Skip to main content

3D Face Recognition

  • Chapter
  • First Online:
3D Imaging, Analysis and Applications
  • 2057 Accesses

Abstract

Face recognition using 3D cameras captures and processes explicit 3D shape information and is more resistant to spoofing security attacks than 2D face recognition. However, typical compact-baseline, triangulation-based 3D capture systems are generally only suitable for close-range applications. The 3D shape may be used alone, or in combination with simultaneously captured, standard 2D color images in multimodal 2D/3D face recognition. Like its 2D counterpart, modern 3D face recognition often uses a feature extraction phase followed by a classification phase. Traditionally, such features have been handcrafted, but recent approaches use the representational learning power of deep neural networks. Other approaches use shape alignment methods, or analysis-by-synthesis, which exploits the prior shape distribution information captured by 3D morphable models. Additionally, 3D face models have been used for pose correction and calculation of the facial albedo map, which is independent of illumination. Finally, 3D face recognition has also achieved significant success toward expression invariance by modeling nonrigid surface deformations, removing facial expressions or by using parts-based face recognition. This chapter is not intended to be a comprehensive survey. Rather, it gives a tutorial introduction to 3D face recognition and a representative sample of both well-established and more recent state-of-the-art 3D face recognition techniques in terms of their implementation and expected performance on benchmark datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This may be referred to as a 3D scan or a 3D image, depending on the mode of shape capture.

  2. 2.

    Note that liveness detection, such as the detection of blinking, can be used to augment security [76] in both 2D and 3D modalities.

  3. 3.

    3D points are structured in a rectangular array and since (x, y) values are included, strictly it is not a range image, which contains z-values only.

  4. 4.

    Singular Inversions, Facegen Modeller, www.facegen.com.

References

  1. Achermann, B., Jiang, X., Bunke, H.: Face recognition using range images. In: Proceedings of International Conference on Virtual Systems and MultiMedia VSMM ’97 (Cat. No.97TB100182), pp. 129–136 (1997)

    Google Scholar 

  2. Adini, Y., Moses, Y., Ullman, S.: Face recognition: the problem of compensating for changes in illumination direction. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 721–732 (1997)

    Google Scholar 

  3. Al-Osaimi, F., Bennamoun, M., Mian, A.: Integration of local and global geometrical cues for 3D face recognition. Pattern Recognit. 41(3), 1030–1040 (2008)

    MATH  Google Scholar 

  4. Angel, E.: Interactive Computer Graphics: A Top-Down Approach Using OpenGL, 5th edn. Addison-Wesley Publishing Company, Reading (2008)

    Google Scholar 

  5. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3D point sets. IEEE Trans. Pattern Anal. Mach. Intell. 9(5), 698–700 (1987)

    Google Scholar 

  6. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Google Scholar 

  7. Besl, P.J., McKay, N.D.: A method for registration of 3D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Google Scholar 

  8. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, Berlin (2006)

    MATH  Google Scholar 

  9. Blanz, V., Scherbaum, K., Seidel, H.: Fitting a morphable model to 3D scans of faces. In: Proceedings of 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8 (2007)

    Google Scholar 

  10. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 187–194. ACM Press/Addison-Wesley Publishing Co., USA (1999)

    Google Scholar 

  11. Bledsoe, W.W.: The model method in facial recognition, technical report pri 15. Technical Report, Panoramic Research, Inc. Palo Alto, California, USA (1964)

    Google Scholar 

  12. Bogazici University: The Bosphorus 3D face database. http://bosphorus.ee.boun.edu.tr/. Accessed 21 Jan 2020

  13. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Three-dimensional face recognition. Int. J. Comput. Vis. 64(1), 5–30 (2005)

    Google Scholar 

  14. Cao, C., Weng, Y., Zhou, S., Tong, Y., Zhou, K.: Facewarehouse: a 3D facial expression database for visual computing. IEEE Trans. Vis. Comput. Graph. 20(3), 413–425 (2014)

    Google Scholar 

  15. Chang, J.K., Bowyer, K., Flynn, P.: Face recognition using 2D and 3D facial data. In: Proceedings of Multimodal User Authentication Workshop, pp. 25–32 (2004)

    Google Scholar 

  16. Chang, K.I., Bowyer, K.W., Flynn, P.J.: Multiple nose region matching for 3D face recognition under varying facial expression. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1695–1700 (2006)

    Google Scholar 

  17. Chang, K.I., Bowyer, K.W., Flynn, P.J.: An evaluation of multimodal 2D+3D face biometrics. IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 619–624 (2005)

    Google Scholar 

  18. Chua, C.-S., Han, F., Ho, Y.-K.: 3D human face recognition using point signature. In: Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 233–238 (2000)

    Google Scholar 

  19. Chua, C.S., Jarvis, R.: Point signatures: a new representation for 3D object recognition. Int. J. Comput. Vis. 25(1), 63–85 (1997)

    Google Scholar 

  20. Colombo, A., Cusano, C., Schettini, R.: UMB-DB: A database of partially occluded 3D faces. In: Proceedings of 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 2113–2119 (2011)

    Google Scholar 

  21. Colombo, A., Cusano, C., Schettini, R.: 3D face detection using curvature analysis. Pattern Recognit. 39(3), 444–455 (2006)

    MATH  Google Scholar 

  22. Creusot, C., Pears, N.E., Austin, J.: 3D face landmark labelling. In: Proceedings of 1st ACM workshop on 3D object retrieval, pp. 27–32 (2010)

    Google Scholar 

  23. Creusot, C., Pears, N., Austin, J.: Automatic keypoint detection on 3D faces using a dictionary of local shapes. In: Proceedings of 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, pp. 204–211 (2011)

    Google Scholar 

  24. Creusot, C.: Automatic landmarking for non-cooperative 3D face recognition. Ph.D. Thesis, Department of Computer Science, University of York, UK (2011)

    Google Scholar 

  25. Creusot, C., Pears, N., Austin, J.: A machine-learning approach to keypoint detection and landmarking on 3D meshes. Int. J. Comput. Vis. 102(1), 146–179 (2013)

    Google Scholar 

  26. Deng, J., Roussos, A., Chrysos, G., Ververas, E., Kotsia, I., Shen, J., Zafeiriou, S.: The menpo benchmark for multi-pose 2D and 3D facial landmark localisation and tracking. Int. J. Comput. Vis. 1–26 (2018)

    Google Scholar 

  27. Drira, H., Ben Amor, B., Srivastava, A., Daoudi, M., Slama, R.: 3D face recognition under expressions, occlusions, and pose variations. IEEE Trans. Pattern Anal. Mach. Intell. 35(9), 2270–2283 (2013)

    Google Scholar 

  28. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience, New York (2001)

    MATH  Google Scholar 

  29. Emambakhsh, M., Evans, A.: Nasal patches and curves for expression-robust 3D face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(5), 995–1007 (2017)

    Google Scholar 

  30. Faltemier, T.C., Bowyer, K.W., Flynn, P.J.: Using a multi-instance enrollment representation to improve 3D face recognition. In: Proceedings of 2007 First IEEE International Conference on Biometrics: Theory, Applications, and Systems, pp. 1–6 (2007)

    Google Scholar 

  31. Faltemier, T.C., Bowyer, K.W., Flynn, P.J.: A region ensemble for 3D face recognition. IEEE Trans. Inf. Forensics Secur. 3(1), 62–73 (2008)

    Google Scholar 

  32. Farkas, L.G.: Anthropometry of the Head and Face. Raven Press, New York (1994)

    Google Scholar 

  33. Fisher, N.I., Lee, A.J.: Correlation coefficients for random variables on a unit sphere or hypersphere. Biometrika 73(1), 159–164 (1986)

    MathSciNet  MATH  Google Scholar 

  34. Fitzgibbon, A.: Robust registration of 2D and 3D point sets. Image Vis. Comput. 21, 1145–1153 (2002)

    Google Scholar 

  35. Fleishman, S., Drori, I., Cohen-Or, D.: Bilateral mesh denoising. ACM Trans. Graph. 22(3), 950–953 (2003)

    Google Scholar 

  36. Gao, H., Davis, J.W.: Why direct lda is not equivalent to lda. Pattern Recognit. 39(5), 1002–1006 (2006)

    MATH  Google Scholar 

  37. Garland, M., Heckbert, P.: Surface simplification using quadric error metrics. In: Proceedings of the ACM SIGGRAPH Conference on Computer Graphics (1997)

    Google Scholar 

  38. Gilani, S.Z., Mian, A.: Learning from millions of 3D scans for large-scale 3D face recognition. In: Proceedings of International Conference Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  39. Gilani, S.Z., Mian, A., Shafait, F., Reid, I.: Dense 3D face correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 40(7), 1584–1598 (2018)

    Google Scholar 

  40. Gökberk, B., İrfanoğlu, M.O., Akarun, L.: 3D shape-based face representation and feature extraction for face recognition. Image Vis. Comput. 24(8), 857–869 (2006)

    Google Scholar 

  41. Gordon, G.G.: Face recognition based on depth and curvature features. In: Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 808–810 (1992)

    Google Scholar 

  42. Grgic, M., Delac, K.: Face recognition homepage. http://www.face-rec.org. Accessed 21 Jan 2020

  43. Günther, M., Cruz, S., Rudd, E.M., Boult, T.E.: Toward open-set face recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRw), pp. 573–582 (2017)

    Google Scholar 

  44. Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J., Kwok, N.M.: A comprehensive performance evaluation of 3D local feature descriptors. Int. J. Comput. Vis. 116(1), 66–89 (2016)

    MathSciNet  Google Scholar 

  45. Gupta, S., Markey, M.K., Bovik, A.C.: Anthropometric 3D face recognition. Int. J. Comput. Vis. 90(3), 331–349 (2010)

    Google Scholar 

  46. Heckbert, P., Garl, M.: Survey of polygonal surface simplification algorithms. In: SIGGRAPH, Course Notes: Multiresolution Surface Modeling (1997)

    Google Scholar 

  47. Heseltine, T., Pears, N.E., Austin, J.: Three-dimensional face recognition: a fishersurface approach. In: Proceedings of the International Conference Image Analysis and Recognition, pp. 684–691 (2004)

    Google Scholar 

  48. Heseltine, T., Pears, N.E., Austin, J.: Three-dimensional face recognition: an eigensurface approach. In: Proceedings of the IEEE International Conference Image Processing, Singapore, 2004 (ICIP’04), pp. 1421–1424 (2004)

    Google Scholar 

  49. Heseltine, T., Pears, N.E., Austin, J.: Three-dimensional face recognition using combinations of surface feature map subspace components. Image Vis. Comput. 26(3), 382–396 (2008)

    Google Scholar 

  50. Hesher, C., Srivastava, A., Erlebacher, G.: A novel technique for face recognition using range imaging. In: Proceedings of Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings., vol. 2, pp. 201–204(2003)

    Google Scholar 

  51. Horn, B.: Robot Vision, chapter 16. MIT Press, Cambridge (1986)

    Google Scholar 

  52. Huang, G., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical Report 07–49 (2007)

    Google Scholar 

  53. Institute of Automation, Chinese Academy of Sciences (CASIA): biometrics ideal test: CASIA-3D FaceV1. http://biometrics.idealtest.org. Accessed 21 Jan 2020

  54. Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Trans. Circuits Syst. Video Technol. 14(1), 4–20 (2004)

    Google Scholar 

  55. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 433–449 (1999)

    Google Scholar 

  56. Kakadiaris, I.A., Passalis, G., Toderici, G., Murtuza, M.N., Lu, Y., Karampatziakis, N., Theoharis, T.: Three-dimensional face recognition in the presence of facial expressions: an annotated deformable model approach. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 640–649 (2007)

    Google Scholar 

  57. Kemelmacher-Shlizerman, I., Seitz, S.M., Miller, D., Brossard, E.: The megaface benchmark: 1 million faces for recognition at scale. In: Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4873–4882 (2016)

    Google Scholar 

  58. Kim, D., Hernandez, M., Choi, J., Medioni, G.: Deep 3D face identification. In: Proceedings of 2017 IEEE International Joint Conference on Biometrics (IJCB), pp. 133–142 (2017)

    Google Scholar 

  59. Klassen, E., Srivastava, A., Mio, M., Joshi, S.H.: Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 26(3), 372–383 (2004)

    Google Scholar 

  60. Koenderink, J.J., van Doorn, A.J.: Surface shape and curvature scales. Image Vis. Comput. 10(8), 557–565 (1992)

    Google Scholar 

  61. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. Neural Inf. Process. Syst. 25 (2012)

    Google Scholar 

  62. Lee, J., Milios, E.: Matching range images of human faces. In: Proceedings of Third International Conference on Computer Vision, pp. 722–726. IEEE Computer Society (1990)

    Google Scholar 

  63. Lee, Y.-H., Shim, J.-C.: Curvature based human face recognition using depth weighted hausdorff distance. In: Proceedings of 2004 International Conference on Image Processing, 2004, vol. 3, pp. 1429–1432 (2004)

    Google Scholar 

  64. Li, H., Huang, D., Morvan, J.M., Wang, Y., Chen, L.: Towards 3D face recognition in the real: a registration-free approach using fine-grained matching of 3D keypoint descriptors. Int. J. Comput. Vis. 113(2), 128–142 (2015)

    MathSciNet  Google Scholar 

  65. Lo, T.W.R., Siebert, J.P.: Local feature extraction and matching on range images: 2.5D SIFT. Comput. Vis. Image Underst. 113(12), 1235–1250 (2009)

    Google Scholar 

  66. Lu, X., Jain, A.K., Colbry, D.: Matching 2.5d face scans to 3D models. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 31–43 (2006)

    Google Scholar 

  67. Lu, X., Jain, A.: Deformation modeling for robust 3D face matching. IEEE Trans. Pattern Anal. Mach. Intell. 30(8), 1346–1357 (2008)

    Google Scholar 

  68. Max, N.: Weights for computing vertex normals from facet normals. J. Graph. Tools 4(2), 1–6 (1999)

    Google Scholar 

  69. MeshLab: MeshLab. Open source system for processing and editing 3D triangular meshes. http://www.meshlab.net. Accessed 22 Jan 2020

  70. Mian, A., Bennamoun, M., Owens, R.: An efficient multimodal 2D–3D hybrid approach to automatic face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1927–1943 (2007)

    Google Scholar 

  71. Mian, A., Bennamoun, M., Owens, R.: Keypoint detection and local feature matching for textured 3D face recognition. Int. J. Comput. Vis. 79, 1–12 (2008)

    Google Scholar 

  72. Mohammadzade, H., Hatzinakos, D.: Iterative closest normal point for 3D face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(2), 381–397 (2013)

    Google Scholar 

  73. Ng, H., Winkler, S.: A data-driven approach to cleaning large face datasets. In: Proceedings of 2014 IEEE International Conference on Image Processing, pp. 343–347 (2014)

    Google Scholar 

  74. Padia, C., Pears, N.E.: A review and characterization of icp-based symmetry plane localisation in 3D face data. Technical Report 463, Department of Computer Science, University of York (2011)

    Google Scholar 

  75. Pan, G., Han, S., Wu, Z., Wang, Y.: 3D face recognition using mapped depth images. In: Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) - Workshops, p. 175 (2005)

    Google Scholar 

  76. Pan, G., Wu, Z., Sun, L.: Recent Advances in Face Recognition (chap.: Liveness detection for face recognition), pp. 236–254. Intech Open, London (2008)

    Google Scholar 

  77. Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: Proceedings of the British Machine Vision Conference 2015, pp. 41.1–41.12. BMVA Press (2015)

    Google Scholar 

  78. Passalis, G., Kakadiaris, I.A., Theoharis, T., Toderici, G., Murtuza, N.: Evaluation of the ur3d algorithm using the frgc v2 data set. In: Proceedings of the IEEE Workshop on Face Recognition Grand Challenge Experiments (2005)

    Google Scholar 

  79. Paysan, P., Knothe, R., Amberg, B., Romdhani, S., Vetter, T.: A 3D face model for pose and illumination invariant face recognition. In: Proceedings of 2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 296–301 (2009)

    Google Scholar 

  80. Pears, N.E., Heseltine, T.: Isoradius contours: New representations and techniques for 3D face registration and matching. In: Proceedings of 3rd International Symposium on 3D Data Processing, Visualization, and Transmission, Chapel Hill, NC, USA, pp. 176–183 (2006)

    Google Scholar 

  81. Pears, N.E., Heseltine, T., Romero, M.: From 3D point clouds to pose normalised depth maps. Int. J. Comput. Vis. 89(2), 152–176 (2010)

    Google Scholar 

  82. Phillips, P.J., Flynn, P., Scruggs, T., Bowyer, K., Chang, J.K., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the face recognition grand challenge. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 947–954 (2005)

    Google Scholar 

  83. Phillips, P.J., Yates, A., Hu, Y., Hahn, C., Noyes, E., Jackson, K., Cavazos, J., Jeckeln, G., Ranjan, R., Sankar, S., Chen, J.C., Castillo, C., Chellappa, R., White, D., O’Toole, A.: Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms. Proc. Natl. Acad. Sci. 115, 201721,355 (2018)

    Google Scholar 

  84. Piegl, L., Tiller, W.: The NURBS Book. Monographs in Visual Communication, 2nd edn. Springer, Berlin (1997)

    MATH  Google Scholar 

  85. Queirolo, C.C., Silva, L., Bellon, O.R.P., Pamplona Segundo, M.: 3D face recognition using simulated annealing and the surface interpenetration measure. IEEE Trans. Pattern Anal. Mach. Intell. 32(2), 206–219 (2010)

    Google Scholar 

  86. Rusinkiewicz, S., Levoy, M.: Efficient variants of the icp algorithm. In: Proceedings of Third International Conference on 3D Digital Imaging and Modeling, pp. 145–152 (2001)

    Google Scholar 

  87. Samir, C., Srivastava, A., Daoudi, M.: Three-dimensional face recognition using shapes of facial curves. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1858–1863 (2006)

    Google Scholar 

  88. Savran, A., Alyüz, N., Dibeklioğlu, H., Çeliktutan, O., Gökberk, B., Sankur, B., Akarun, L.: Bosphorus database for 3d face analysis. In: B. Schouten, N.C. Juul, A. Drygajlo, M. Tistarelli (eds.) Proceedings of European Workshop on Biometrics and Identity Management, pp. 47–56. Springer, Berlin (2008)

    Google Scholar 

  89. Scheirer, W.J., de Rezende Rocha, A., Sapkota, A., Boult, T.E.: Toward open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1757–1772 (2013)

    Google Scholar 

  90. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face recognition and clustering. In: Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 815–823 (2015)

    Google Scholar 

  91. Silva, L., Bellon, O., Boyer, K.: Precision range image registration using a robust surface interpenetration measure and enhanced genetic algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 27, 762–776 (2005)

    MATH  Google Scholar 

  92. Sirovich, L., Kirby, M.: Low-dimensional procedure for the characterization of human faces. J. Opt. Soc. Amer. A, Opt. Image Sci. 4, 519–524 (1987)

    Google Scholar 

  93. Soltanpour, S., Boufama, B., Wu, Q.J.: A survey of local feature methods for 3D face recognition. Pattern Recognit. 72, 391–406 (2017)

    Google Scholar 

  94. Spreeuwers, L.: Fast and accurate 3D face recognition. Int. J. Comput. Vis. 93(3), 389–414 (2011)

    MATH  Google Scholar 

  95. Spreeuwers, L.J.: Breaking the 99% barrier: optimisation of three-dimensional face recognition. IET Biometrics 4, 169–178 (2015)

    Google Scholar 

  96. Sun, X., Rosin, P.L., Martin, R.R., Langbein, F.C.: Noise analysis and synthesis for 3D laser depth scanners. Graph. Models 71(2), 34–48 (2009)

    Google Scholar 

  97. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: Closing the gap to human-level performance in face verification. In: Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)

    Google Scholar 

  98. Tanaka, H.T., Ikeda, M., Chiaki, H.: Curvature-based face surface recognition using spherical correlation. Principal directions for curved object recognition. In: Proceedings of Third IEEE International Conference on Automatic Face and Gesture Recognition, pp. 372–377 (1998)

    Google Scholar 

  99. The Blender Foundation: Open source 3D suite. https://www.blender.org/. Accessed 21 Jan 2020

  100. The University of Texas at Austin: Texas 3D face recognition database. http://live.ece.utexas.edu/research/texas3dfr. Accessed 22 Jan 2020

  101. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognit. Neurosci. 3(1), 71–86 (1991)

    Google Scholar 

  102. Vijayan, V., Bowyer, K.W., Flynn, P.J., Huang, D., Chen, L., Hansen, M., Ocegueda, O., Shah, S.K., Kakadiaris, I.A.: Twins 3D face recognition challenge. In: Proceedings of 2011 International Joint Conference on Biometrics (IJCB), pp. 1–7 (2011)

    Google Scholar 

  103. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)

    Google Scholar 

  104. Xu, C., Wang, Y., Tan, T., Quan, L.: Automatic 3D face recognition combining global geometric features with local shape variation information. In: Proceedings of Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings., pp. 308–313 (2004)

    Google Scholar 

  105. Yan, P., Bowyer, K.W.: A fast algorithm for icp-based 3D shape biometrics. In: Proceedings of Fourth IEEE Workshop on Automatic Identification Advanced Technologies (AutoID’05), pp. 213–218 (2005)

    Google Scholar 

  106. Yin, L., Chen, X., Sun, Y., Worm, T., Reale, M.: A high-resolution 3D dynamic facial expression database. In: Proceedings of 2008 8th IEEE International Conference on Automatic Face Gesture Recognition, pp. 1–6 (2008)

    Google Scholar 

  107. Yin, L., Wei, X., Sun, Y., Wang, J., Rosato, M.J.: A 3D facial expression database for facial behavior research. In: Proceedings of 7th International Conference on Automatic Face and Gesture Recognition (FGR06), pp. 211–216 (2006)

    Google Scholar 

  108. Yu, H., Yang, J.: A direct lda algorithm for high-dimensional data - with application to face recognition. Pattern Recognit. 34, 2067–2070 (2001)

    MATH  Google Scholar 

  109. Zhang, L., Snavely, N., Curless, B., Seitz, S.M.: Spacetime faces: High-resolution capture for modeling and animation. In: Deng, Z., Neumann, U. (eds.) Data-Driven 3D Facial Animation, pp. 248–276. Springer, London (2008)

    Google Scholar 

  110. Zhou, S., Xiao, S.: 3D face recognition: a survey. Human-Centric Comput. Inf. Sci. 8(1), (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick Pears .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pears, N., Mian, A. (2020). 3D Face Recognition. In: Liu, Y., Pears, N., Rosin, P.L., Huber, P. (eds) 3D Imaging, Analysis and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-44070-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44070-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44069-5

  • Online ISBN: 978-3-030-44070-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics