. Weed Sci 62:250–257

    CAS  Google Scholar 

  • Dorado J, Sousa E, Calha IM, Gonzalez-Andujar JL, Fernández-Quintanilla C (2009) Predicting weed emergence in maize crops under two contrasting climatic conditions. Weed Res 49:251–260

    Google Scholar 

  • Eizenberg H, Hershenhorn J, Achdari G, Ephrath JE (2012) A thermal time model for predicting parasitism of Orobanche cumana in irrigated sunflower-Field validation. Field Crop Res 137:49–55

    Google Scholar 

  • Ekeleme F, Forcella F, Archer DW, Akobundu IO, Chikoye D (2005) Seedling emergence model for tropic ageratum (Ageratum conyzoides). Weed Res 53:55–61

    CAS  Google Scholar 

  • Forcella F (1998) Real time assessment of seed dormancy and seedling growth for weed management. Seed Sci Res 8:201–209

    Google Scholar 

  • Forcella F, Benech Arnold RL, Sanchez R, Ghersa CM (2000) Modeling seedling emergence. Field Crops Research 67:123–139

    Google Scholar 

  • Froud-Williams RJ, Chancellor RJ, Drennan DSH (1984) The effects of seed burial and soil disturbance on emergence and survival of arable weeds in relation to minimal cultivation. J Appl Ecol 21:629–641

    Google Scholar 

  • Garcia AL, Torra J, Recasens J, Forcella F, Royo-Esnal A (2013) Hydrothermal emergence model for Bromus diandrus. Weed Sci 61:146–153. https://doi.org/10.1614/WS-D-12-00023.1

    Article  CAS  Google Scholar 

  • Gardarin A, Dürr C, Colbach N (2012) Modeling the dynamics and emergence of multispecies weed seed bank with species traits. Ecol Model 240:123–138

    Google Scholar 

  • Goldwasser Y, Miryamchik H, Rubin B, Eizenberg H (2016) Field dodder (Cuscuta campestris)—a new model describing temperature-dependent seed germination. Weed Sci 64:53–60

    Google Scholar 

  • Gonzalez-Andujar JL, Chantre GR, Morvillo C, Blanco AM, Forcella F (2016a) Predicting field weed emergence with empirical models and soft computing techniques. Weed Res 56:415–423

    Google Scholar 

  • Gonzalez-Andujar JL, Francisco-Fernández M, Cao R, Reyes M, Urbano JM, Forcella F, Bastida F (2016b) A comparative study between nonlinear regression and nonparametric approaches for modelling Phalaris paradoxa seedling emergence. Weed Res 56:367–376

    Google Scholar 

  • Gonzalez-Diaz L, Leguizamon E, Forcella F, Gonzalez-Andujar JL (2007) Integration of emergence and population dynamic models for long term weed management using wild oat (Avena fatua L.) as an example. Span J Agric Res 5:199–203

    Google Scholar 

  • Goplen JJ, Sheaffer CC, Becker RL, Moon RD, Coulter JA, Breitenbach FR, Behnken LM, Gunsolus JL (2018) Giant Ragweed (Ambrosia trifida) emergence model performance evaluated in diverse cropping systems. Weed Sci 66:36–46

    Google Scholar 

  • Grundy A (2003) Predicting weed emergence: a review of approaches and future challenges. Weed Res 43:1–11

    Google Scholar 

  • Grundy A, Mead A, Bond W (1996) Modelling the effect of weed-seed distribution in the soil profile on seedling emergence. Weed Res 36:375–384

    Google Scholar 

  • Grundy A, Mead A, Burston S (2003a) Modelling the emergence response of weed seeds to burial depth: interactions with seed density, weight and shape. J Appl Ecol 40:757–770

    Google Scholar 

  • Grundy AC, Peters NCB, Rasmussen IA, Hartmann KM, Sattin M, Andersson L, Mead A, Murdoch AJ, Forcella F (2003b) Emergence of Chenopodium album and Stellaria media of different origins under different climatic conditions. Weed Res 43:163–176

    Google Scholar 

  • Guillemin JP, Gardarin A, Granger S, Reibel C, Munier-Jolain N, Colbach N (2013) Assessing potential germination period of weeds with base temperatures and base water potentials. Weed Res 53:76–87

    Google Scholar 

  • Gummerson R (1986) The effect of constant temperatures and osmotic potentials on the germination of sugar beet. J Exp Bot 37:729–741

    Google Scholar 

  • Haj Seyed Hadi MR, Gonzalez-Andujar JL (2009) Comparison of fitting weed seedling emergence models with nonlinear regression and genetic algorithm. Comput Electr Agric 65:19–25

    Google Scholar 

  • Harris SM, Doohan DJ, Gordon RJ, Jensen KIN (1998) The effect of thermal time and soil water on emergence of Ranunculus repens. Weed Res 38:405–412

    Google Scholar 

  • Hill EC, Renner KA, Sprague CL (2014) Henbit (Lamium amplexicaule), common chickweed (Stellaria media), shepherd’s-purse (Capsella bursa-pastoris), and field pennycress (Thlaspi arvense): fecundity, seed dispersal, dormancy, and emergence. Weed Sci 62:97–106

    CAS  Google Scholar 

  • Holmström K, Petersson J (2002) A review of the parameter estimation problem of fitting positive exponential sums to empirical data. Applied Mathematics and Computation 126:31–61

    Google Scholar 

  • Izquierdo J, Gonzalez-Andujar JL, Bastida F, Lezaún JA, Arco MJS (2009) A thermal time model to predict corn poppy (Papaver rhoeas) emergence in cereal fields. Weed Sci 57:660–664

    CAS  Google Scholar 

  • Izquierdo J, Bastida F, Lezaún JM, Sánchez del Arco MJ, Gonzalez-Andujar JL (2013) Development and evaluation of a model for predicting Lolium rigidum emergence in winter cereal crops in the Mediterranean area. Weed Res 53:269–278

    Google Scholar 

  • Juroszek P, Neuhoff D, Köpke U (2017) Night-time tillage revisited: the delayed soil desiccation process in night-time tilled plots may promote unexpected weed germination. Weed Res 57:213–217

    CAS  Google Scholar 

  • Keller M, Kollmann J (1999) Effects of seed provenance on germination of herbs for agricultural compensation sites. Agric Ecosyst Environ 72:87–99

    Google Scholar 

  • Kruk BC, Benech-Arnold RL (1998) Functional and quantitative analysis of seed thermal responses in prostrate knotweed (Polygonum aviculare) and common purslane (Portulaca oleracea). Weed Sci 46:83–90

    CAS  Google Scholar 

  • Lammoglia SK, Moeys J, Barriuso E, Larsbo M, Marín-Benito JM, Justes E, Alleto L, Ubertosi M, Nicolardot B, Munier-Joalin N, Mamy L (2017) Sequential use of the STICS crop model and of the MACRO pesticide fate model to simulate pesticides leaching in cropping systems. Environ Sci Pollut Res 24:6895–6909

    CAS  Google Scholar 

  • Leblanc ML, Cloutier DC, Stewart KA, Hamel C (2003) The use of thermal time to model common lambsquarters (Chenopodium album) seedling emergence in corn. Weed Sci 51:718–724

    CAS  Google Scholar 

  • Leblanc ML, Cloutier DC, Stewart KA, Hamel C (2004) Calibration and validation of a common lambsquarters (Chenopodium album) seedling emergence model. Weed Sci 52:61–66

    CAS  Google Scholar 

  • Leguizamón ES, Fernández-Quintanilla C, Barroso J, Gonzalez-Andujar JL (2005) Using thermal and hydrothermal time to model seedling emergence of Avena sterilis ssp. ludoviciana in Spain. Weed Res 45:149–156

    Google Scholar 

  • Leguizamón ES, Rodríguez N, Rainero H, Pérez M, Pérez L, Zorza E, Fernández-Quintanilla C (2009) Modelling the emergence pattern of six summer annual weed grasses under no tillage systems in Argentina. Weed Res 49:98–106

    Google Scholar 

  • León RG, Izquierdo J, Gonzalez-Andujar JL (2015) Characterization and modeling of itchgrass (Rottboellia cochinchinensis) biphasic seedling emergence patterns in the tropics. Weed Sci 63:623–630

    Google Scholar 

  • Loddo D, Masin R, Otto S, Zanin G (2012) Estimation of base temperature for Sorghum halepense rhizome sprouting. Weed Res 52:42–49

    Google Scholar 

  • Lodovichi MV, Blanco AM, Chantre GR, Bandoni JA, Sabbatini MR, López R, Vigna M, Gigón R (2013) Operational planning of herbicide-based weed management. Agr Syst 121:117–129

    Google Scholar 

  • Longas MM, Chantre GR, Sabbatini MR (2016) Soil nitrogen fertilisation as a maternal effect on Buglossoides arvensis seed germinability. Weed Res 56:462–469

    Google Scholar 

  • Lundy ME, Hill JE, van Kessel C, Owen DA, Pedroso RM, Boddy LG, Fischer AJ, Linquist BA (2014) Site-specific, real-time temperatures improve the accuracy of weed emergence predictions in direct-seeded rice systems. Agr Syst 123:12–21

    Google Scholar 

  • Martinson K, Durgan B, Forcella F, Wiersma J, Spokas K, Archer D (2007) An emergence model for wild oat (Avena fatua). Weed Sci 55:584–591

    CAS  Google Scholar 

  • Masin R, Loddo D, Benvenuti S, Zuin MC, Macchia M, Zanin G (2010) Temperature and water potential as parameters for modeling weed emergence in Central-Northern Italy. Weed Sci 58:216–222

    CAS  Google Scholar 

  • Masin R, Loddo D, Benvenuti S, Otto S, Zanin G (2012) Modelling weed emergence in Italian maize fields. Weed Sci 60:254–259

    CAS  Google Scholar 

  • Masin R, Loddo D, Gasparini V, Otto S, Zanin G (2014) Evaluation of weed emergence model AlertInf for maize in soybean. Weed Sci 62:360–369

    CAS  Google Scholar 

  • Masin R, Onofri A, Gasparini V, Zanin G (2017) Can alternating temperatures be used to estimate base temperature for seed germination? Weed Res 57:390–398

    Google Scholar 

  • McGiffen M, Spokas K, Forcella F, Archer D, Poppe S, Figueroa R (2008) Emergence prediction of common groundsel (Senecio vulgaris). Weed Sci 56:58–65

    CAS  Google Scholar 

  • Menalled F, Schonbeck M (2011) Manage the weed seed bank: minimize “Deposits” and maximize “Withdrawals”. http://www.extension.org/pages/18527

  • Menegat A, Milberg P, Nilsson ATS, Andersson L, Giulia V (2018) Soil water potential and temperature sum during reproductive growth control of seed dormancy in Alopecurus myosuroides Huds. Ecol Evol 8:7186–7194

    PubMed  PubMed Central  Google Scholar 

  • Norsworthy JK, Oliveira MJ (2007) A model for predicting common cocklebur (Xanthium strumarium) emergence in soybean. Weed Sci 55:341–345

    CAS  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Google Scholar 

  • Onofri A, Benincasa P, Mesgaran M, Ritz C (2018) Hydrothermal-time-to-event models for seed germination. Eur J Agron 101:129–139

    Google Scholar 

  • Onofri A, Piepho HP, Kozak M (2019) Analyzing censored data in agricultural research: a review with examples and software tips. Ann Appl Biol 174:3–13

    Google Scholar 

  • Onofri A, Gresta F, Tei F (2010) A new method for the analysis of germination and emergence data of weed species. Weed Research 50:187–198

    Google Scholar 

  • Oryokot JOE, Murphy SD, Thomas AG, Swanton CJ (1997) Temperature- and moisture-dependent models of seed germination and shoot elongation in green and redroot pigweed (Amaranthus powellii, A. retroflexus). Weed Sci 45:488–496

    CAS  Google Scholar 

  • Page ER, Gallagher RS, Kemanian AR, Zhang H, Fuerst EP (2006) Modeling site-specific wild oat (Avena fatua) emergence across a variable landscape. Weed Sci 54:838–846

    CAS  Google Scholar 

  • Pedroso RM, Neto DD, Filho VR, Fischer AJ, Al-Khatib K (2019) Modeling germination of smallflower umbrella sedge (Cyperus difformis L.) seeds from rice fields in California across suboptimal temperatures. Weed Technology 33:733–738

    Google Scholar 

  • Pannell DJ, Stewart V, Bennett A, Monjardino M, Schmidt C, Powles SB (2004) RIM: a bio-economic model for integrated weed management. Agr Syst 79:305–325

    Google Scholar 

  • Ratkowsky D (1983) Nonlinear regression analysis.(ed. D Ratkowsky). Marcel 484 Decker Inc., New York, USA

    Google Scholar 

  • Renzi JP, Chantre GR, Cantamutto MA (2018) Vicia villosa ssp. villosa Roth field emergence model in a semiarid agroecosystem. Grass Forage Sci 73:146–158

    Google Scholar 

  • Renzi JP, Chantre GR, González-Andújar JL, Cantamutto MA (2019) Development and validation of a simulation model for hairy vetch (Vicia villosa Roth) self-regeneration under different crop rotations. Field Crop Res 235:79–86

    Google Scholar 

  • Roberts EH (1988) Temperature and seed germination. Symp Soc Exp Biol 42:109–132

    CAS  PubMed  Google Scholar 

  • Roman ES, Thomas AG, Murphy SD, Swanton CJ (1999) Modelling germination and seedling elongation of common lambsquarters (Chenopodium album). Weed Sci 47:149–155

    CAS  Google Scholar 

  • Roman ES, Murphy SD, Swanton CJ (2000) Simulation of seedling emergence. Weed Science 48:217–224

    Google Scholar 

  • Royo-Esnal A, López-Fernández ML (2010) Modelling leaf development in Oxalis latifolia. Span J Agric Res 8:419–424

    Google Scholar 

  • Royo-Esnal A, Torra J, Conesa JA, Forcella F, Recasens J (2010) Modeling the emergence of three bedstraw (Galium) species. Weed Sci 58:10–15

    CAS  Google Scholar 

  • Royo-Esnal A, Necajeva J, Torra J, Recasens J, Gesch RW (2015a) Emergence of field pennycress (Thlaspi arvense L.): comparison of two accessions and modelling. Ind Crop Prod 66:161–169

    Google Scholar 

  • Royo-Esnal A, Garcia AL, Torra J, Forcella F, Recasens J (2015b) Describing Polygonum aviculare emergence in different tillage systems. Weed Res 55:387–395

    Google Scholar 

  • Royo-Esnal A, Gesch RW, Forcella F, Torra J, Recasens J, Necajeva J (2015c) The role of light in the emergence of weeds: using Camelina microcarpa as an example. PLoS One 10:e0146079

    PubMed  PubMed Central  Google Scholar 

  • Royo-Esnal A, Loddo D, Necajeva J, Jensen PK, de Mol F, Economou G, Taab A, Bochenek A, Synowiec A, Calha I, Andersson L, Uludag A, Uremis I, Onofri A, Torresen K (2018a) Emergence of Echinochloa crus-galli (L.) P. Beauv. populations along Europe and the Middle East. In: 18th Symposium of the European Weed Research Society, Ljubljana, Slovenia, 18–22 June 2018

    Google Scholar 

  • Royo-Esnal A, Recasens J, Garrido J, Torra J (2018b) Rigput brome (Bromus diandrus Roth.) management in a no tilled field in Spain. Agronomy 8:251. https://doi.org/10.3390/agronomy8110251

    Article  CAS  Google Scholar 

  • Royo-Esnal A, Gesch RW, Necajeva J, Forcella F, Edo-Tena E, Recasens J, Torra J (2019) Germination and emergence of Neslia paniculata (L.) Desv. Ind Crop Prod 129:455–462

    CAS  Google Scholar 

  • Scherner A, Melander B, Jensen PK, Kudsk P, Avila LA (2017) Reducing tillage intensity affects the cumulative emergence dynamics of annual grass weeds in winter cereals. Weed Res 57:314–322

    Google Scholar 

  • Schutte BJ, Regnier EE, Harrison SK, Schmoll JT, Spokas K, Forcella F (2008) A hydrothermal seedling emergence model for Giant Ragweed (Ambrosia trifida). Weed Sci 56:555–560

    CAS  Google Scholar 

  • Schutte BJ, Tomasek BJ, Davis AS, Andersson L, Benoit DL, Cirujeda A, Dekker J, Forcella F, Gonzalez-Andujar JL, Graziani F, Murdoch AJ, Neve P, Rasmussen IA, Sera B, Salonen J, Tei F, Tørresen KS, Urbano JM, Lutman P (2014) An investigation to enhance understanding of the stimulation of weed seedling emergence by soil disturbance. Weed Research 54:1– 12

    Google Scholar 

  • Sester M, Durr C, Darmency H, Colbach N (2007) Modelling the effects of cropping systems on the seed bank dynamics and the emergence of weed beet. Ecol Model 204:47–58

    Google Scholar 

  • Sharpe SM, Boyd NS (2019) Black medic (Medicago lupulina) germination response to temperature and osmotic potential, and a novel growing degree-day accounting restriction for heat-limited germination. Weed Sci 67:246–252

    Google Scholar 

  • Shrestha A, Roman ES, Thomas SG, Swanton CJ (1999) Modeling germination and shoot-radicle elongation of Ambrosia artemisiifolia. Weed Sci 47:557–562

    CAS  Google Scholar 

  • Soltani E, Gonzalez-Andújar JL, Oveisi M, Salehi N (2018) Development and validation of a predictive model for seedling emergence of volunteer canola (Brassica napus) under semi-arid climate. Int J Plant Prod 12:53–60

    Google Scholar 

  • Sousa-Ortega C, Chamber E, Urbano JM, Izquierdo J, Loureiro I, Marí AI, Cordero F, Vargas M, Saavedra M, Lezaun JA, Paramio JA, Fernández JL, Torra J, Royo-Esnal A (2020a) Should emergence models for Lolium rigidum be changed throughout climatic conditions? The case of Spain. Crop Protection 128:105012

    Google Scholar 

  • Sousa-Ortega C, Royo-Esnal A, DiTommaso A, Izquierdo J, Loureiro I, Marí AI, Cordero F, Vargas M, Saavedra M, Paramio JA, Fernández JL, Torra J, Urbano JM (2020b) Modeling the Emergence of North African Knapweed (Centaurea diluta), an Increasingly Troublesome Weed in Spain. Weed Science:1–30

    Google Scholar 

  • Spokas K, Forcella F (2009) Software tools for weed seed germination modeling. Weed Sci 57:216–227

    CAS  Google Scholar 

  • Streck NA, Lago I, Oliveira FB, Heldwein AB, de Ávila LA, Bosco LC (2011) Modelling the development of cultivated rice and weedy red rice. Trans ASABE 54:371–384

    Google Scholar 

  • Taylor JR, Roundy BA, Allen PS, Meyer SE, Egget DL (2007) Soil water sensor accuracy for predicting seedling emergence using a hydrothermal time model. Arid Land Res Manag 21:229–243

    Google Scholar 

  • Torra J, Recasens J, Royo-Esnal A (2018) Seedling emergence response of rare arable plants to soil tillage varies by species. PLoS One 13:e0199425

    PubMed  PubMed Central  Google Scholar 

  • Ustarroz D, Kruk BC, Satorre EH, Ghersa CM (2016) Dormancy, germination and emergence of Urochloa panicoides regulated by temperature. Weed Res 56:59–68

    Google Scholar 

  • Valencia‐Gredilla F, Supiciche ML, Chantre GR, Recasens J, Royo‐Esnal A (2020) Germination behaviour of to constant and alternating temperatures across different populations. Annals of Applied Biology 176:36–46

    Google Scholar 

  • Vleeshouwers LM, Kropff MJ (2000) Modelling field emergence patterns in arable weeds. New Phytologist 148:445–457

    Google Scholar 

  • Werle R, Bernards ML, Arkebauer TJ, Lindquist JL (2014a) Environmental triggers of winter annual weed emergence in the Midwestern United States. Weed Sci 62:83–96

    CAS  Google Scholar 

  • Werle R, Sandell LD, Buhler DD, Hartzler RG, Lindquist JL (2014b) Predicting emergence of 23 summer annual weed species. Weed Sci 62:267–279

    CAS  Google Scholar 

  • Wu L, Boyd N, Cutler GC, Olson AR (2013) Spreading dogbane (Apocynum androsaemifolium) development in wild blueberry fields. Weed Sci 61:422–427

    CAS  Google Scholar 

  • Yousefi AR, Oveisi M, Gonzalez-Andujar JL (2014) Prediction of annual weed seed emergence in garlic (Allium sativum L.) using soil thermal time. Sci Hortic 168:189–192

    Google Scholar 

  • Zambrano-Navea C, Bastida F, Gonzalez-Andujar JL (2013) A hydrothermal seedling emergence model for Conyza bonariensis. Weed Res 53:213–220

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aritz Royo-Esnal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Royo-Esnal, A., Torra, J., Chantre, G.R. (2020). Weed Emergence Models. In: Chantre, G., González-Andújar, J. (eds) Decision Support Systems for Weed Management. Springer, Cham. https://doi.org/10.1007/978-3-030-44402-0_5

Download citation

Publish with us

Policies and ethics