Skip to main content

Physiological Haemostasis

  • Chapter
  • First Online:
Mechanisms of Vascular Disease
  • 1050 Accesses

Abstract

Physiological haemostasis is the process by which blood is maintained in a fluid state in the absence of vascular injury, but is able to rapidly form thrombus if a breach in vascular integrity occurs. Multiple components, both circulating in the intravascular compartment and located in the sub-endothelial matrix, contribute to the haemostatic process. Proteins and cells involved in haemostasis circulate in a resting or unactivated state in the presence of an intact endothelium. Exposure to components of the subendothelium leads to activation of platelets and the coagulation system, resulting in thrombus formation. Primary haemostasis, resulting from interaction between platelets and subendothelial adhesive proteins (von Willebrand factor and collagen), results in the sequential occurrence of platelet adhesion, activation and ultimately aggregation. This enables a stable platelet plug to be formed. Secondary haemostasis then follows, resulting from activation of the enzymes of the coagulation cascade that leads to the formation of a cross-linked fibrin network. This process is kept in check by numerous inhibitory proteins, localizing the haemostatic response to areas of vascular injury and preventing widespread clot formation. Once haemostasis is intact, the fibrinolytic system is responsible for the removal of fibrin leading to restoration of vessel patency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Löwenberg EC, Meijers JCM, Levi M. Platelet-vessel wall interaction in health and disease. Neth J Med. 2010;68:242–51.

    PubMed  Google Scholar 

  2. Jackson S. The growing complexity of platelet aggregation. Blood. 2007;109:5087–95.

    CAS  PubMed  Google Scholar 

  3. Ruggeri ZM. Structure and function of von Willebrand factor. Thromb Haemost. 1999;82:576–84.

    CAS  PubMed  Google Scholar 

  4. Ware JA, Heistad DD. Seminars in medicine of the Beth Israel Hospital, Boston Platelet-endothelium interactions. N Engl J Med. 1993;328:628–35.

    CAS  PubMed  Google Scholar 

  5. Jung SM, Moroi M. Activation of the platelet collagen receptor integrin alpha(2)beta(1): its mechanism and participation in the physiological functions of platelets. Trends Cardiovasc Med. 2000;10:285–92.

    CAS  PubMed  Google Scholar 

  6. Clemetson KJ, Clemetson JM. Platelet collagen receptors. Thromb Haemost. 2001;86:189–97.

    CAS  PubMed  Google Scholar 

  7. Jackson SP, Nesbitt WS, Westein E. Dynamics of platelet thrombus formation. J Throm Haemost. 2009;7:17–20.

    CAS  Google Scholar 

  8. Pipe SW, Montgomery RR, Pratt KP, Lenting PJ, Lillicrap D. Life in the shadow of a dominant partner: the FVIII-VWF association and its clinical implications for hemophilia A. Blood. 2016;128:2007–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Randi AM, Smith KE, Castaman G. von Willebrand factor regulation of blood vessel formation. Blood. 2018;132:132–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Varga-Szabo D, Pleines I, Nieswandt B. Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol. 2008;28:403–12.

    CAS  PubMed  Google Scholar 

  11. Offermanns S. Activation of platelet function through G protein-coupled receptors. Circ Res. 2006;99:1293–304.

    CAS  PubMed  Google Scholar 

  12. Fabre JE, Nguyen M, Latour A, Keifer JA, Audoly LP, Coffman TM, et al. Decreased platelet aggregation, increased bleeding time and resistance to thromboembolism in P2Y1-deficient mice. Nat Med. 1999;5:1199–202.

    CAS  PubMed  Google Scholar 

  13. Dorsam RT, Kunapuli SP. Central role of the P2Y12 receptor in platelet activation. J Clin Invest. 2004;113:340–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. De Meyer SF, Vanhoorelbeke K, Broos K, Salles II, Deckmyn H. Antiplatelet drugs. Br J Haematol. 2008;142:515–28.

    PubMed  Google Scholar 

  15. Li N, Wallen NH, Ladjevardi M, Hjemdahl P. Effects of serotonin on platelet activation in whole blood. Blood Coagul Fibrinolysis. 1997;8:517–23.

    CAS  PubMed  Google Scholar 

  16. Watanabe N, Bodin L, Pandey M, Krause M, Coughlin S, Boussiotis VA, et al. Mechanisms and consequences of agonist-induced talin recruitment to platelet integrin αIIbß3. J Cell Biol. 2008;181:1211–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shattil SJ. The ß3 integrin cytoplasmic tail: protein scaffold and control freak. J Thromb Haemost. 2009;7:210–3.

    CAS  PubMed  Google Scholar 

  18. Fox JEB. Cytoskeletal proteins and platelet signaling. Thromb Haemost. 2001;86:198–213.

    CAS  PubMed  Google Scholar 

  19. Coughlin SR. Protease-activated receptors in hemostasis, thrombosis and vascular biology. J Thromb Haemost. 2005;3:1800–14.

    CAS  PubMed  Google Scholar 

  20. Gawaz M, Langer H, May AE. Platelets in inflammation and atherogenesis. J Clin Invest. 2005;115:3378–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. May AE, Seizer P, Gawaz M. Platelets: inflammatory firebugs of vascular walls. Arterioscler Thromb Vasc Biol. 2008;28:s5–s10.

    CAS  PubMed  Google Scholar 

  22. Bevers EM, Comfurius P, Zwaal RFA. Changes in membrane phospholipid distribution during platelet activation. Biochim Biophys Acta. 1983;736:57–66.

    CAS  PubMed  Google Scholar 

  23. Macfarlane RG. An enzyme cascade in the blood clotting mechanism, and its function as a biological amplifier. Nature. 1964;202:498–999.

    CAS  PubMed  Google Scholar 

  24. Davie EW, Ratnoff OD. Waterfall sequence for intrinsic blood clotting. Science. 1964;145:1310–2.

    CAS  PubMed  Google Scholar 

  25. Roberts HR, Monroe DM, Oliver JA, Chang JY, Hoffman M. Newer concepts of blood coagulation. Haemophilia. 1998;4:331–4.

    CAS  PubMed  Google Scholar 

  26. Østerud B, Rapaport SI. Activation of factor IX by the reaction product of tissue factor and factor VII: additional pathway for initiating blood coagulation. Proc Natl Acad Sci U S A. 1977;74:5260–4.

    PubMed  PubMed Central  Google Scholar 

  27. Hoffman M, Monroe DM. A cell-based model of hemostasis. Thromb Haemost. 2001;85:958–65.

    CAS  PubMed  Google Scholar 

  28. Key NS, Mackman N. Tissue factor and its measurement in whole blood, plasma, and microparticles. Semin Thromb Haemost. 2010;36:865–75.

    CAS  Google Scholar 

  29. Morrissey JH, Macik BG, Neuenschwander PF, Comp PC. Quantitation of activated factor VII levels in plasma using a tissue factor mutant selectively deficient in promoting factor VII activation. Blood. 1993;81:734–44.

    CAS  PubMed  Google Scholar 

  30. Hoffman M, Monroe DM, Oliver JA, et al. Factors IXa and Xa play distinct roles in tissue factor-dependent initiation of coagulation. Blood. 1995;86:1794–801.

    CAS  PubMed  Google Scholar 

  31. Monroe DM, Roberts HR, Hoffman M. Platelet procoagulant complex assembly in a tissue factor-initiated system. Br J Haematol. 1994;88:364–71.

    CAS  PubMed  Google Scholar 

  32. Board PG, Losowsky MS, Factor XII. Inherited and acquired deficiency. Blood Rev. 1993;7:229–42.

    CAS  PubMed  Google Scholar 

  33. Keragala CB, Draxler DF, McQuilten ZK, Medcalf RL. Haemostasis and innate immunity—a complementary relationship: a review of the intricate relationship between coagulation and complement pathways. Br J Haematol. 2018;180:782–98.

    PubMed  Google Scholar 

  34. Baugh RJ, Broze GJ Jr, Krishnaswamy S. Regulation of extrinsic pathway factor Xa formation by tissue factor pathway inhibitor. J Biol Chem. 1998;273:4378–86.

    CAS  PubMed  Google Scholar 

  35. O’Donnell JS, O’Sullivan JM, Preston RJS. Advances in understanding the molecular mechanisms that maintain normal haemostasis. Brit J Haematol. 2019;186:24–36.

    Google Scholar 

  36. Esmon CT. The protein C pathway. Chest. 2003;124:26S–32S.

    CAS  PubMed  Google Scholar 

  37. Lane DA, Mannucci PM, Bauer KA, Bertina RM, Bochkov NP, Boulyjenkov V, et al. Inherited thrombophilia: part 1. Thromb Haemost. 1996;76:651–62.

    CAS  PubMed  Google Scholar 

  38. Esmon CT. The roles of protein C and thrombomodulin in the regulation of blood coagulation. J Biol Chem. 1989;264:4743–6.

    CAS  PubMed  Google Scholar 

  39. Heeb MJ, Mesters RM, Tans G, et al. Binding of protein S to factor Va associated with inhibition of prothrombinase that is independent of activated protein C. J Biol Chem. 1993;268:2872–7.

    CAS  PubMed  Google Scholar 

  40. Bayston TA, Lane DA. Antithrombin: molecular basis of deficiency. Thromb Haemost. 1997;78:339–43.

    CAS  PubMed  Google Scholar 

  41. Hirsh J, Raschke R. Heparin and low-molecular-weight heparin: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest. 2004;126:188S–203S.

    CAS  PubMed  Google Scholar 

  42. Rijken DC, Lijnen HR. New insights into the molecular mechanisms of the fibrinolytic system. J Thromb Haemost. 2009;7:4–13.

    CAS  PubMed  Google Scholar 

  43. Castellino FJ, Ploplis VA. Structure and function of the plasminogen/plasmin system. Thromb Haemost. 2005;93:647–54.

    CAS  PubMed  Google Scholar 

  44. Pannekoek H, Veerman H, Lambers H, Diergaarde P, Verweij CL, van Zonneveld AJ, van Mourik JA. Endothelial plasminogen activator inhibitor (PAI): a new member of the Serpin gene family. EMBO J. 1986;5:2539–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nesheim M, Bajzar L. The discovery of TAFI. J Thromb Haemost. 2005;3:2139–46.

    CAS  PubMed  Google Scholar 

Further Reading

  • Hoffman M, Monroe DM. A Cell-based Model of Hemostasis. Thromb Haemost. 2001;85:958–65.

    CAS  PubMed  Google Scholar 

  • Jackson S. The growing complexity of platelet aggregation. Blood. 2007;109:5087.

    CAS  PubMed  Google Scholar 

  • O’Donnell JS, O’Sullivan JM, Preston RJS. Advances in understanding the molecular mechanisms that maintain normal haemostasis. Brit J Haematol. 2019;186:24–36.

    Google Scholar 

  • Ruggeri ZM. Structure and function of von Willebrand factor. Thromb Haemost. 1999;82:576–84.

    CAS  PubMed  Google Scholar 

  • Ware JA, Heistad DD. Seminars in medicine of the Beth Israel Hospital, Boston. Platelet-endothelium interactions. N Engl J Med. 1993;328:628–35.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon McRae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McRae, S. (2020). Physiological Haemostasis. In: Fitridge, R. (eds) Mechanisms of Vascular Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-43683-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43683-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43682-7

  • Online ISBN: 978-3-030-43683-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics