Skip to main content

Computational Fluid Dynamics in the Arterial System: Implications for Vascular Disease and Treatment

  • Chapter
  • First Online:
Mechanisms of Vascular Disease

Abstract

An understanding of the haemodynamics of pulsatile blood flow and the response of the arterial wall to blood pressure in health and disease is vital for those managing vascular disease. Computational Fluid Dynamics (CFD), Finite Element Analysis (FEA) and Fluid-Solid Interaction (FSI) modelling are approaches which can be used to understand the behaviour of blood flow forces and resultant deformation of the arterial wall.

CFD is a flow simulation technique which provides a powerful tool for the study of haemodynamic and image-based modelling of blood flow, using haemodynamic parameters, in the development, diagnosis, and also treatment of cardiovascular disease. The FSI method is helping to make links between blood flow shear stress on arterial wall (WSS) and the distribution of stress into the blood vessel to explain why atherosclerotic plaque develops at arterial junctions for example. These techniques allow engineers and clinicians to study vascular diseases such as atherosclerosis, aneurysm formation and dissection. These techniques are also able to analyse the effects of devices developed to treat vascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis. 1985;5:293–302.

    CAS  PubMed  Google Scholar 

  2. Marshall I, Zhao S, Papathanasopoulou P, Hoskins P, Xu XY. MRI and CFD studies of pulsatile flow in healthy and stenosed carotid bifurcation models. J Biomech. 2004;37:679–87.

    PubMed  Google Scholar 

  3. Zarins CK, Giddens DP, Bharadvaj B, Sottiurai VS, Mabon RF, Glagov S. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res. 1983;53:502–14.

    CAS  PubMed  Google Scholar 

  4. Sinnott M, Cleary PW, Prakash M, editors. An investigation of pulsatile blood flow in a bifurcation artery using a grid-free method. Proc fifth international conference on CFD in the process industries; 2006.

    Google Scholar 

  5. Versteeg HK, Malalasekera W. An introduction to computational fluid dynamics: the finite volume method. London: Pearson Education; 2007.

    Google Scholar 

  6. Lo DS. Finite element mesh generation. Boca Raton: CRC Press; 2014.

    Google Scholar 

  7. Moratal D. Finite element analysis: from; biomedical applications to industrial developments. London: InTech; 2012.

    Google Scholar 

  8. Shaikh FUA. Role of commercial software in teaching finite element analysis at undergraduate level: a case study. Eng Educ. 2012;7:2–6. https://doi.org/10.11120/ened.2012.07020002.

    Article  Google Scholar 

  9. Steinman DA, Taylor CA. Flow imaging and computing: large artery hemodynamics. Ann Biomed Eng. 2005;33:1704–9.

    PubMed  Google Scholar 

  10. Leondes CT. Medical imaging systems technology: methods in cardiovascular and brain systems. Singapore: World Scientific; 2005.

    Google Scholar 

  11. Pham DL, Xu C, Prince JL. Current methods in medical image segmentation. Annu Rev Biomed Eng. 2000;2:315–37.

    CAS  PubMed  Google Scholar 

  12. Toennies KD. Guide to medical image analysis. Berlin: Springer; 2017.

    Google Scholar 

  13. Sakellarios A, Rigas G, Exarchos T, Fotiadis D, editors. A methodology and a software tool for 3D reconstruction of coronary and carotid arteries and atherosclerotic plaques. Imaging systems and techniques (IST), 2016 IEEE international conference on. IEEE; 2016.

    Google Scholar 

  14. Sun Z, Xu L. Computational fluid dynamics in coronary artery disease. Comput Med Imaging Graph. 2014;38:651–63.

    PubMed  Google Scholar 

  15. ANSYS ICEM. CFD User Manual; ANSYS ICEM CFD 14.5; ANSYS. Inc.: Canonsburg, PA, USA. 2012.

    Google Scholar 

  16. Bavo AM, Rocatello G, Iannaccone F, Degroote J, Vierendeels J, Segers P. Fluid-structure interaction simulation of prosthetic aortic valves: comparison between immersed boundary and arbitrary Lagrangian-Eulerian techniques for the mesh representation. PLoS One. 2016;11:e0154517. https://doi.org/10.1371/journal.pone.0154517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sahni O, Jansen KE, Taylor CA, Shephard MS. Automated adaptive cardiovascular flow simulations. Eng Comput. 2009;25:25.

    Google Scholar 

  18. Sahni O, Jansen KE, Shephard MS, Taylor CA, Beall MW. Adaptive boundary layer meshing for viscous flow simulations. Eng Comput. 2008;24:267.

    Google Scholar 

  19. Sahni O, Müller J, Jansen KE, Shephard MS, Taylor CA. Efficient anisotropic adaptive discretization of the cardiovascular system. Comput Methods Appl Mech Eng. 2006;195:5634–55.

    Google Scholar 

  20. Alawadhi EM. Finite element simulations using ANSYS. London: CRC Press; 2009.

    Google Scholar 

  21. Bungartz H-J, Schäfer M. Fluid-structure interaction: modelling, simulation, optimisation. Berlin: Springer Science & Business Media; 2006.

    Google Scholar 

  22. Finol EA, Shkolnik AD, Scotti CM, Amon CH: Computational modeling of abdominal aortic aneurysms: an assessment of rupture potential for presurgical planning. In Biomechanics Applied to Computer Assisted Surgery. Edited by: Payan Y. Kerala, India: Research Signpost Publisher; 2005:in press.

    Google Scholar 

  23. Gharahi H, Zambrano BA, Zhu DC, DeMarco JK, Baek S. Computational fluid dynamic simulation of human carotid artery bifurcation based on anatomy and volumetric blood flow rate measured with magnetic resonance imaging. Int J Adv Eng Sci Appl Math. 2016;8:46–60.

    Google Scholar 

  24. Lantz J, Renner J, Karlsson M. Wall shear stress in a subject specific human aorta—influence of fluid-structure interaction. Int J Appl Mech. 2011;3:759–78.

    Google Scholar 

  25. Soudah E, Ng EY, Loong T, Bordone M, Pua U, Narayanan S. CFD modelling of abdominal aortic aneurysm on hemodynamic loads using a realistic geometry with CT. Comput Math Methods Med. 2013;2013:472564. https://doi.org/10.1155/2013/472564.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hund SJ, Kameneva MV, Antaki JF. A quasi-mechanistic mathematical representation for blood viscosity. Fluids. 2017;2:10.

    Google Scholar 

  27. Cho YI, Kensey KR. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: steady flows. Biorheology. 1991;28:241–62.

    CAS  PubMed  Google Scholar 

  28. Berger S, Jou L-D. Flows in stenotic vessels. Annu Rev Fluid Mech. 2000;32:347–82.

    Google Scholar 

  29. Pedley T. The fluid mechanics of large blood vessels (cambridge monographs on mechanics). Cambridge: Cambridge University Press; 1980.

    Google Scholar 

  30. Hall JE. Guyton and Hall textbook of medical physiology e-Book. Amsterdam: Elsevier Health Sciences; 2015. ISBN 9781455770052.

    Google Scholar 

  31. Fung Y-C. Biomechanics: mechanical properties of living tissues. Berlin: Springer Science & Business Media; 2013.

    Google Scholar 

  32. Waite L, Fine JM. Applied biofluid mechanics. New York: McGraw Hill; 2007.

    Google Scholar 

  33. Holzapfel GA, Ogden RW. Mechanics of biological tissue. Berlin: Springer Science & Business Media; 2006.

    Google Scholar 

  34. Wolters B, Rutten M, Schurink G, Kose U, De Hart J, Van De Vosse F. A patient-specific computational model of fluid–structure interaction in abdominal aortic aneurysms. Med Eng Phys. 2005;27:871–83.

    CAS  PubMed  Google Scholar 

  35. McGregor RH, Szczerba D, Székely G, editors. A multiphysics simulation of a healthy and a diseased abdominal aorta. International conference on medical image computing and computer-assisted intervention. Springer; 2007.

    Google Scholar 

  36. Bathe M, Kamm R. A fluid-structure interaction finite element analysis of pulsatile blood flow through a compliant stenotic artery. J Biomech Eng. 1999;121:361–9.

    CAS  PubMed  Google Scholar 

  37. Vlachopoulos C, O’Rourke M, Nichols WW. McDonald’s blood flow in arteries: theoretical, experimental and clinical principles. CRC press; 2011.

    Google Scholar 

  38. Gao F, Guo Z, Sakamoto M, Matsuzawa T. Fluid-structure interaction within a layered aortic arch model. J Biol Phys. 2006;32:435–54.

    PubMed  PubMed Central  Google Scholar 

  39. Li Z, Kleinstreuer C. Blood flow and structure interactions in a stented abdominal aortic aneurysm model. Med Eng Phys. 2005;27:369–82.

    PubMed  Google Scholar 

  40. Tarbell JM. Mass transport in arteries and the localization of atherosclerosis. Annu Rev Biomed Eng. 2003;5:79–118.

    CAS  PubMed  Google Scholar 

  41. Ponalagusamy R. Biological study on Pulsatile flow of Herschel-Bulkley fluid in tapered blood vessels. In: Emerging trends in computational biology, bioinformatics, and systems biology, vol. 12; 2015. p. 39–50.

    Google Scholar 

  42. Caro C, Fitz-Gerald J, Schroter R. Atheroma and arterial wall shear-observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc R Soc Lond B. 1971;177:109–33.

    CAS  PubMed  Google Scholar 

  43. Perktold K, Rappitsch G. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J Biomech. 1995;28:845–56.

    CAS  PubMed  Google Scholar 

  44. Logan DL. A first course in the finite element method. Boston: Cengage Learning; 2017. ISBN 9781305637344.

    Google Scholar 

  45. Oberkampf WL, Trucano TG. Verification and validation in computational fluid dynamics. Prog Aerosp Sci. 2002;38:209–72.

    Google Scholar 

  46. Roache PJ. Verification and validation in computational science and engineering. Albuquerque: Hermosa; 1998.

    Google Scholar 

  47. Perktold K, Hofer M, Rappitsch G, Loew M, Kuban B, Friedman M. Validated computation of physiologic flow in a realistic coronary artery branch. J Biomech. 1997;31:217–28.

    Google Scholar 

  48. VanderLaan PA, Reardon CA, Getz GS. Site specificity of atherosclerosis: site-selective responses to atherosclerotic modulators. Arterioscler Thromb Vasc Biol. 2004;24:12–22.

    CAS  PubMed  Google Scholar 

  49. Glagov S, Zarins C, Giddens DP, Ku DN. Hemodynamics and atherosclerosis. Arch Pathol Lab Med. 1988;112:1018–31.

    CAS  PubMed  Google Scholar 

  50. Dhawan SS, Avati Nanjundappa RP, Branch JR, Taylor WR, Quyyumi AA, Jo H, et al. Shear stress and plaque development. Expert Rev Cardiovasc Ther. 2010;8:545–56.

    PubMed  PubMed Central  Google Scholar 

  51. Rai K, Singh K, Maudar K. Supraclavicular first rib resection for treatment of thoracic outlet syndrome. Med J Armed Forces India. 1996;52:83–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Daly BJ. A numerical study of pulsatile flow through stenosed canine femoral arteries. J Biomech. 1976;9:465–75.

    CAS  PubMed  Google Scholar 

  53. Metaxa E, Tremmel M, Natarajan SK, Xiang J, Paluch RA, Mandelbaum M, et al. Characterization of critical hemodynamics contributing to aneurysmal remodeling at the basilar terminus in a rabbit model. Stroke. 2010;41:1774–82.

    PubMed  PubMed Central  Google Scholar 

  54. Hashimoto T, Meng H, Young WL. Intracranial aneurysms: links among inflammation, hemodynamics and vascular remodeling. Neurol Res. 2006;28:372–80.

    PubMed  PubMed Central  Google Scholar 

  55. McGloughlin TM, Doyle BJ. New approaches to abdominal aortic aneurysm rupture risk assessment: engineering insights with clinical gain. Arterioscler Thromb Vasc Biol. 2010;30:1687–94.

    CAS  PubMed  Google Scholar 

  56. Hoi Y, Meng H, Woodward SH, Bendok BR, Hanel RA, Guterman LR, et al. Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study. J Neurosurg. 2004;101:676–81.

    PubMed  Google Scholar 

  57. Jou L-D, Lee D, Morsi H, Mawad M. Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. Am J Neuroradiol. 2008;29:1761–7.

    PubMed  Google Scholar 

  58. Boussel L, Rayz V, McCulloch C, Martin A, Acevedo-Bolton G, Lawton M, et al. Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke. 2008;39:2997–3002.

    PubMed  PubMed Central  Google Scholar 

  59. Kulcsár Z, Augsburger L, Reymond P, Pereira VM, Hirsch S, Mallik AS, et al. Flow diversion treatment: intra-aneurismal blood flow velocity and WSS reduction are parameters to predict aneurysm thrombosis. Acta Neurochir. 2012;154:1827–34.

    PubMed  Google Scholar 

  60. Foundation ACoC, Association AH. Guidelines for the diagnosis and management of patients with thoracic aortic disease. Circulation. 2010;121:e266–369.

    Google Scholar 

  61. Braverman AC. Aortic dissection: prompt diagnosis and emergency treatment are critical. Cleve Clin J Med. 2011;78:685–96.

    PubMed  Google Scholar 

  62. Park JH, Chung JW, Choo IW, Kim SJ, Lee JY, Han MC. Fenestrated stent-grafts for preserving visceral arterial branches in the treatment of abdominal aortic aneurysms: preliminary experience. J Vasc Interv Radiol. 1996;7:819–23.

    CAS  PubMed  Google Scholar 

  63. Doyle BJ, Callanan A, Grace PA, Kavanagh EG. On the influence of patient-specific material properties in computational simulations: a case study of a large ruptured abdominal aortic aneurysm. Int J Numer Methods Biomed Eng. 2013;29:150–64.

    Google Scholar 

  64. Cebral JR, Meng H. Counterpoint: realizing the clinical utility of computational fluid dynamics—closing the gap. Am Soc Neuroradiol. 2012;33:396–8.

    CAS  Google Scholar 

Further Reading

  • Versteeg HK, Malalasekera W. An introduction to computational fluid dynamics: the finite volume method. Pearson Education; 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishani, S., Jansen, S., Lawrence-Brown, M., Lagat, C., Evans, B. (2020). Computational Fluid Dynamics in the Arterial System: Implications for Vascular Disease and Treatment. In: Fitridge, R. (eds) Mechanisms of Vascular Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-43683-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43683-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43682-7

  • Online ISBN: 978-3-030-43683-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics