Skip to main content

Pathophysiology of Angiogenesis and Its Role in Vascular Disease

  • Chapter
  • First Online:
Mechanisms of Vascular Disease

Abstract

Angiogenesis is the process in which new blood vessels, in particular capillaries, are formed from the pre-existing vascular network, Angiogenesis plays a critical role in normal postnatal growth and development. It is crucial in providing nourishment to granulation tissue during wound healing, as well as in the formation of collateral vessels as part of an adaptive response to vascular occlusion and ischaemia. Failure of adequate angiogenesis plays an important role in conditions including ischaemic heart disease, peripheral arterial disease (PAD), delayed wound healing and ischaemic stroke. Conversely, excessive pathological angiogenesis driven by inflammation is a key contributor to the development and progression of malignant cancers, atherosclerotic plaques, proliferative retinal disease and inflammatory arthritides, among many other pathologies. Diseases associated with angiogenesis are highly prevalent globally, with cardiovascular-related disorders and cancer being the leading causes of mortality worldwide. However, current therapies that target angiogenesis remain limited though, as anti-angiogenic agents can delay physiological angiogenic processes, causing severe side effects while pro-angiogenic therapies may cause inadvertent tumourigenesis. The intricate balance between desirable physiological angiogenesis and unwanted pathological angiogenesis involves the regulation of a suite of signalling pathways, regulatory factors and cell-to-cell interactions.

In this chapter, we outline a basic mechanistic framework by which to understand angiogenesis and summarise the key molecular factors that regulate it, particularly those that have current or potential clinical relevance. We will highlight the importance of angiogenesis in health, and in the pathophysiology of various ischaemic and inflammatory vascular diseases and describe the impact of diabetes and ageing on this process. In addition, we review the current range of therapeutic strategies designed to target angiogenesis and examine the barriers and pitfalls that have limited more successful clinical translation so far. Finally, we explore several emerging therapies that are showing great promise in pre-clinical models and offer some insights on future directions of research inquiry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407:249–57. https://doi.org/10.1038/35025220.

    Article  CAS  PubMed  Google Scholar 

  2. Risau W. Mechanisms of angiogenesis. Nature. 1997;386:671–4. https://doi.org/10.1038/386671a0.

    Article  CAS  PubMed  Google Scholar 

  3. Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146:873–87. https://doi.org/10.1016/j.cell.2011.08.039.

    Article  CAS  PubMed  Google Scholar 

  4. Fong GH. Mechanisms of adaptive angiogenesis to tissue hypoxia. Angiogenesis. 2008;11:121–40. https://doi.org/10.1007/s10456-008-9107-3.

    Article  PubMed  Google Scholar 

  5. Costa C, Incio J, Soares R. Angiogenesis and chronic inflammation: cause or consequence? Angiogenesis. 2007;10:149–66. https://doi.org/10.1007/s10456-007-9074-0.

    Article  PubMed  Google Scholar 

  6. Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature. 2005;438:967–74. https://doi.org/10.1038/nature04483.

    Article  CAS  PubMed  Google Scholar 

  7. Patan S. Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neuro-Oncol. 2000;50:1–15.

    Article  CAS  Google Scholar 

  8. Otrock ZK, Mahfouz RA, Makarem JA, Shamseddine AI. Understanding the biology of angiogenesis: review of the most important molecular mechanisms. Blood Cells Mol Dis. 2007;39:212–20. https://doi.org/10.1016/j.bcmd.2007.04.001.

    Article  CAS  PubMed  Google Scholar 

  9. Potente M, Carmeliet P. The link between angiogenesis and endothelial metabolism. Annu Rev Physiol. 2017;79:43–66. https://doi.org/10.1146/annurev-physiol-021115-105134.

    Article  CAS  PubMed  Google Scholar 

  10. De Spiegelaere W, Casteleyn C, Van den Broeck W, Plendl J, Bahramsoltani M, Simoens P, et al. Intussusceptive angiogenesis: a biologically relevant form of angiogenesis. J Vasc Res. 2012;49:390–404. https://doi.org/10.1159/000338278.

    Article  PubMed  Google Scholar 

  11. Mentzer SJ, Konerding MA. Intussusceptive angiogenesis: expansion and remodeling of microvascular networks. Angiogenesis. 2014;17:499–509. https://doi.org/10.1007/s10456-014-9428-3.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hlushchuk R, Ehrbar M, Reichmuth P, Heinimann N, Styp-Rekowska B, Escher R, et al. Decrease in VEGF expression induces intussusceptive vascular pruning. Arterioscler Thromb Vasc Biol. 2011;31:2836–44. https://doi.org/10.1161/atvbaha.111.231811.

    Article  CAS  PubMed  Google Scholar 

  13. Wnuk M, Hlushchuk R, Tuffin G, Huynh-Do U, Djonov V. The effects of PTK787/ZK222584, an inhibitor of VEGFR and PDGFRbeta pathways, on intussusceptive angiogenesis and glomerular recovery from Thy1.1 nephritis. Am J Pathol. 2011;178:1899–912. https://doi.org/10.1016/j.ajpath.2010.12.049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Patan S. TIE1 and TIE2 receptor tyrosine kinases inversely regulate embryonic angiogenesis by the mechanism of intussusceptive microvascular growth. Microvasc Res. 1998;56:1–21. https://doi.org/10.1006/mvre.1998.2081.

    Article  CAS  PubMed  Google Scholar 

  15. Thurston G, Wang Q, Baffert F, Rudge J, Papadopoulos N, Jean-Guillaume D, et al. Angiopoietin 1 causes vessel enlargement, without angiogenic sprouting, during a critical developmental period. Development. 2005;132:3317–26. https://doi.org/10.1242/dev.01888.

    Article  CAS  PubMed  Google Scholar 

  16. Djonov VG, Kurz H, Burri PH. Optimality in the developing vascular system: branching remodeling by means of intussusception as an efficient adaptation mechanism. Dev Dyn. 2002;224:391–402. https://doi.org/10.1002/dvdy.10119.

    Article  PubMed  Google Scholar 

  17. Semenza GL. Vascular responses to hypoxia and ischemia. Arterioscler Thromb Vasc Biol. 2010;30:648–52. https://doi.org/10.1161/ATVBAHA.108.181644.

    Article  CAS  PubMed  Google Scholar 

  18. Tan JT, Prosser HC, Vanags LZ, Monger SA, Ng MK, Bursill CA. High-density lipoproteins augment hypoxia-induced angiogenesis via regulation of post-translational modulation of hypoxia-inducible factor 1alpha. FASEB J. 2014;28:206–17. https://doi.org/10.1096/fj.13-233874.

    Article  CAS  PubMed  Google Scholar 

  19. DiPietro LA. Angiogenesis and wound repair: when enough is enough. J Leukoc Biol. 2016;100:979–84. https://doi.org/10.1189/jlb.4MR0316-102R.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kumar P, Kumar S, Udupa EP, Kumar U, Rao P, Honnegowda T. Role of angiogenesis and angiogenic factors in acute and chronic wound healing. Plast Aesthet Res. 2015;2:243. https://doi.org/10.4103/2347-9264.165438.

    Article  Google Scholar 

  21. Tonnesen MG, Feng X, Clark RA. Angiogenesis in wound healing. J Investig Dermatol Symp Proc. 2000;5:40–6. https://doi.org/10.1046/j.1087-0024.2000.00014.x.

    Article  CAS  PubMed  Google Scholar 

  22. Collett GD, Canfield AE. Angiogenesis and pericytes in the initiation of ectopic calcification. Circ Res. 2005;96:930–8. https://doi.org/10.1161/01.RES.0000163634.51301.0d.

    Article  CAS  PubMed  Google Scholar 

  23. Lainer-Carr D, Brahn E. Angiogenesis inhibition as a therapeutic approach for inflammatory synovitis. Nat Clin Pract Rheumatol. 2007;3:434–42.

    Article  CAS  PubMed  Google Scholar 

  24. Lee SS, Joo YS, Kim WU, Min DJ, Min JK, Park SH, et al. Vascular endothelial growth factor levels in the serum and synovial fluid of patients with rheumatoid arthritis. Clin Exp Rheumatol. 2001;19:321–4.

    CAS  PubMed  Google Scholar 

  25. Scott BB, Zaratin PF, Colombo A, Hansbury MJ, Winkler JD, Jackson JR. Constitutive expression of angiopoietin-1 and -2 and modulation of their expression by inflammatory cytokines in rheumatoid arthritis synovial fibroblasts. J Rheumatol. 2002;29:230–9.

    CAS  PubMed  Google Scholar 

  26. Maruotti N, Cantatore FP, Nico B, Vacca A, Ribatti D. Angiogenesis in vasculitides. Clin Exp Rheumatol. 2008;26:476–83.

    CAS  PubMed  Google Scholar 

  27. Hattori K, Heissig B, Wu Y, Dias S, Tejada R, Ferris B, et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat Med. 2002;8:841–9. https://doi.org/10.1038/nm740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kuczynski EA, Vermeulen PB, Pezzella F, Kerbel RS, Reynolds AR. Vessel co-option in cancer. Nat Rev Clin Oncol. 2019;16:469–93. https://doi.org/10.1038/s41571-019-0181-9.

    Article  CAS  PubMed  Google Scholar 

  29. Camaré C, Pucelle M, Nègre-Salvayre A, Salvayre R. Angiogenesis in the atherosclerotic plaque. Redox Biol. 2017;12:18–34. https://doi.org/10.1016/j.redox.2017.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Herrmann J, Lerman LO, Mukhopadhyay D, Napoli C, Lerman A. Angiogenesis in atherogenesis. Arterioscler Thromb Vasc Biol. 2006;26:1948–57. https://doi.org/10.1161/01.ATV.0000233387.90257.9b.

    Article  CAS  PubMed  Google Scholar 

  31. de Vries MR, Quax PH. Plaque angiogenesis and its relation to inflammation and atherosclerotic plaque destabilization. Curr Opin Lipidol. 2016;27:499–506. https://doi.org/10.1097/MOL.0000000000000339.

    Article  CAS  PubMed  Google Scholar 

  32. Abedin M, Tintut Y, Demer LL. Vascular calcification: mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol. 2004;24:1161–70. https://doi.org/10.1161/01.ATV.0000133194.94939.42.

    Article  CAS  PubMed  Google Scholar 

  33. Chowdhury MM, Makris GC, Tarkin JM, Joshi FR, Hayes PD, Rudd JHF, et al. Lower limb arterial calcification (LLAC) scores in patients with symptomatic peripheral arterial disease are associated with increased cardiac mortality and morbidity. PLoS One. 2017;12:e0182952. https://doi.org/10.1371/journal.pone.0182952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tolle M, Reshetnik A, Schuchardt M, Hohne M, van der Giet M. Arteriosclerosis and vascular calcification: causes, clinical assessment and therapy. Eur J Clin Investig. 2015;45:976–85. https://doi.org/10.1111/eci.12493.

    Article  Google Scholar 

  35. Guzman RJ. Clinical, cellular, and molecular aspects of arterial calcification. J Vasc Surg. 2007;45(Suppl A):A57–63. https://doi.org/10.1016/j.jvs.2007.02.049.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lee J, Cooke JP. Nicotine and pathological angiogenesis. Life Sci. 2012;91:1058–64. https://doi.org/10.1016/j.lfs.2012.06.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Khurana R, Simons M, Martin JF, Zachary IC. Role of angiogenesis in cardiovascular disease: a critical appraisal. Circulation. 2005;112:1813–24. https://doi.org/10.1161/CIRCULATIONAHA.105.535294.

    Article  PubMed  Google Scholar 

  38. Vijaynagar B, Bown MJ, Sayers RD, Choke E. Potential role for anti-angiogenic therapy in abdominal aortic aneurysms. Eur J Clin Investig. 2013;43:758–65. https://doi.org/10.1111/eci.12103.

    Article  CAS  Google Scholar 

  39. Thompson MM, Jones L, Nasim A, Sayers RD, Bell PR. Angiogenesis in abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 1996;11:464–9.

    Article  CAS  PubMed  Google Scholar 

  40. Kessler K, Borges LF, Ho-Tin-Noe B, Jondeau G, Michel JB, Vranckx R. Angiogenesis and remodelling in human thoracic aortic aneurysms. Cardiovasc Res. 2014;104:147–59. https://doi.org/10.1093/cvr/cvu196.

    Article  CAS  PubMed  Google Scholar 

  41. Paik DC, Fu C, Bhattacharya J, David TM. Ongoing angiogenesis in blood vessels of the abdominal aortic aneurysm. Exp Mol Med. 2004;36:524–33.

    Article  CAS  PubMed  Google Scholar 

  42. Choke E, Cockerill GW, Dawson J, Wilson RW, Jones A, Loftus IM, et al. Increased angiogenesis at the site of abdominal aortic aneurysm rupture. Ann N Y Acad Sci. 2006;1085:315–9. https://doi.org/10.1196/annals.1383.007.

    Article  CAS  PubMed  Google Scholar 

  43. Choke E, Thompson MM, Dawson J, Wilson WR, Sayed S, Loftus IM, et al. Abdominal aortic aneurysm rupture is associated with increased medial neovascularization and overexpression of proangiogenic cytokines. Arterioscler Thromb Vasc Biol. 2006;26:2077–82. https://doi.org/10.1161/01.ATV.0000234944.22509.f9.

    Article  CAS  PubMed  Google Scholar 

  44. Kaneko H, Anzai T, Takahashi T, Kohno T, Shimoda M, Sasaki A, et al. Role of vascular endothelial growth factor-A in development of abdominal aortic aneurysm. Cardiovasc Res. 2011;91:358–67. https://doi.org/10.1093/cvr/cvr080.

    Article  CAS  PubMed  Google Scholar 

  45. Tsuruda T, Kato J, Hatakeyama K, Kojima K, Yano M, Yano Y, et al. Adventitial mast cells contribute to pathogenesis in the progression of abdominal aortic aneurysm. Circ Res. 2008;102:1368–77. https://doi.org/10.1161/circresaha.108.173682.

    Article  CAS  PubMed  Google Scholar 

  46. Costa PZ, Soares R. Neovascularization in diabetes and its complications. Unraveling the angiogenic paradox. Life Sci. 2013;92:1037–45. https://doi.org/10.1016/j.lfs.2013.04.001.

    Article  CAS  PubMed  Google Scholar 

  47. Aronson D, Edelman ER. Coronary artery disease and diabetes mellitus. Cardiol Clin. 2014;32:439–55. https://doi.org/10.1016/j.ccl.2014.04.001.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Thiruvoipati T. Peripheral artery disease in patients with diabetes: epidemiology, mechanisms, and outcomes. World J Diabetes. 2015;6:961–9. https://doi.org/10.4239/wjd.v6.i7.961.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tan JT, Prosser HC, Dunn LL, Vanags LZ, Ridiandries A, Tsatralis T, et al. High-density lipoproteins rescue diabetes-impaired angiogenesis via scavenger receptor class B type I. Diabetes. 2016;65:3091–103. https://doi.org/10.2337/db15-1668.

    Article  CAS  PubMed  Google Scholar 

  50. Kolluru GK, Bir SC, Kevil CG. Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med. 2012;2012:918267–30. https://doi.org/10.1155/2012/918267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001;89:E1–7. https://doi.org/10.1161/hh1301.093953.

    Article  CAS  PubMed  Google Scholar 

  52. Tahergorabi Z, Khazaei M. Imbalance of angiogenesis in diabetic complications: the mechanisms. Int J Prev Med. 2012;3:827–38.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nakagawa T, Kosugi T, Haneda M, Rivard CJ, Long DA. Abnormal angiogenesis in diabetic nephropathy. Diabetes. 2009;58:1471–8. https://doi.org/10.2337/db09-0119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Crawford TN, Alfaro DV 3rd, Kerrison JB, Jablon EP. Diabetic retinopathy and angiogenesis. Curr Diabetes Rev. 2009;5:8–13.

    Article  CAS  PubMed  Google Scholar 

  55. Lorenzi M. The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient. Exp Diabetes Res. 2007;2007:61038–10. https://doi.org/10.1155/2007/61038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wagatsuma A. Effect of aging on expression of angiogenesis-related factors in mouse skeletal muscle. Exp Gerontol. 2006;41:49–54. https://doi.org/10.1016/j.exger.2005.10.003.

    Article  CAS  PubMed  Google Scholar 

  57. Lahteenvuo J, Rosenzweig A. Effects of aging on angiogenesis. Circ Res. 2012;110:1252–64. https://doi.org/10.1161/CIRCRESAHA.111.246116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kong DH, Kim MR, Jang JH, Na HJ, Lee S. A review of anti-angiogenic targets for monoclonal antibody cancer therapy. Int J Mol Sci. 2017;18. https://doi.org/10.3390/ijms18081786.

  59. Vasudev NS, Reynolds AR. Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis. 2014;17:471–94. https://doi.org/10.1007/s10456-014-9420-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Van Cutsem E, Tabernero J, Lakomy R, Prenen H, Prausova J, Macarulla T, et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol. 2012;30:3499–506. https://doi.org/10.1200/jco.2012.42.8201.

    Article  PubMed  Google Scholar 

  61. Rajabi M, Mousa S. The role of angiogenesis in Cancer treatment. Biomedicine 2017;5. https://doi.org/10.3390/biomedicines5020034.

  62. Liu Z, Wang F, Chen X. Integrin alpha(v)beta(3)-targeted Cancer therapy. Drug Dev Res. 2008;69:329–39. https://doi.org/10.1002/ddr.20265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li T, Kang G, Wang T, Huang H. Tumor angiogenesis and anti-angiogenic gene therapy for cancer. Oncol Lett. 2018;16:687–702. https://doi.org/10.3892/ol.2018.8733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kamba T, McDonald DM. Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br J Cancer. 2007;96:1788–95. https://doi.org/10.1038/sj.bjc.6603813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Totzeck M, Mincu RI, Rassaf T. Cardiovascular adverse events in patients with Cancer treated with bevacizumab: a meta-analysis of more than 20 000 patients. J Am Heart Assoc 2017;6. https://doi.org/10.1161/JAHA.117.006278.

  66. Mitsos S, Katsanos K, Koletsis E, Kagadis GC, Anastasiou N, Diamantopoulos A, et al. Therapeutic angiogenesis for myocardial ischemia revisited: basic biological concepts and focus on latest clinical trials. Angiogenesis. 2012;15:1–22. https://doi.org/10.1007/s10456-011-9240-2.

    Article  CAS  PubMed  Google Scholar 

  67. Annex BH. Therapeutic angiogenesis for critical limb ischaemia. Nat Rev Cardiol. 2013;10:387–96. https://doi.org/10.1038/nrcardio.2013.70.

    Article  CAS  PubMed  Google Scholar 

  68. Lederman RJ, Mendelsohn FO, Anderson RD, Saucedo JF, Tenaglia AN, Hermiller JB, et al. Therapeutic angiogenesis with recombinant fibroblast growth factor-2 for intermittent claudication (the TRAFFIC study): a randomised trial. Lancet. 2002;359:2053–8. https://doi.org/10.1016/s0140-6736(02)08937-7.

    Article  CAS  PubMed  Google Scholar 

  69. Simons M, Annex BH, Laham RJ, Kleiman N, Henry T, Dauerman H, et al. Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation. 2002;105:788–93. https://doi.org/10.1161/hc0802.104407.

    Article  CAS  PubMed  Google Scholar 

  70. Henry TD, Annex BH, McKendall GR, Azrin MA, Lopez JJ, Giordano FJ, et al. The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation. 2003;107:1359–65. https://doi.org/10.1161/01.cir.0000061911.47710.8a.

    Article  CAS  PubMed  Google Scholar 

  71. Iyer SR, Annex BH. Therapeutic angiogenesis for peripheral artery disease. JACC Basic Transl Sci. 2017;2:503–12. https://doi.org/10.1016/j.jacbts.2017.07.012.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Powell RJ, Simons M, Mendelsohn FO, Daniel G, Henry TD, Koga M, et al. Results of a double-blind, placebo-controlled study to assess the safety of intramuscular injection of hepatocyte growth factor plasmid to improve limb perfusion in patients with critical limb ischemia. Circulation. 2008;118:58–65. https://doi.org/10.1161/circulationaha.107.727347.

    Article  CAS  PubMed  Google Scholar 

  73. Shigematsu H, Yasuda K, Iwai T, Sasajima T, Ishimaru S, Ohashi Y, et al. Randomized, double-blind, placebo-controlled clinical trial of hepatocyte growth factor plasmid for critical limb ischemia. Gene Ther. 2010;17:1152–61. https://doi.org/10.1038/gt.2010.51.

    Article  CAS  PubMed  Google Scholar 

  74. Kaminsky SM, Rosengart TK, Rosenberg J, Chiuchiolo MJ, Van de Graaf B, Sondhi D, et al. Gene therapy to stimulate angiogenesis to treat diffuse coronary artery disease. Hum Gene Ther. 2013;24:948–63. https://doi.org/10.1089/hum.2013.2516.

    Article  CAS  PubMed  Google Scholar 

  75. Yla-Herttuala S, Bridges C, Katz MG, Korpisalo P. Angiogenic gene therapy in cardiovascular diseases: dream or vision? Eur Heart J. 2017;38:1365–71. https://doi.org/10.1093/eurheartj/ehw547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sieveking DP, Ng MK. Cell therapies for therapeutic angiogenesis: back to the bench. Vasc Med. 2009;14:153–66. https://doi.org/10.1177/1358863x08098698.

    Article  PubMed  Google Scholar 

  77. Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002;360:427–35. https://doi.org/10.1016/S0140-6736(02)09670-8.

    Article  PubMed  Google Scholar 

  78. Walter Dirk H, Krankenberg H, Balzer Jörn O, Kalka C, Baumgartner I, Schlüter M, et al. Intraarterial administration of bone marrow mononuclear cells in patients with critical limb ischemia. Circ Cardiovasc Interv. 2011;4:26–37. https://doi.org/10.1161/CIRCINTERVENTIONS.110.958348.

    Article  CAS  PubMed  Google Scholar 

  79. Teraa M, Sprengers Ralf W, Schutgens Roger EG, Slaper-Cortenbach Ineke CM, van der Graaf Y, Algra A, et al. Effect of repetitive intra-arterial infusion of bone marrow mononuclear cells in patients with no-option limb ischemia. Circulation. 2015;131:851–60. https://doi.org/10.1161/CIRCULATIONAHA.114.012913.

    Article  CAS  PubMed  Google Scholar 

  80. Skaletz-Rorowski A, Walsh K. Statin therapy and angiogenesis. Curr Opin Lipidol. 2003;14:599–603.

    Article  CAS  PubMed  Google Scholar 

  81. Weis M, Heeschen C, Glassford AJ, Cooke JP. Statins have biphasic effects on angiogenesis. Circulation. 2002;105:739–45.

    Article  CAS  PubMed  Google Scholar 

  82. Panigrahy D, Kaipainen A, Huang S, Butterfield CE, Barnés CM, Fannon M, et al. PPARα agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition. Proc Natl Acad Sci U S A. 2008;105:985–90. https://doi.org/10.1073/pnas.0711281105.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Yuan J, Tan JTM, Rajamani K, Solly EL, King EJ, Lecce L, et al. Fenofibrate rescues diabetes-related impairment of ischemia-mediated angiogenesis by PPARα-independent modulation of thioredoxin interacting protein. Diabetes. 2019;68(5):1040–53. https://doi.org/10.2337/db17-0926.

    Article  CAS  PubMed  Google Scholar 

  84. Jenkins PJ, Harper RW, Nestel PJ. Severity of coronary atherosclerosis related to lipoprotein concentration. Br Med J. 1978;2:388–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fiorenza AM, Branchi A, Sommariva D. Serum lipoprotein profile in patients with cancer. A comparison with non-cancer subjects. Int J Clin Lab Res. 2000;30:141–5.

    Article  CAS  PubMed  Google Scholar 

  86. Berge KG, Canner PL, Hainline A Jr. High-density lipoprotein cholesterol and prognosis after myocardial infarction. Circulation. 1982;66:1176–8.

    Article  CAS  PubMed  Google Scholar 

  87. Al-Khalili F, Svane B, Janszky I, Ryden L, Orth-Gomer K, Schenck-Gustafsson K. Significant predictors of poor prognosis in women aged </=65 years hospitalized for an acute coronary event. J Intern Med. 2002;252:561–9.

    Article  CAS  PubMed  Google Scholar 

  88. Prosser HC, Tan JT, Dunn LL, Patel S, Vanags LZ, Bao S, et al. Multifunctional regulation of angiogenesis by high-density lipoproteins. Cardiovasc Res. 2014;101:145–54. https://doi.org/10.1093/cvr/cvt234.

    Article  CAS  PubMed  Google Scholar 

  89. Tan JT, Ng MK, Bursill CA. The role of high-density lipoproteins in the regulation of angiogenesis. Cardiovasc Res. 2015;106:184–93. https://doi.org/10.1093/cvr/cvv104.

    Article  CAS  PubMed  Google Scholar 

  90. Wong NKP, Nicholls SJ, Tan JTM, Bursill CA. The role of high-density lipoproteins in diabetes and its vascular complications. Int J Mol Sci 2018;19. https://doi.org/10.3390/ijms19061680.

  91. Vanags LZ, Tan JTM, Galougahi KK, Schaefer A, Wise SG, Murphy A, et al. Apolipoprotein A-I reduces in-stent restenosis and platelet activation and alters neointimal cellular phenotype. JACC Basic Transl Sci. 2018;3:200–9.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Vanags LZ, Wong NKP, Nicholls SJ, Bursill CA. High-density lipoproteins and apolipoprotein A-I improve stent biocompatibility. Arterioscler Thromb Vasc Biol. 2018;38:1691–701. https://doi.org/10.1161/ATVBAHA.118.310788.

    Article  CAS  PubMed  Google Scholar 

  93. Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee SS. Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids. 2017;8:132–43. https://doi.org/10.1016/j.omtn.2017.06.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yang WJ, Yang DD, Na S, Sandusky GE, Zhang Q, Zhao G. Dicer is required for embryonic angiogenesis during mouse development. J Biol Chem. 2005;280:9330–5. https://doi.org/10.1074/jbc.M413394200.

    Article  CAS  PubMed  Google Scholar 

  95. Sun LL, Li WD, Lei FR, Li XQ. The regulatory role of microRNAs in angiogenesis-related diseases. J Cell Mol Med. 2018;22:4568–87. https://doi.org/10.1111/jcmm.13700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mellis D, Caporali A. MicroRNA-based therapeutics in cardiovascular disease: screening and delivery to the target. Biochem Soc Trans. 2018;46:11–21. https://doi.org/10.1042/BST20170037.

    Article  CAS  PubMed  Google Scholar 

  97. Yilmaz SG, Isbir S, Kunt AT, Isbir T. Circulating microRNAs as novel biomarkers for atherosclerosis. In Vivo. 2018;32:561–5. https://doi.org/10.21873/invivo.11276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13:423–33. https://doi.org/10.1038/ncb2210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fichtlscherer S, Rosa SD, Fox H, Schwietz T, Fischer A, Liebetrau C, et al. Circulating MicroRNAs in patients with coronary artery disease. Circ Res. 2010;107:677–84. https://doi.org/10.1161/CIRCRESAHA.109.215566.

    Article  CAS  PubMed  Google Scholar 

  100. Hamburg NM, Leeper NJ. Therapeutic potential of modulating MicroRNA in peripheral artery disease. Curr Vasc Pharmacol. 2015;13:316–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Further Reading

  • Camaré C, Pucelle M, Nègre-Salvayre A, Salvayre R. Angiogenesis in the atherosclerotic plaque. Redox Biol. 2017;12:18–34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Iyer SR, Annex BH. Therapeutic angiogenesis for peripheral artery disease. JACC Basic Transl Sci. 2017;2:503–12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolluru GK, Bir SC, Kevil CG. Endothelial dysfunction and diabetes: Effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med. 2012;2012:918267.

    PubMed  PubMed Central  Google Scholar 

  • Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146:873–87.

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL. Vascular responses to hypoxia and ischemia. Arterioscler Thromb Vasc Biol. 2010;30:648–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanne T. M. Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wong, N.K.P., Solly, E.L., Bursill, C.A., Tan, J.T.M., Ng, M.K.C. (2020). Pathophysiology of Angiogenesis and Its Role in Vascular Disease. In: Fitridge, R. (eds) Mechanisms of Vascular Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-43683-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43683-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43682-7

  • Online ISBN: 978-3-030-43683-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics