Skip to main content

Risk Factors

  • Chapter
  • First Online:
Developing Critical Thinking in Physics

Part of the book series: Contributions from Science Education Research ((CFSE,volume 7))

  • 380 Accesses

Abstract

Certain explanatory elements or documents can convey unambiguously inaccurate explanations, or they may simply suggest such explanations and encourage a critical passivity towards them. This chapter presents these “risk factors”, in particular: the accuracy of the conclusion and the associated “confirmation bias” (two examples); the case where explanations that would merit critical analysis share the typical characteristics of a common reasoning; the inaccurate designation of the entities involved; an “all-or-nothing” view of the physical properties of objects (two examples); small values of physical quantities assimilated to zero values (three examples); the “single cause” syndrome (three examples); local analysis (as opposed to systemic analysis); explanation in the form of a story; misleading visual messages, analogies or metaphors. The conclusion emphasizes the fact that risks must be assessed in the light of the public, and that some compromises may have to be negotiated for a given public.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bachelard, G. (1938). La formation de l’esprit scientifique. Paris: Vrin.

    Google Scholar 

  • Bächtold. (2014). L’équation Elibérée=|Δm|c2 dans le programme et les manuels de première S. Recherche en Didactique des Sciences et des Techniques, 10, 93–122.

    Google Scholar 

  • Besson, U. (2004). Students’ conceptions of fluids. International Journal of Science Education, 26(14), 1683–1714.

    Article  Google Scholar 

  • Boizier, C. (2012). Difficultés associées à l’usage d’un texte historique de première main : Travail sur la description de l’expérience démontrant la composition de l’air par Lavoisier en classe de quatrième. Master de didactique des disciplines. Université Paris Diderot-Paris 7.

    Google Scholar 

  • Botinelli, L., Brahic, A., Gouguenheim, L., Ripert, J., & Sert, J. (1993). La Terre et l’Univers. Paris: Hachette.

    Google Scholar 

  • Centre National de Documentation pédagogique (France). (2000). Document d’accompagnement du programme de Seconde Générale (grade 10).

    Google Scholar 

  • Colin, P., & Viennot, L. (2001). Using two models in optics: Students’ difficulties and suggestions for teaching, Physics education research. American Journal of Physics Sup., 69(7), S36–S44.

    Article  Google Scholar 

  • Colin, P., Chauvet, F., & Viennot, L. (2002). Reading images in optics: Students’ difficulties, and teachers’ views. International Journal of Science Education, 24(3), 313–332.

    Article  Google Scholar 

  • Crawford, F. S. (1965). Berkeley physics course vol. 3, waves. New York: McGraw-Hill.

    Google Scholar 

  • de Hosson, C., & Kaminski, W. (2007). Historical controversy as an educational tool: Evaluating elements of a teaching–learning sequence conducted with the text “dialogue on the ways that vision operates”. International Journal of Science Education, 29(5), 617–642.

    Article  Google Scholar 

  • Driver, R., Guesne, E., & Tiberghien, A. (Eds.). (1985). Children’s ideas in science. Milton Keynes: Open University Press.

    Google Scholar 

  • Euler, M. (2004). The role of experiments in the teaching and learning of physics. In E. F. Reddish & M. Vicentini (Eds.), Research on Physics education (International school of physics Enrico Fermi). Amsterdam: IOS Press.

    Google Scholar 

  • Fauconnet, S. (1981). Etude de résolution de problèmes: quelques problèmes de même structure en physique, Thèse de troisième bicycle, Université Paris 7.

    Google Scholar 

  • Feller, I., Colin, P., & Viennot, L. (2009). Critical analysis of popularisation documents in the physics classroom. An action-research in grade 10. Problems of education in the 21st century, 17(17), 72–96.

    Google Scholar 

  • Gauvrit, N. (2007). Statistiques méfiez-vous! Paris: Ellipse.

    Google Scholar 

  • Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7(2), 155–170.

    Article  Google Scholar 

  • Halbwachs, F. (1971). Réflexions sur la causalité physique. In M. Bunge, F. Halbwachs, T. S. Kuhn, J. Piaget, & L. Rosenfeld (Eds.), Les Théories de la Causalité. Paris: Presses Universitaires de France.

    Google Scholar 

  • Jacobi, D. (2005). Les sciences expérimentales communiquées aux enfants. Grenoble: Presses Universitaires de Grenoble.

    Google Scholar 

  • Kahneman, D. (2012). Thinking fast and slow. London: Penguin books.

    Google Scholar 

  • Kaminski. (1989). Conception des enfants et des autres sur la lumière. Bulletin de l’Union des Physiciens, 716, 973–996.

    Google Scholar 

  • Karplus, R. (1969). Introductory Physics a model approach. New York: Benjamin Inc.

    Google Scholar 

  • Kress, G., & Van Leeuwen, T. (1996). Reading images: The grammar of visual design. London: Routledge & Kegan Paul.

    Google Scholar 

  • Lavoisier, A. L. (1789). Traité élémentaire de chimie (Vol. 1, planche IV, Fig. 2).

    Google Scholar 

  • Lessons by Marie Curie, collected by Isabelle Chavannes in 1907. (2003). Physique élémentaire pour les enfants de nos amis. Coord. B. Leclercq. Paris : EDP Sciences.

    Google Scholar 

  • Maury, J.-P. (1989). La glace et la vapeur, qu’est-ce que c’est ? Paris: Palais de la Découverte.

    Google Scholar 

  • Maury, L., Saltiel, E., & Viennot, L. (1977). Etude de la notion de mouvement chez l’enfant à partir des changements de référentiels. Revue Française de Pédagogie, 40, 15–25.

    Article  Google Scholar 

  • McLelland, J. A. G. (2011). A very persistent mistake. Physics Education, 46(4), 469–471.

    Article  Google Scholar 

  • Michaut, C. (2014). La vulgarisation scientifique : mode d’emploi. Les Ulis: EDP Sciences.

    Google Scholar 

  • Ogborn, J. (1996). Explaining Science in the classroom (pp. 70–71). Buckingham: Open University Press.

    Google Scholar 

  • Pinto, R., Ametler, J., Chauvet, F., Colin, P., Giberti, G., Monroy, G., Ogborn, J., Ormerod, F., Sassi, E., Stylianidou, F., Testa, I., & Viennot, L. (2000). Investigation on the difficulties in teaching and learning graphic representations and on their use in science classrooms, STTIS transversal report (WP2), www.uab.es/sttis.htm and http://www.lar.univ-paris-diderot.fr/sttis_p7/index.htm

  • Reflets de la physique. (2017). n° 52, Paris : Société Française de Physique.

    Google Scholar 

  • Rozier, S. (1988). Le raisonnement linéaire causal en thermodynamique classique élémentaire. Paris, Thèse, Université Paris 7.

    Google Scholar 

  • Rozier, S., & Viennot, L. (1991). Students’ reasoning in thermodynamics. International Journal of Science Education, 13(2), 159–170.

    Article  Google Scholar 

  • Valentin, L. (1983). L’univers mécanique. Paris: Hermann.

    Google Scholar 

  • Viennot, L. (2001). Reasoning in physics the part of common sense. Dordrecht: Springer.

    Google Scholar 

  • Viennot, L. (2004). Common reasoning in physics : Relations fonctionnelles, chronologie et causalité, In L. Viennot, & C. Debru (dir.) Enquête sur le concept de causalité (pp. 7–29). Paris: PUF.

    Google Scholar 

  • Viennot, L. (2007). La physique dans la culture scientifique: entre raisonnement, récit et rituels, Aster n° spécial « Science et récit », n°44, 23–40.

    Google Scholar 

  • Viennot, L. (2014). Thinking in physics, the pleasure of reasoning and understanding. Dordrecht: Springer.

    Google Scholar 

  • Viennot, L., & De Hosson, C. (2012). Beyond a dichotomic approach, the case of colour phenomena. International Journal of Science Education, 34(9), 1315–1336. https://doi.org/10.1080/09500693.2012.679034.

    Article  Google Scholar 

  • Viennot, L., & De Hosson, C. (2015). From a subtractive to multiplicative approach, a concept-driven interactive pathway on the selective absorption of light. International Journal of Science Education, 37(1), 1–30. https://doi.org/10.1080/09500693.2014.950186.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Viennot, L., Décamp, N. (2020). Risk Factors. In: Developing Critical Thinking in Physics. Contributions from Science Education Research, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-030-43773-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43773-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43772-5

  • Online ISBN: 978-3-030-43773-2

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics