Skip to main content

Modelling Weed Seedbank Dormancy and Germination

  • Chapter
  • First Online:
Decision Support Systems for Weed Management

Abstract

Weeds are usually more vulnerable to control practices at the seedling stage or at early stages of their growth. Therefore, developing models to predict the timing and extent of weed emergence is useful to assist farmers and agronomist to time pre- and post-emergence control practices to increase their efficacy. However, many important weeds forming persistence seedbanks in agricultural fields present dormancy. In those species, the number of established seedlings is strongly related to the dormancy level of the seedbank, and the timing of seedling emergence depends on the seasonal variation in seedbank dormancy level. Therefore, if we pretend to predict timing and extent of seedling emergence, we should include the regulation of the seedbank dormancy level in our predictive models. In this chapter, we present a conceptual framework to understand how dormancy and germination of weed seedbanks are regulated by the environment. This framework is based on the distinction between those factors that regulate seasonal changes in the seedbank dormancy level (i.e. temperature in interaction with seed moisture content) and those factors that terminate dormancy (i.e. light and alternating temperatures). Changes in the seedbank dormancy level are related to changes in the range of environmental conditions permissive for seed germination, as, for example, the thermal range permissive for germination which is defined by the lower and the higher limit temperatures. Seeds germinate when environmental conditions are within the permissive range, for example, seeds begging to accumulate thermal time towards germination once soil temperature overlaps the permissive thermal range. We present examples of how these concepts can be used to establish functional relationships between dormancy and germination regulating factors (i.e. temperature) and changes in seedbank population dormancy level and germination dynamics in order to develop mechanistic models to predict the timing and extent of weed seedling emergence in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bair NB, Meyer SE, Allen PS (2006) A hydrothermal after-ripening time model for seed dormancy loss in Bromus tectorum L. Seed Sci Res 16:17–28

    Google Scholar 

  • Baskin JM, Baskin CC (1980) Ecophysiology of secondary dormancy in seeds of Ambrosia artemisiifolia. Ecology 61:475–480

    Google Scholar 

  • Baskin JM, Baskin CC (1985) The annual dormancy cycle in buried weed seeds: a continuum. BioScience 35:492–498

    Google Scholar 

  • Baskin CC, Baskin JM (1988) Germination ecophysiology of herbaceous plant species in temperate region. Am J Bot 75:286–305

    Google Scholar 

  • Baskin CC, Baskin JM (1998) Seed dormancy and germination. In: Ecology, biogeography and evolution. Academic Press, San Diego (EEUU)

    Google Scholar 

  • Baskin JM, Baskin CC (2004) A classification system for seed dormancy. Seed Sci Res 14:1–16

    Google Scholar 

  • Batlla D, Agostinelli A (2017) Thermal regulation of secondary dormancy induction in Polygonum aviculare seeds: a quantitative analysis using the hydrotime model. Seed Sci Res 27:231–242

    CAS  Google Scholar 

  • Batlla D, Benech-Arnold RL (2003) A quantitative analysis of dormancy loss dynamics in Polygonum aviculare L. seeds. Development of a thermal time model based on changes in seed population thermal parameters. Seed Sci Res 13:55–68

    Google Scholar 

  • Batlla D, Benech-Arnold RL (2004) Seed dormancy loss assessed by changes in Polygonum aviculare L. population hydrotime parameters. Development of a predictive model. Seed Sci Res 14:277–286

    Google Scholar 

  • Batlla D, Benech-Arnold RL (2005) Changes in the light sensitivity of buried Polygonum aviculare seeds in relation to cold-induced dormancy loss: development of a predictive model. New Phytol 165:445–452

    PubMed  Google Scholar 

  • Batlla D, Benech-Arnold RL (2007) Predicting changes in dormancy level in weed seed soil banks: implications for weed management. Crop Prot 26:189–197

    Google Scholar 

  • Batlla D, Benech-Arnold RL (2010) Predicting changes in dormancy level in natural seed soil banks. Plant Mol Biol 73:3–13

    CAS  PubMed  Google Scholar 

  • Batlla D, Benech-Arnold RL (2014) Weed seed germination and the light environment. Implications for weed management. Weed Biol Manag 14:77–87

    Google Scholar 

  • Batlla D, Benech-Arnold RL (2015) A framework for the interpretation of temperature effects on dormancy and germination in seed populations showing dormancy. Seed Sci Res 25:147–148

    Google Scholar 

  • Batlla D, Verges V, Benech-Arnold RL (2003) A quantitative analysis of seed responses to cycle-doses of fluctuating temperatures in relation to dormancy level. Development of a thermal-time model for Polygonum aviculare L. seeds. Seed Sci Res 13:197–207

    Google Scholar 

  • Batlla D, Grundy A, Dent KC, Clay HA, Finch-Savage WE (2009) A quantitative analysis of temperature-dependent dormancy changes in Polygonum aviculare seeds. Weed Res 49:428–438

    Google Scholar 

  • Bauer MC, Meyer SE, Allen PS (1998) A simulation model to predict seed dormancy loss in the field for Bromus tectorum L. J Exp Bot 49:1235–1244

    CAS  Google Scholar 

  • Benech-Arnold RL, Sánchez RA (1995) Modelling weed seed germination. In: Kigel J, Gallili G (eds) Seed development and germination. Marcel Dekker, New York, pp 545–566

    Google Scholar 

  • Benech-Arnold RL, Ghersa CM, Sanchez RA, Insausti P (1990a) A mathematical model to predict Sorghum halepense (L.) Pers. seedling emergence in relation to soil temperature. Weed Res 30:91–99

    Google Scholar 

  • Benech-Arnold RL, Ghersa CM, Sánchez RA, Insausti P (1990b) Temperature effects on dormancy release and germination rate in Sorghum halepense (L.) Pers seeds: a quantitative analysis. Weed Res 30:81–89

    Google Scholar 

  • Benech-Arnold RL, Sánchez RA, Forcella F, Kruk BC, Ghersa CM (2000) Environmental control of dormancy in weed seed soil banks. Field Crop Res 67:105–122

    Google Scholar 

  • Bewley JD, Bradford K, Hilhorst H, Nonogaki H (2013) Seeds: physiology of development, germination and dormancy, 3rd edn. Springer, New York

    Google Scholar 

  • Borthwick HA, Hendricks SB, Toole EH, Toole VK (1954) Action of light on lettuce seed germination. Bot Gaz 115:205–225

    Google Scholar 

  • Bouwmeester HJ (1990) The effect of environmental conditions on the seasonal dormancy pattern and germination of weed seeds. PhD thesis. Agricultural University, Wageningen, The Netherlands. p 157

    Google Scholar 

  • Bouwmeester HJ, Karssen CM (1992) The dual role of temperature in the regulation of the seasonal changes in dormancy and germination of seeds of Polygonum persicaria L. Oecologia 90:88–94

    PubMed  Google Scholar 

  • Bradford KJ (1995) Water relations in seed germination. In: Kigel J, Galili A (eds) Seed development and germination. Marcel Dekker, New York, pp 351–396

    Google Scholar 

  • Bradford KJ (2002) Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Sci 50:248–260

    CAS  Google Scholar 

  • Buhler DD (1999) Expanding the context of weed management. J Crop Prod 2:1–7

    Google Scholar 

  • Buhler DD, Hartzler RG, Forcella F, Gunsolus J (1997) Relative emergence sequence for weeds of corn and soybeans. Iowa State University Publication on Pest Management, File 9 (SA-11), Ames, IA

    Google Scholar 

  • Casal JJ, Sánchez RA (1998) Phytochromes and seed germination. Seed Sci Res 8:317–329

    CAS  Google Scholar 

  • Chantre G, Batlla D, Sabbatini M, Orioli G (2009) Germination parameterization and development of an after-ripening thermal-time model for primary dormancy release of Lithospermum arvense seeds. Ann Bot 103:1291–1301

    PubMed  PubMed Central  Google Scholar 

  • Chantre GR, Sabbatini MR, Orioli GA (2010) An after-ripening thermal-time model for Lithospermum arvense seeds based on changes in population hydrotime parameters. Weed Res 50:218–227

    Google Scholar 

  • Christensen M, Meyer S, Allen PS (1996) A hydrothermal time model of seed after-ripening in Bromus tectorum L. Seed Sci Res 6:147–153

    Google Scholar 

  • Costea M, Tardif FJ (2005) The biology of Canadian weeds. Polygonum aviculare L. Can J Plant Sci 85:481–506

    Google Scholar 

  • Covell S, Ellis RH, Roberts EH, Summerfield RJ (1986) The influence of temperature on seed germination rate in grain legumes. 1. A comparison of chickpea, lentil, soybean and cowpea at constant temperatures. J Exp Bot 37:705–715

    Google Scholar 

  • Derkx MPM, Karssen CM (1993) Changing sensitivity to light and nitrate but not to gibberellins regulates seasonal dormancy patterns in Sisymbrium officinale seeds. Plant Cell Environ 16:469–479

    CAS  Google Scholar 

  • Derkx MPM, Karssen CM (1994) Are seasonal dormancy patterns in Arabidopsis thaliana regulated by changes in seed sensitivity to light, nitrate and gibberellin? Ann Bot 73:129–136

    CAS  Google Scholar 

  • Duarte VAC, Batlla D, Ghersa CM y Ferraro DO (2015) Cuando la clave es integrar: introducción al desarrollo de grupos de comportamiento de dormición de malezas en cultivos agrícolas. Agron Ambiente 35(2): 153–169. FA-UBA, Buenos Aires, Argentina

    Google Scholar 

  • Egley G (1986) Stimulation of weed seed germination in soil. Rev Weed Sci 2:67–89

    CAS  Google Scholar 

  • Ellis RH, Covell S, Roberts EH, Summerfield RJ (1986) The influence of temperature on seed germination rate in grain legumes. II. Interspecific variation in chickpea (Cicer arietinum L.) at constant temperature. J Exp Bot 37:1503–1515

    Google Scholar 

  • Fenner M (1987) Seedlings. New Phytol 106:35–47

    Google Scholar 

  • Fernández Farnocchia RB, Benech-Arnold RL, Batlla D (2019) Regulation of seed dormancy by the maternal environment is instrumental for maximizing plant fitness in Polygonum aviculare. J Exp Bot 70(18):4793–4806. https://doi.org/10.1093/jxb/erz269

    Article  CAS  PubMed  Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:505–523

    Google Scholar 

  • Finch-Savage WE, Cadman CSC, Toorop PE, Lynn JR, Hilhorst HWM (2007) Seed dormancy release in Arabidopsis cvi by dry after-ripening, low temperature, nitrate and light shows common quantitative patterns of gene expression directed by environmentally specific sensing. Plant J 51:60–78

    CAS  PubMed  Google Scholar 

  • Gama-Arachchige NS, Baskin JM, Geneve RL, Baskin CC (2013) Quantitative analysis of the thermal requirements for stepwise physical dormancy-break in seeds of the winter annual Geranium carolinianum (Geraniaceae). Ann Bot 111:849–858

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Huidobro J, Monteith JL, Squire GR (1982) Time, temperature and germination of pearl millet (Pennisetum typhoides S & H). I. Constant temperature. J Exp Bot 33:288–296

    Google Scholar 

  • Ghersa CM, Satorre EH, Van Esso ML, Pataro A, Elizagaray R (1990) The use of thermal calendar models to improve the efficiency of herbicide applications in Sorghum halepense (L.) Pers. Weed Res 30(3):153–160

    CAS  Google Scholar 

  • Grundy AC, Mead A (2000) Modelling weed emergence as a function of meteorological records. Weed Sci 48:594–603

    CAS  Google Scholar 

  • Grundy AC, Phelps K, Reader RJ, Burston S (2000) Modelling the germination of Stellaria media using the concept of hydrothermal time. New Phytol 148:433–444

    Google Scholar 

  • Gummerson RJ (1986) The effect of constant temperatures and osmotic potentials on the germination of sugar beet. J Exp Bot 37:729–741

    Google Scholar 

  • Hardegree SP (2006) Predicting germination response to temperature. I. Cardinal-temperature models and sub-population specific regression. Ann Bot 97:1115–1125

    PubMed  PubMed Central  Google Scholar 

  • Hawkins K, Allen P, Meyer S (2017) Secondary dormancy induction and release in Bromus tectorum seeds: the role of temperature, water potential and hydrothermal time. Seed Sci Res 27(1):12–25

    Google Scholar 

  • Hu XW, Ding XY, Baskin CC, Wang YR (2018) Effect of soil moisture during stratification on dormancy release in seeds of five common weed species. Weed Res 58(3):210–220

    Google Scholar 

  • Huarte HR, Borlandelli F, Varisco D, Batlla D (2018) Understanding dormancy breakage and germination ecology of Cynara cardunculus (Asteraceae). Weed Res 58:450–462

    CAS  Google Scholar 

  • Karssen CM (1982) Seasonal patterns of dormancy in weed seeds. In: Khan AA (ed) The physiology and biochemistry of seed development, dormancy and germination. Elsevier, Amsterdam, pp 243–270

    Google Scholar 

  • Kruk BC, Benech-Arnold RL (1998) Functional and quantitative analysis of seed thermal responses in prostate knotweed (Polygonum aviculare) and common purslane (Portulaca oleracea). Weed Sci 46:83–90

    CAS  Google Scholar 

  • Leguizamon ES, Rodriguez N, Rainero H, Perez M, Perez L, Zorza E, Fernandez-Quintanilla C (2009) Modelling the emergence pattern of six summer annual weed grasses under no tillage systems in Argentina. Weed Res 49:98–106

    Google Scholar 

  • Malavert C (2017) Regulación ambiental de los cambios en el nivel de dormición durante la salida de la dormición primaria y la entrada en dormición secundaria en semillas de Polygonum aviculare L.: el papel de la temperatura y la disponibilidad hídrica del suelo [Tesis Doctoral]. Facultad de Agronomía, Universidad de Buenos Aires, Argentina, 2017

    Google Scholar 

  • Malavert C, Batlla D, Benech-Arnold RL (2017) Temperature-dependent regulation of induction into secondary dormancy of Polygonum aviculare L. seeds: a quantitative analysis. Ecol Model 352:128–138

    Google Scholar 

  • Nikolaeva MG (1967) Physiology of deep dormancy in seeds. National Science Foundation, Washington, DC, p 219

    Google Scholar 

  • Ogg A, Dawson J (1984) Time of emergence of eight weed species. Weed Sci 32(3):327–335

    Google Scholar 

  • Pons TL (1992) Seed responses to light. In: Fenner M (ed) Seeds. The ecology of regeneration in plant niches. C.A.B. International, Wallingford, pp 259–284

    Google Scholar 

  • Pritchard HW, Tompsett PB, Manger KR (1996) Development of a thermal time model for the quantification of dormancy loss in Aesculus hippocastanum seeds. Seed Sci Res 6:127–135

    Google Scholar 

  • Probert RJ (1992) The role of temperature in germination ecophysiology. In: Fenner M (ed) Seeds. The ecology of regeneration in plant communities. C.A.B. International, Wallingford, pp 285–325

    Google Scholar 

  • Radosevich SR, Holt J, Ghersa CM (1997) Weed ecology: implications for management. Wiley, New York

    Google Scholar 

  • Renzi JP, Chantre GR, Cantamutto MA (2016) Effect of water availability and seed source on physical dormancy break of Vicia villosa ssp. villosa. Seed Sci Res 26(3):254–263

    Google Scholar 

  • Renzi JP, Chantre GR, Cantamutto MA (2018) Vicia villosa ssp. villosa Roth field emergence model in a semiarid agroecosystem. Grass Forage Sci 73(1):146–158

    Google Scholar 

  • Scopel AL, Ballaré CL, Sánchez RA (1991) Induction of extreme light sensitivity in buried weed seeds and its role in the perception of soil cultivation. Plant Cell Environ 14:501–508

    Google Scholar 

  • Steadman KJ, Pritchard HW (2003) Germination of Aesculus hippocastanum seeds following cold-induced dormancy loss can be described in relation to a temperature-dependent reduction in base temperature (Tb) and thermal time. New Phytol 161:415–425

    Google Scholar 

  • Steadman KJ, Crawford AD, Gallagher RS (2003) Dormancy release in Lolium rigidum seeds is a function of thermal after-ripening time and seed water content. Funct Plant Biol 30:345–352

    PubMed  Google Scholar 

  • Totterdell S, Roberts EH (1980) Characteristics of alternating temperatures which stimulate loss of dormancy in seeds of Rumex obtusifolius L. and Rumex crispus L. Plant Cell Environ 3:3–12

    Google Scholar 

  • Vegis A (1964) Dormancy in higher plants. Annu Rev Plant Physiol 15:185–224

    CAS  Google Scholar 

  • Vleeshouwers LM, Kropff MJ (2000) Modelling field emergence patterns in arable weeds. New Phytol 148:445–457

    Google Scholar 

  • Vleeshouwers LM, Bouwmeester HJ, Karssen CM (1995) Redefining seed dormancy: an attempt to integrate physiology and ecology. J Ecol 83:1031–1037

    Google Scholar 

  • Washitani I (1985) Germination-rate dependency on temperature of Geranium carolinianum seeds. J Exp Bot 36:330–337

    Google Scholar 

  • Washitani I (1987) A convenient screening test system and a model for thermal germination responses of wild plant seeds: behaviour of model and real seed in the system. Plant Cell Environ 10:587–598

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Batlla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Batlla, D., Malavert, C., Farnocchia, R.B.F., Benech-Arnold, R. (2020). Modelling Weed Seedbank Dormancy and Germination. In: Chantre, G., González-Andújar, J. (eds) Decision Support Systems for Weed Management. Springer, Cham. https://doi.org/10.1007/978-3-030-44402-0_4

Download citation

Publish with us

Policies and ethics