Skip to main content

Biomarkers in Vascular Disease

  • Chapter
  • First Online:
Mechanisms of Vascular Disease

Abstract

Basic scientific research over recent decades has identified a large number of molecules implicated in vascular disease pathogenesis. Molecular processes such as inflammation, apoptosis, proteolysis, thrombosis, and extracellular matrix degradation have been described in the aetiology of both aneurysmal and atherosclerotic disease. As a consequence of these processes, local cytokine, enzyme and protein expression is modified. Today, many of these molecular modifications can be measured systemically by sensitive assays. The molecular markers, when specific for that disease, become biomarkers.

Biomarker discovery involves taking the altered protein or cytokine expression and exploring it for a correlation to disease presence, burden, progression or remission. Biomarkers may act as screening tools, be added to risk prediction formulae or be utilized in post-operative follow-up.

Abdominal aortic aneurysms (AAA) and carotid stenosis are two disease processes where biomarkers would revolutionize surgical management. Currently treatment for both diseases is directed by the morphological characteristics of the lesion. These morphological criteria are imprecise and fail to adequately describe risk or predict outcome. A biomarker capable of predicting AAA rupture risk or identifying high risk carotid plaques would prevent unnecessary surgery and concentrate resources on the patients most likely to benefit.

This chapter describes the process of biomarker discovery, and details progress made in this field for AAA and unstable carotid plaques. In the future, it is likely that surgeons will utilize biomarkers to direct them on the timing and indications for interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arthur JA, Wayne AC, Victor GD, David LD, Gregory JD, Daniel FH, et al. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89–95. https://doi.org/10.1067/mcp.2001.113989.

    Article  Google Scholar 

  2. Fox N, Growdon JH. Biomarkers and surrogates. NeuroRx. 2004;1:181.

    PubMed Central  Google Scholar 

  3. Katus HA, Remppis A, Neumann FJ, Scheffold T, Diederich KW, Vinar G, et al. Diagnostic efficiency of troponin T measurements in acute myocardial infarction. Circulation. 1991;83:902–12.

    CAS  PubMed  Google Scholar 

  4. Babuin L, Jaffe AS. Troponin: the biomarker of choice for the detection of cardiac injury. CMAJ. 2005;173:1191–202. https://doi.org/10.1503/cmaj/051291.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Weintraub NL. Understanding abdominal aortic aneurysm. N Engl J Med. 2009;361:1114–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Brady AR, Thompson SG, Fowkes FGR, Greenhalgh RM, Powell JT. Abdominal aortic aneurysm expansion: risk factors and time intervals for surveillance. Circulation. 2004;110:16–21.

    PubMed  Google Scholar 

  7. Bown MJ, Sutton AJ, Bell PR, Sayers RD. A meta-analysis of 50 years of ruptured abdominal aortic aneurysm repair. Br J Surg. 2002;89:714–30.

    CAS  PubMed  Google Scholar 

  8. Nicholls SC, Gardner JB, Meissner MH, Johansen HK. Rupture in small abdominal aortic aneurysms. J Vasc Surg. 1998;28:884–8.

    CAS  PubMed  Google Scholar 

  9. Lederle FA, Johnson GR, Wilson SE, Ballard DJ, Jordan WJ, Blebea J, et al. Rupture rate of large abdominal aortic aneurysms in patients refusing or unfit for elective repair. JAMA. 2002;287:2968–72.

    PubMed  Google Scholar 

  10. Eugster T, Huber A, Obeid T, Schwegler I, Gurke L, Stierli P. Aminoterminal propeptide of type III procollagen and matrix metalloproteinases-2 and -9 failed to serve as serum markers for abdominal aortic aneurysm. Eur J Vasc Endovasc Surg. 2005;29:378–82.

    CAS  PubMed  Google Scholar 

  11. Zweers MC, Peeters AC, Graafsma S, Kranendonk S, van der Vliet JA, den Heijer M, et al. Abdominal aortic aneurysm is associated with high serum levels of tenascin-X and decreased aneurysmal tissue tenascin-X. Circulation. 2006;113:1702–7.

    CAS  PubMed  Google Scholar 

  12. Lindholt JS, Heickendorff L, Henneberg EW, Fasting H. Serum elastin peptides as a predictor of expansion of small abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 1997;14:12–6.

    CAS  PubMed  Google Scholar 

  13. Lindholt JS, Ashton HA, Heickendorff L, Scott RA. Serum elastin peptides in the preoperative evaluation of abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2001;22:546–50. https://doi.org/10.1053/ejvs.2001.1516.

    Article  CAS  PubMed  Google Scholar 

  14. Lindholt JS, Vammen S, Fasting H, Henneberg EW, Heickendorff L. The plasma level of matrix metalloproteinase 9 may predict the natural history of small abdominal aortic aneurysms. A preliminary study. Eur J Vasc Endovasc Surg. 2000;20:281–5.

    CAS  PubMed  Google Scholar 

  15. McMillan WD, Pearce WH. Increased levels of metalloproteinase-9 are associated with abdominal aortic aneurysms. J Vasc Surg. 1999;29:122–7.

    CAS  PubMed  Google Scholar 

  16. Takagi H, Manabe H, Kawai N, Goto S-N, Umemoto T. Circulating matrix metalloproteinase-9 concentrations and abdominal aortic aneurysm presence: a meta-analysis. Interact Cardiovasc Thorac Surg. 2009;9:437–40.

    PubMed  Google Scholar 

  17. Vega de Ceniga M, Esteban M, Quintana JM, Barba A, Estallo L, de la Fuente N, et al. Search for serum biomarkers associated with abdominal aortic aneurysm growth—pilot study. Eur J Vasc Endovasc Surg. 2009;37:297–9.

    CAS  PubMed  Google Scholar 

  18. Lindholt JS, Jorgensen B, Klitgaard NA, Henneberg EW. Systemic levels of Cotinine and Elastase, but not pulmonary function, are associated with the progression of small abdomonal aortic aneurysms. Eur J Vasc Endovasc Surg. 2003;26:418–22.

    CAS  PubMed  Google Scholar 

  19. Al-Barjas HS, Ariens R, Grant P, Scott JA. Raised plasma fibrinogen concentration in patients with abdominal aortic aortic aneurysm. Angiology. 2006;57:607–14.

    CAS  PubMed  Google Scholar 

  20. Golledge J, Muller R, Clancy P, McCann M, Norman PE. Evaluation of the diagnostic and prognostic value of plasma D-dimer for abdominal aortic aneurysm. Eur Heart J. 2011;32:354–64. https://doi.org/10.1093/eurheartj/ehq171.

    Article  CAS  PubMed  Google Scholar 

  21. Moroz P, Le MT, Norman PE. Homocysteine and abdominal aortic aneurysms. ANZ J Surg. 2007;77:329–32.

    PubMed  Google Scholar 

  22. Iyer V, Rowbotham S, Biros E, Bingley J, Golledge J. A systematic review investigating the association of microRNAs with human abdominal aortic aneurysms. Atherosclerosis. 2017;261:78–89. https://doi.org/10.1016/j.atherosclerosis.2017.03.010.

    Article  CAS  PubMed  Google Scholar 

  23. Wanhainen A, Mani K, Vorkapic E, De Basso R, Björck M, Länne T, et al. Screening of circulating microRNA biomarkers for prevalence of abdominal aortic aneurysm and aneurysm growth. Atherosclerosis. 2017;256:82–8. https://doi.org/10.1016/j.atherosclerosis.2016.11.007.

    Article  CAS  PubMed  Google Scholar 

  24. Norman PE, Spencer CA, Lawrence-Brown MM, Jamrozik K. C-reactive protein levels and the expansion of screen detected abdominal aortic aneurysms in men. Circulation. 2004;110:862–6.

    CAS  PubMed  Google Scholar 

  25. Rohde LE, Arroyo LH, Rifai N, Creager MA, Libby P, Ridker PM, et al. Plasma concentrations of interleukin-6 and abdominal aortic diameter among subjects without aortic dilatation. Arterioscler Thromb Vasc Biol. 1999;19:1695–9.

    CAS  PubMed  Google Scholar 

  26. Wenrui H, Shihua G, Shuonan W, Jinchao X, Michael RG, Avner F, et al. A mathematical model of aortic aneurysm formation. PLoS One. 2017;12:e0170807. https://doi.org/10.1371/journal.pone.0170807.

    Article  CAS  Google Scholar 

  27. Golledge J, Muller J, Shephard N, Clancy P, Smallwood L, Mpran C, et al. Association between osteopontin and human abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol. 2007;27:655–60.

    CAS  PubMed  Google Scholar 

  28. Moran CS, McCann M, Karan M, Norman PE, Ketheesan N, Golledge J. Association of osteoprotegerin with human abdominal aortic aneurysm progression. Circulation. 2005;111:3119–25.

    CAS  PubMed  Google Scholar 

  29. Golledge J, Clancy P, Jamrozik K, Norman PE. Obesity, adipokines, and abdominal aortic aneurysm: health in men study. Circulation. 2007;116:2275–9.

    CAS  PubMed  Google Scholar 

  30. The UK Small Aneurysm Trial Participants. Smoking, lung function and the prognosis of abdominal aortic aneurysm. Eur J Vasc Endovasc Surg. 2000;19:636–42.

    Google Scholar 

  31. Wilson WRW, Anderton M, Choke E, Dawson J, Loftus IM, Thompson MM. Elevated plasma MMP1 and MMP9 are associated with abdominal aortic aneurysm rupture. Eur J Vasc Endovasc Surg. 2008;35:580–4.

    CAS  PubMed  Google Scholar 

  32. Jalalzadeh H, Indrakusuma R, Planken RN, Legemate DA, Koelemay MJW, Balm R. Inflammation as a predictor of abdominal aortic aneurysm growth and rupture: a systematic review of imaging biomarkers. Eur J Vasc Endovas Surg. 2016;52:333–42. https://doi.org/10.1016/j.ejvs.2016.05.002.

    Article  CAS  Google Scholar 

  33. Forsythe RO, Dweck MR, McBride OMB, Vesey AT, Semple SI, Shah ASV, et al. F-sodium fluoride uptake in abdominal aortic aneurysms: the SoFIA study. J Am Coll Cardiol. 2018;71:513–23. https://doi.org/10.1016/j.jacc.2017.11.053.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sangiorgi G, D’Averio R, Mauriello A, Bondio M, Pontillo M, Castelvecchio S, et al. Plasma levels of metalloproteinases-3 and -9 as markers of successful abdominal aortic aneurysm exclusion after endovascular graft treatment. Circulation. 2001;104:I288–95.

    CAS  PubMed  Google Scholar 

  35. Ng E, Morris DR, Golledge J. The association between plasma matrix metalloproteinase-9 concentration and endoleak after endovascular aortic aneurysm repair: a meta-analysis. Atherosclerosis. 2015;242:535–42. https://doi.org/10.1016/j.atherosclerosis.2015.08.016.

    Article  CAS  PubMed  Google Scholar 

  36. Hermus L, Lefrandt JD, Tio RA, Breek J-C, Zeebregts CJ. Carotid plaque formation and serum biomarkers. Atherosclerosis. 2010;213:21–9. https://doi.org/10.1016/j.atherosclerosis.2010.05.013.

    Article  CAS  PubMed  Google Scholar 

  37. Schillinger M, Exner M, Mlekusch W, Sabeti S, Amighi J, Nikowitsch R, et al. Inflammation and carotid artery—risk for atherosclerosis study (ICARAS). Circulation. 2005;111:2203–9.

    PubMed  Google Scholar 

  38. Rost NS, Wolf PA, Kase CS, Kelly-Hayes M, Silbershatz H, Massaro JM, et al. Plasma concentration of C-reactive protein and risk of ischaemic stroke and transient ischaemic attack: the Framingham study. Stroke. 2001;32:2575–9.

    CAS  PubMed  Google Scholar 

  39. Koutouzis M, Rallidis LS, Peros G, Nomikos A, Tzavara V, Barbatis C, et al. Serum interleukin-6 is elevated in symptomatic carotid bifurcation disease. Acta Neurol Scand. 2009;119:119–25.

    CAS  PubMed  Google Scholar 

  40. Mannheim D, Herrmann J, Versari D, Gossl M, Meyer FB, McConnell JP, et al. Enhanced expression of Lp-PLA2 and lysophosphatidylcholine in symptomatic carotid atherosclerotic plaques. Stroke. 2008;39:1448–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kietselaer BL, Reutelingsperger CP, Heidendal GA, Daemen MJ, Mess WH, Hofstra L, et al. Noninvasive detection of plaque instability with use of radiolabelled annexin A5 in patients with carotid artery stenosis. N Engl J Med. 2004;350:1472–3.

    CAS  PubMed  Google Scholar 

  42. Sayed S, Cockerill GW, Torsney E, Poston R, Thompson MM, Loftus IM. Elevated tissue expression of thrombomodulatory factors correlates with acute symptomatic carotid plaque phenotype. Eur J Vasc Endovasc Surg. 2009;38:20–5.

    CAS  PubMed  Google Scholar 

  43. Sabeti S, Exner M, Mlekusch W, Amighi J, Quehenberger P, Rumpold H, et al. Prognostic impact of fibrinogen in carotid atherosclerosis: nonspecific indicator of inflammation or independent predictor of disease progression? Stroke. 2005;36:1400–4.

    CAS  PubMed  Google Scholar 

  44. Loftus IM, Naylor AR, Goodall S, Crowther M, Jones L, Bell PR, et al. Increased matrix metalloproteinase-9 activity in unstable carotid plaques. A potential role in acute plaque disruption. Stroke. 2000;31:40–7.

    CAS  PubMed  Google Scholar 

  45. Alvarez B, Ruiz C, Chacon P, Alvarez-Sabin J, Matas M. Serum values of metalloproteinase-2 and metalloproteinase-9 as related to unstable plaque and inflammatory cells in patients with greater than 70% carotid artery stenosis. J Vasc Surg. 2004;40:469–75.

    PubMed  Google Scholar 

  46. Eilenberg W, Stojkovic S, Piechota-Polanczyk A, Kaider A, Kozakowski N, Weninger WJ, et al. Neutrophil gelatinase associated lipocalin (NGAL) is elevated in type 2 diabetics with carotid artery stenosis and reduced under metformin treatment. Cardiovasc Diabetol. 2017;16:98. https://doi.org/10.1186/s12933-017-0579-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nakamura M, Tachieda R, Niinuma H, Ohira A, Endoh S, Hiramori K, et al. Circulating biochemical marker levels of collagen metabolism are abnormal in patients with abdominal aortic aneurysm. Angiology. 2000;51:385–92.

    CAS  PubMed  Google Scholar 

  48. Satta J, Haukipuro K, Kairaluoma MI, Juvonen T. Aminoterminal propeptide of type III procollagen in the follow-up of patients with abdominal aortic aneurysms. J Vasc Surg. 1997;25:909–15.

    CAS  PubMed  Google Scholar 

  49. Lindholt JS, Erlandsen EJ, Henneberg EW. Cystatin C deficiency is associated with the progression of small abdominal aortic aneurysms. Br J Surg. 2001;88:1472–5. https://doi.org/10.1046/j.0007-1323.2001.01911.x.

    Article  CAS  PubMed  Google Scholar 

  50. Halazun KJ, Bofkin KA, Asthana S, Evans C, Henederson M, Spark JI. Hyperhomocysteinaemia is associated with the rate of abdominal aortic aneurysm expansion. Eur J Vasc Endovasc Surg. 2007;33:391–4.

    CAS  PubMed  Google Scholar 

  51. Yamazumi K, Ojiro M, Okumura H, Aikou T. An activated state of blood coagulation and fibrinolysis in patients with abdominal aortic aneurysm. Am J Surg. 1998;175:297–301.

    CAS  PubMed  Google Scholar 

  52. Lindholt JS, Ashton HA, Scott RA. Indicators of infection with chlamydia pneumoniae are associated with expansion of abdominal aortic aneurysms. J Vasc Surg. 2001;34:212–5.

    CAS  PubMed  Google Scholar 

  53. Mallat Z, Corbaz A, Scoazec A, Besnard S, Leseche G, Chvatchko Y, et al. Expression of interleukin18 in human atherosclerotic plaques and relation to plaque instability. Circulation. 2001;104:1598–603.

    CAS  PubMed  Google Scholar 

  54. Sugioka K, Naruko T, Matsumara Y, Shirai N, Hozumi T, Yoshiyama M, et al. Neopterin and atherosclerotic plaque instability in coronary and carotid arteries. J Atheroscler Thromb. 2010;17:1115–21.

    CAS  PubMed  Google Scholar 

  55. Handberg A, Skjelland M, Miichelsen AE, Sagen EL, Krohg-Sorensen K, Russell D, et al. Soluble CD36 in plasma is increased in patients with symptomatic atherosclerotic carotid plaques and is related to plaque instability. Stroke. 2008;39:3092–5.

    CAS  PubMed  Google Scholar 

Further Reading

  • Golledge J, Tsao PS, Dalman RL, Norman PE. Circulating markers of abdominal aortic aneurysm presence and progression. Circulation. 2008;118:2382–92.

    PubMed  PubMed Central  Google Scholar 

  • Groeneveld ME, Meekel JP, Rubinstein SM, Merkestein LR, Tangelder GJ, Wisselink W, Truijers M, Yeung KK. Systematic review of circulating, biomechanical, and genetic markers for the prediction of abdominal aortic aneurysm growth and rupture. JAHA. 2018;7(13).

    Google Scholar 

  • Hermus L, Lefrandt JD, Tio RA, Breek J-C, Zeebregts CJ. Carotid plaque formation and serum biomarkers. Atherosclerosis. 2010;213:21–9.

    CAS  PubMed  Google Scholar 

  • Hlatky MA, Greenland P, Arnett DK, Ballantyne CM, Criqui MH, Elkind MSV, Go AS, Harrell FE, Howard BV, Howard VJ, P.Y. H, Kramer CM, McConnell JP, Normand S-LP, O’Donnell CJ, Smith SJ, Wilson PWF. Criteria for evaluation of novel markers of cardiovascular risk. Circulation. 2009;119:2408–16.

    PubMed  PubMed Central  Google Scholar 

  • Nordon IM, Brar R, Hinchliffe RJ, Cockerill GW, Loftus IM, Thompson MM. The role of proteomic research in vascular disease. J Vasc Surg. 2009;49:1602–12.

    PubMed  Google Scholar 

  • Vasan RS. Biomarkers of vascular disease: Molecular basis and practical considerations. Circulation. 2006;113:2335–62.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian M. Nordon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cadersa, A., Nordon, I.M. (2020). Biomarkers in Vascular Disease. In: Fitridge, R. (eds) Mechanisms of Vascular Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-43683-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43683-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43682-7

  • Online ISBN: 978-3-030-43683-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics