Skip to main content

Vascular Haemodynamics

  • Chapter
  • First Online:
Mechanisms of Vascular Disease

Abstract

Vascular interventions have developed rapidly since the first aortic replacement with Dacron by Dubois in 1952 (Lawrence-Brown et al., How is durability related to patient selection and graft design with endoluminal grafting for abdominal aortic aneurysm. In: Durability of vascular and endovascular surgery, London, pp. 375–385, 1999, Harris et al., The need for clinical trials of endovascular abdominal aortic aneurysm stent-graft repair: the EUROSTAR project, Los Angeles, 1997). An appreciation of vascular haemodynamics is important for understanding vascular disease, improving existing vascular interventions and in the development of new medical devices and procedures.

The various laws and governing equations that describe the behaviour of fluids in conduits play a critical role in our understanding of aneurysms, arterial dissections and atherosclerotic occlusive disease. Models that include non-Newtonian flow, pulsatile flow, compliance and elastic walls are complex and difficult to describe.

Therefore, to firstly understand Newtonian fluid dynamics, (essentially water, in which the viscosity is independent of velocity and the strain to stress ratio is constant), is fundamental, and takes us some way towards answering simple vascular dynamic questions where it is easier to simplify a model to that with Newtonian fluid and non-pulsatile flow. However, we must always bear in mind that blood is non-Newtonian and the influence of pulsatility and complex (non-Newtonian) fluids on haemodynamics can then be investigated further. It is important to appreciate that a better understanding of haemodynamics can help correct mistaken clinical assumptions and answer important questions regarding the pathophysiology of vascular diseases. In this chapter, we will examine a series of questions and explain:

  • How Laplace’s law explains why an aneurysm grows when it is exposed to relative constant pressure;

  • How Poiseuille’s flow equation explains why flow is driven by a pressure gradient, but is also affected by the length of the artery;

  • How Bernoulli’s equation explains why velocity is higher and pressure falls in a stenosis;

  • How Young’s modulus increases with age when the arteries become stiffer and this has effects on pulsatile flow;

  • How the Momentum Conservation equation describes

    • The forces on an endovascular graft;

    • Why the forces acting on a thoracic graft are not necessarily greater than those on an abdominal graft; and

    • Why forces change with curves, changes in diameter and tortuosity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lawrence-Brown MM, Semmens JB, Hartley DE, Mun RP, van Schie G, Goodman MA, et al. How is durability related to patient selection and graft design with endoluminal grafting for abdominal aortic aneurysm. In: Durability of Vascular and Endovascular Surgery. London: WB Saunders; 1999. p. 375–85.

    Google Scholar 

  2. Harris PL, Buth J, Mialhe C, Myhre HO, Norgren L. The need for clinical trials of endovascular abdominal aortic aneurysm stent-graft repair: the EUROSTAR project. Los Angeles: SAGE Publications; 1997.

    Google Scholar 

  3. Gaze DC. The cardiovascular system—physiology, diagnostic and clinical implications. London: InTech; 2012.

    Book  Google Scholar 

  4. Ku DN. Blood flow in arteries. Ann Rev Fluid Mech. 1997;29:399–434.

    Article  Google Scholar 

  5. Greenwald S. Ageing of the conduit arteries. J Pathol. 2007;211:157–72.

    Article  CAS  Google Scholar 

  6. Buja LM, Butany J. Cardiovascular pathology. 4th ed. Amsterdam: Elsevier; 2016.

    Google Scholar 

  7. Yunus AC, Cimbala JM. Fluid mechanics fundamentals and applications, vol. 185201. International Edition. New York: McGraw Hill Publication; 2006.

    Google Scholar 

  8. Taylor M. An introduction to some recent developments in arterial haemodynamics. Aust Ann Med. 1966;15:71–86.

    CAS  PubMed  Google Scholar 

  9. Greenhalgh R, Brady A, Brown L, Forbes J, Fowkes F. Mortality results for randomised controlled trial of early elective surgery or ultrasonographic surveillance for small abdominal aortic aneurysms. The UK Small Aneurysm Trial Participants. Lancet. 1998;352:1649–55.

    Article  Google Scholar 

  10. Lawrence-Brown M, Norman P, Jamrozik K, Semmens J, Donnelly N, Spencer C, et al. Initial results of the Western Australian ultrasound screening project for aneurysm of the abdominal aorta: relevance for endoluminal treatment of aneurysm disease. Cardiovasc Surg. 2001;9:234–40.

    Article  CAS  Google Scholar 

  11. Morris PD, Narracott A, von Tengg-Kobligk H, Soto DAS, Hsiao S, Lungu A, et al. Computational fluid dynamics modelling in cardiovascular medicine. Heart. 2016;102:18–28.

    Article  Google Scholar 

  12. Caro CG, Pedley T, Schroter R. The mechanics of the circulation. Cambridge: Cambridge University Press; 2012.

    Google Scholar 

  13. Popel AS, Johnson PC. Microcirculation and hemorheology. Annu Rev Fluid Mech. 2005;37:43–69.

    Article  Google Scholar 

  14. Pries A, Secomb T, Gaehtgens P. Biophysical aspects of blood flow in the microvasculature. Cardiovas Res. 1996;32:654–67.

    Article  CAS  Google Scholar 

  15. Westerhof N, Stergiopulos N, Noble MI. Snapshots of hemodynamics: an aid for clinical research and graduate education. Berlin: Springer Science & Business Media; 2010.

    Book  Google Scholar 

  16. Barrett KE, Barman SM, Boitano S, Brooks H. Ganong’s review of medical physiology, vol. 23. New York: McGraw-Hill Medical; 2009.

    Google Scholar 

  17. Womersley JR. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol. 1955;127:553–63.

    Article  CAS  Google Scholar 

  18. Glagov S, Zarins C, Giddens DP, Ku DN. Hemodynamics and atherosclerosis. Arch Pathol Lab Med. 1988;112:1018–31.

    CAS  PubMed  Google Scholar 

  19. Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol. 2007;49:2379–93.

    Article  CAS  Google Scholar 

  20. Gao H, Long Q. Effects of varied lipid core volume and fibrous cap thickness on stress distribution in carotid arterial plaques. J Biomech. 2008;41:3053–9.

    Article  Google Scholar 

  21. Kock SA, Nygaard JV, Eldrup N, Fründ E-T, Klærke A, Paaske WP, et al. Mechanical stresses in carotid plaques using MRI-based fluid–structure interaction models. J Biomech. 2008;41:1651–8.

    Article  Google Scholar 

  22. Tang D, Yang C, Mondal S, Liu F, Canton G, Hatsukami TS, et al. A negative correlation between human carotid atherosclerotic plaque progression and plaque wall stress: in vivo MRI-based 2D/3D FSI models. J Biomech. 2008;41:727–36.

    Article  Google Scholar 

  23. Gao H, Long Q, Graves M, Gillard JH, Li Z-Y. Carotid arterial plaque stress analysis using fluid–structure interactive simulation based on in-vivo magnetic resonance images of four patients. J Biomech. 2009;42:1416–23.

    Article  Google Scholar 

  24. Liffman K, Lawrence-Brown MM, Semmens JB, Bui A, Rudman M, Hartley DE. Analytical modeling and numerical simulation of forces in an endoluminal graft. J Endovasc Ther. 2001;8:358–71.

    Article  CAS  Google Scholar 

  25. Šutalo ID, Liffman K, Lawrence-Brown MM, Semmens JB. Experimental force measurements on a bifurcated endoluminal stent graft model: comparison with theory. Vascular. 2005;13:98–106.

    Article  Google Scholar 

  26. Liffman K, Šutalo ID, Bui A, Lawrence-Brown MM, Semmens JB. Experimental measurement and mathematical modeling of pulsatile forces on a symmetric, Bifurcated Endoluminal Stent Graft Model. Vascular. 2009;17:201–9.

    Article  Google Scholar 

  27. Zhou S, How T, Black R, Vallabhaneni S, McWilliams R, Brennan J. Measurement of pulsatile haemodynamic forces in a model of a bifurcated stent graft for abdominal aortic aneurysm repair. Proc Inst Mech Eng H. 2008;222:543–9.

    Article  CAS  Google Scholar 

  28. Chien S, Usami S, Dellenback RJ, Gregersen MI. Shear-dependent deformation of erythrocytes in rheology of human blood. Am J Physiol. 1970;219:136–42.

    Article  CAS  Google Scholar 

  29. Barbee JH, Cokelet GR. The fahraeus effect. Microvasc Res. 1971;3:6–16.

    Article  CAS  Google Scholar 

Further Reading

  • Barbee JH, Cokelet GR. The Fahraeus effect. Microvasc Res. 1971;3:6–16.

    Article  CAS  Google Scholar 

  • Liffman K, Šutalo ID, Bui A, Lawrence-Brown MM, Semmens JB. Experimental measurement and mathematical modeling of pulsatile forces on a symmetric, bifurcated endoluminal stent graft model. Vascular. 2009;17:201–9.

    Article  Google Scholar 

  • Morris PD, Narracott A, von Tengg-Kobligk H, Soto DAS, Hsiao S, Lungu A, et al. Computational fluid dynamics modelling in cardiovascular medicine. Heart. 2016;102:18–28.

    Article  Google Scholar 

  • Yunus AC, Cimbala JM. Fluid mechanics fundamentals and applications, vol. 185201. International Edition. New York: McGraw Hill Publication; 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jansen, S. et al. (2020). Vascular Haemodynamics. In: Fitridge, R. (eds) Mechanisms of Vascular Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-43683-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43683-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43682-7

  • Online ISBN: 978-3-030-43683-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics