Skip to main content

Problems in Electrostatic Approximation

  • Chapter
  • First Online:
Canonical Problems in the Theory of Plasmonics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 230))

  • 423 Accesses

Abstract

In this chapter, some electrostatic boundary-value problems involving bounded electron gases with different geometries are studied. By considering the local Drude model , where the dielectric function is calculated by neglecting the spatial nonlocal effects, Laplace’s equation in planar, cylindrical, and spherical geometries is solved, using the separation of variables technique. For brevity, in many sections of this chapter the \(\exp (-i\omega t)\) time factor is suppressed. Furthermore, all media under consideration are nonmagnetic and attention is only confined to the linear phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 12 November 2020

    This book was inadvertently published without updating the following corrections.

Notes

  1. 1.

    Here, an insulator means a medium whose relative dielectric constant is assumed to be frequency independent.

  2. 2.

    In the sharp boundary model the thickness of the transition layer of the EG density is much shorter than the wavelength.

  3. 3.

    The method of separation of variables is applied to Laplace’s equation inside and outside the separation surface. This means that the solution for the electrostatic potential Φ can be written as the product of single-variable functions [4].

  4. 4.

    Here, we consider the case, where ε b = 1.

  5. 5.

    The first theoretical description of SPs was presented by Ritchie in 1957 [5].

  6. 6.

    If we reverse the EG slab geometry and study a vacuum gap in an EG, we find the same dispersion relation as for an EG slab, i.e., (2.48). However, we note that in the presence of retardation and/or spatial nonlocal effects they are not.

  7. 7.

    The plasmon hybridization theory (that is a nonretard method) can predict the location of plasmon resonances in complex systems based on knowledge of the resonant behavior of elementary building blocks. It thus provides a powerful tool for optical engineers in the design of functional plasmonic nanostructures. This method was first presented by Prodan et al. [25].

  8. 8.

    The external free charge densities on the separation surfaces of slab are zero.

  9. 9.

    We note by choosing Φ(x, z) as \(-\dfrac {1}{k_{x}}\tilde {\varPhi }(z)\sin k_{x}x\), the results of induced charge density correspond to the nonretarded results in Sect. 3.2.2. However, here the qualitative description of the problem is desired.

  10. 10.

    The polarizability of a circular cylinder has two components, known as axial and transversal polarizabilities. In the present case, i.e., when the length-to-diameter ratio of the system goes to infinity, the axial polarizability is equal to ε 1 − ε 2 [35].

  11. 11.

    This resonance frequency red-shifts as ε 2 is increased.

  12. 12.

    Here, the optical properties are expressed in terms of widths, which are defined as the cross sections per unit length of the cylinder.

  13. 13.

    The sum of absorption and scattering is called extinction.

  14. 14.

    The EG sphere has a uniform polarization P along the z-axis (along the external field); it is equal to \(\mathbf {p}/V=\mathbf {p}\left (4\pi a^{3}/3\right )^{-1} \).

References

  1. H.J. Lee, Electrostatic surface waves in a magnetized two-fluid plasma. Plasma Phys. Control. Fusion 37, 755–762 (1995)

    ADS  MathSciNet  Google Scholar 

  2. M. Marklund, G. Brodin, L. Stenflo, C.S. Liu, New quantum limits in plasmonic devices. Europhys. Lett. 84, 17006 (2008)

    ADS  Google Scholar 

  3. A. Moradi, Bohm potential and inequality of group and energy transport velocities of plasmonic waves on metal-insulator waveguides. Phys. Plasmas 24, 072104 (2017)

    ADS  Google Scholar 

  4. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1999)

    MATH  Google Scholar 

  5. R.H. Ritchie, Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957)

    ADS  MathSciNet  Google Scholar 

  6. J. Nkoma, R. Loudon, D.R. Tilley, Elementary properties of surface polaritons. J. Phys. C 7, 3547–3559 (1974)

    ADS  Google Scholar 

  7. S.S. Gupta, N.C. Srivastava, Power flow and energy distribution of magnetostatic bulk waves-in dielectric-layered structure. J. Appl. Phys. 50, 6697–6699 (1979)

    ADS  Google Scholar 

  8. M.S. Kushwaha, Interface polaritons in layered structures with metallized surfaces. J. Appl. Phys. 59, 2136–2141 (1986)

    ADS  Google Scholar 

  9. K.L. Ngai, E.N. Economou, M.H. Cohen, Theory of inelastic electron-surface-plasmon interactions in metal-semiconductor tunnel junctions. Phys. Rev. Lett. 22, 1375–1378 (1969)

    ADS  Google Scholar 

  10. B. Huttner, S.M. Barnett, Quantization of the electromagnetic field in dielectrics. Phys. Rev. A 46, 4306–4322 (1992)

    ADS  Google Scholar 

  11. M. Bertolotti, C. Sibilia, A. Guzman, Evanescent Waves in Optics (Springer, Basel, 2017)

    Google Scholar 

  12. J.J. Brion, R.F. Wallis, Theory of pseudosurface polaritons in semiconductors in magnetic fields. Phys. Rev. B 10, 3140–3143 (1974)

    ADS  Google Scholar 

  13. R.F. Wallis, J.J. Brion, E. Burstein, A. Hartstein, Theory of surface polaritons in anisotropic dielectric media with application to surface magnetoplasmons in semiconductors. Phys. Rev. B 9, 3424–37 (1974)

    ADS  Google Scholar 

  14. B. Hu, Y. Zhang, Q. Wang, Surface magneto plasmons and their applications in the infrared frequencies. Nanophotonics 4, 383 (2015)

    Google Scholar 

  15. A. Moradi, Comment on: propagation of surface waves on a semi-bounded quantum magnetized collisional plasma. Phys. Plasmas 23, 044701 (2016)

    ADS  Google Scholar 

  16. A. Moradi, Comment on: propagation of a TE surface mode in a relativistic electron beam-quantum plasma system. Phys. Lett. A 380, 2580–2581 (2016)

    ADS  MATH  Google Scholar 

  17. K.W. Chiu, J.J. Quinn, Magnetoplasma surface waves in metals. Phys. Rev. B 5, 4707–4709 (1972)

    ADS  Google Scholar 

  18. J.J. Brion, R.F. Wallis, A. Hartstein, E. Burstein, Theory of surface magnetoplasmons in semiconductors. Phys. Rev. Lett. 28, 1455–1458 (1972)

    ADS  Google Scholar 

  19. A. Moradi, Electrostatic surface waves on a magnetized quantum plasma half-space. Phys. Plasmas 23, 034501 (2016)

    ADS  Google Scholar 

  20. A. Moradi, Comment on: surface electromagnetic wave equations in a warm magnetized quantum plasma. Phys. Plasmas 23, 074701 (2016)

    ADS  Google Scholar 

  21. A.F. Alexandrov, L.S. Bogdankevich, A.A. Rukhadze, Principles of Plasma Electrodynamics (Springer, Berlin, 1984)

    Google Scholar 

  22. G.C. Aers, A.D. Boardman, E.D. Issac, High-frequency electrostatic surface waves on a warm gaseous magnetoplasma half-space. IEEE Trans. Plasma Sci. PS-5, 123–130 (1977)

    ADS  Google Scholar 

  23. A. Moradi, Energy density and energy flow of magnetoplasmonic waves on graphene. Solid State Commun. 253, 63 (2017)

    ADS  Google Scholar 

  24. A. Moradi, Energy density and energy flow of surface waves in a strongly magnetized graphene. J. Appl. Phys 123, 04310 (2018)

    Google Scholar 

  25. E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003)

    ADS  Google Scholar 

  26. E.N. Economou, Surface plasmons in thin films. Phys. Rev. 182, 539–554 (1969)

    ADS  Google Scholar 

  27. J.J. Burke, G.I. Stegeman, T. Tamir, Surface-polariton-like waves guided by thin, lossy metal films. Phys. Rev. B 33, 5186–5201 (1986)

    ADS  Google Scholar 

  28. S.A. Maiera, H.A. Atwater, Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 011101 (2005)

    ADS  Google Scholar 

  29. B.E. Sernelius, Surface Modes in Physics (Wiley-VCH, Berlin, 2001)

    Google Scholar 

  30. A. Moradi, Plasmon hybridization in metallic nanotubes. J. Phys. Chem. Solids 69, 2936–2938 (2008)

    ADS  Google Scholar 

  31. S.P. Apell, P.M. Echenique, R.H. Ritchie, Sum rules for surface plasmon frequencies, Ultramicroscopy 65, 53–60 (1995)

    Google Scholar 

  32. N. Daneshfar, K. Bazyari, Optical and spectral tunability of multilayer spherical and cylindrical nanoshells. Appl. Phys. A Mater. Sci. Process. 116, 611–620 (2014)

    ADS  Google Scholar 

  33. N. Daneshfar, H. Foroughi, Optical bistability in plasmonic nanoparticles: effect of size, shape and embedding medium. Phys. E 83, 268–274 (2016)

    Google Scholar 

  34. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  35. J. Venermo, A. Sihvola, Dielectric polarizability of circular cylinder. J. Electrostat. 63, 101–117 (2005)

    Google Scholar 

  36. J. Zhu, Surface plasmon resonance from bimetallic interface in Au-Ag core-shell structure nanowires. Nanoscale. Res. Lett. 4, 977–981 (2009)

    ADS  Google Scholar 

  37. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007)

    Google Scholar 

  38. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  39. A. Moradi, Extinction properties of metallic nanowires: quantum diffraction and retardation effects. Phys. Lett. A 379, 2379–2383 (2015)

    ADS  Google Scholar 

  40. R. Ruppin, Evaluation of extended Maxwell-Garnett theories. Opt. Commun. 182, 273–279 (2000)

    ADS  Google Scholar 

  41. Y. Battie, A. Resano-Garcia, N. Chaoui, A. En Naciri, Optical properties of plasmonic nanoparticles distributed in size determined from a modified Maxwell-Garnett-Mie theory. Phys. Status Solidi C 12, 142–146 (2015)

    ADS  Google Scholar 

  42. J.C. Maxwell-Garnett, Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. Lond. Ser. B 203, 385–420 (1904)

    ADS  MATH  Google Scholar 

  43. A. Moradi, Plasmon hybridization in tubular metallic nanostructures. Phys. B 405, 2466–2469 (2010)

    ADS  Google Scholar 

  44. A. Moradi, Plasmon hybridization in parallel nano-wire systems. Phys. Plasmas 18, 064508 (2011)

    ADS  Google Scholar 

  45. A. Moradi, Plasmon hybridization in coated metallic nanowires. J. Opt. Soc. Am. B 29, 625–629 (2012)

    ADS  Google Scholar 

  46. A. Moradi, Plasma wave propagation in a pair of carbon nanotubes. JETP Lett. 88, 795–798 (2008)

    ADS  Google Scholar 

  47. M. Schmeits, Surface-plasmon coupling in cylindrical pores. Phys. Rev. B 39, 7567–7577 (1989)

    ADS  Google Scholar 

  48. J.P. Kottmann, O.J.F. Martin, Plasmon resonant coupling in metallic nanowires. Opt. Express 8, 655–663 (2001)

    ADS  Google Scholar 

  49. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F.R. Aussenegg, J.R. Krenn, Silver nanowires as surface plasmon resonators. Phys. Rev. Lett. 95, 257403 (2005)

    ADS  Google Scholar 

  50. A. Manjavacas, F.J. Garcia de Abajo, Robust plasmon waveguides in strongly interacting nanowire Arrays. Nano Lett. 9, 1285–1289 (2009)

    ADS  Google Scholar 

  51. W. Cai, L. Wang, X. Zhang, J. Xu, F.J. Garcia de Abajo, Controllable excitation of gap plasmons by electron beams in metallic nanowire pairs. Phys. Rev. B 82, 125454 (2010)

    ADS  Google Scholar 

  52. S. Sun, H.-T Chen, W.-J. Zheng, G.-Y Guo, Dispersion relation, propagation length and mode conversion of surface plasmon polaritons in silver double-nanowire systems. Opt. Express 21, 14591–14605 (2013)

    Google Scholar 

  53. K. Andersen, K.L. Jensen, N.A. Mortensen, K.S. Thygesen, Visualizing hybridized quantum plasmons in coupled nanowires: from classical to tunneling regime. Phys. Rev. B 87, 235433 (2013)

    ADS  Google Scholar 

  54. T.V. Teperik, P. Nordlander, J. Aizpurua, A.G. Borisov, Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers. Opt. Express 21, 27306–27325 (2013)

    ADS  Google Scholar 

  55. N.A. Mortensen, S. Raza, M. Wubs, T. Sondergaard, S. I. Bozhevolnyi, A generalized non-local optical response theory for plasmonic nanostructures. Nat. Commun. 5, 3809 (2014)

    ADS  Google Scholar 

  56. P. Moon, D.E. Spencer, Field Theory Handbook: Including Coordinate Systems, Differential Equations and Their Solutions (Springer, New York, 1988)

    MATH  Google Scholar 

  57. J.L. Gervasoni, N.R. Arista, Plasmon excitations in cylindrical wires by external charged particles. Phys. Rev. B 68, 235302 (2003)

    ADS  Google Scholar 

  58. J.L. Gervasoni, S. Segui, N. Arista, Dispersion relation due to plasmon excitation in nanostructures by charged particles. Vacuum 84, 262–265 (2007)

    ADS  Google Scholar 

  59. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)

    Google Scholar 

  60. G.B. Smith, Dielectric constants for mixed media. J. Phys. D: Appl. Phys. 10, L39–L42 (1977)

    ADS  Google Scholar 

  61. A. Moradi, Maxwell-Garnett effective medium theory: quantum nonlocal effects. Phys. Plasmas 22, 042105 (2015)

    ADS  Google Scholar 

  62. A.A. Lucas, A. Ronveaux, M. Schmeits, F. Delanaye, van der Waals energy between voids in dielectrics. Phys. Rev. B 12, 5372–5380 (1975)

    Google Scholar 

  63. R. Ruppin, Surface modes of two spheres. Phys. Rev. B 26, 3440–3444 (1982)

    ADS  Google Scholar 

  64. P.E. Batson, Surface plasmon coupling in clusters of small spheres. Phys. Rev. Lett. 49, 936–940 (1982)

    ADS  Google Scholar 

  65. P. Clippe, R. Evrard, A.A. Lucas, Aggregation effect on the infrared absorption spectrum of small ionic crystals. Phys. Rev. B 14, 1715–1721 (1976)

    ADS  Google Scholar 

  66. R. Brako, M. Sunjic, V. Sips, Dispersion interaction between small crystals. Solid State Commun. 19, 161–164 (1975)

    ADS  Google Scholar 

  67. I. Olivares, R. Rojas, F. Claro, Surface modes of a pair of unequal spheres. Phys. Rev. B 35, 2453–2455 (1987)

    ADS  Google Scholar 

  68. M. Schmeits, L. Dambly, Fast-electron scattering by bispherical surface-plasmon modes. Phys. Rev. B 44, 12706–12712 (1991)

    ADS  Google Scholar 

  69. J.S. Nkoma, Surface modes of two spheres embedded into a third medium. Surf. Sci. 245, 207–212 (1991)

    ADS  Google Scholar 

  70. P. Nordlander, C. Oubre, E. Prodan, K. Li, M.I. Stockman, Plasmon hybridization in nanoparticle dimers. Nano Lett. 4, 899–903 (2004)

    ADS  Google Scholar 

  71. P.M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953)

    MATH  Google Scholar 

  72. R.W. Rendell, D.J. Scalapino, B. Muhlschlegel, Role of local plasmon modes in light emission from small-particle tunnel junctions. Phys. Rev. Lett. 41, 1746–1750 (1978)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moradi, A. (2020). Problems in Electrostatic Approximation. In: Canonical Problems in the Theory of Plasmonics. Springer Series in Optical Sciences, vol 230. Springer, Cham. https://doi.org/10.1007/978-3-030-43836-4_2

Download citation

Publish with us

Policies and ethics