Skip to main content

Pathophysiology and Principles of Management of Hereditary Aneurysmal Aortopathies

  • Chapter
  • First Online:
Mechanisms of Vascular Disease

Abstract

Aortic aneurysm refers to a pathological dilatation of the aorta and predisposes to rupture and dissection. It is an important health problem, accounting for 1–2% of all deaths in the Western population. Thoracic aortic aneurysms (TAAs) have been more extensively studied than their abdominal counterparts because of greater heritability and earlier disease onset. Hitherto, mutations in more than 30 genes have been linked to TAA development. In general, TAA genes code for proteins involved in structural integrity and homeostasis of the extracellular matrix, vascular smooth muscle cell contractility or the TGF-β signalling pathway. Their discovery has led to new therapeutic avenues such as the TGF-β lowering agents, including angiotensin receptor blockers. However, additional research is still necessary to complete the pathomechanistic puzzle. In this chapter, we provide a comprehensive overview of the current knowledge of TAA pathology, the molecular TAA landscape and how elucidation of the latter is facilitating gene-tailored TAA management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lindsay ME, Dietz HC. Lessons on the pathogenesis of aneurysm from heritable conditions. Nature. 2011;473:308–16. https://doi.org/10.1038/nature10145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Goyal A, Keramati AR, Czarny MJ, Resar JR, Mani A. The genetics of aortopathies in clinical cardiology. Clin Med Insights Cardiol. 2017;11:1179546817709787. https://doi.org/10.1177/1179546817709787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lillvis JH, Kyo Y, Tromp G, Lenk GM, Li M, Lu Q, et al. Analysis of positional candidate genes in the AAA1 susceptibility locus for abdominal aortic aneurysms on chromosome 19. BMC Med Genet. 2011;12:14. https://doi.org/10.1186/1471-2350-12-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Verstraeten A, Luyckx I, Loeys B. Aetiology and management of hereditary aortopathy. Nat Rev Cardiol. 2017;14:197–208. https://doi.org/10.1038/nrcardio.2016.211.

    Article  CAS  PubMed  Google Scholar 

  5. Luyckx I, Loeys BL. The genetic architecture of non-syndromic thoracic aortic aneurysm. Curriculum topic: disease of the aorta and trauma to the aorta and heart. Heart. 2015;101:1678–84. https://doi.org/10.1136/heartjnl-2014-306381.

    Article  CAS  PubMed  Google Scholar 

  6. Divchev D, Najjar T, Tillwich F, Rehders T, Palisch H, Nienaber CA. Predicting long-term outcomes of acute aortic dissection: a focus on gender. Expert Rev Cardiovasc Ther. 2015;13:325–31. https://doi.org/10.1586/14779072.2015.1004313.

    Article  CAS  PubMed  Google Scholar 

  7. Marshall LM, Carlson EJ, O’Malley J, Snyder CK, Charbonneau NL, Hayflick SJ, et al. Thoracic aortic aneurysm frequency and dissection are associated with fibrillin-1 fragment concentrations in circulation. Circ Res. 2013;113:1159–68. https://doi.org/10.1161/CIRCRESAHA.113.301498.

    Article  CAS  PubMed  Google Scholar 

  8. Hiratzka LF, Bakris GL, Beckman JA, Bersin RM, Carr VF, Casey DE Jr, et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: executive summary. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Catheter Cardiovasc Interv. 2010;76:E43–86.

    Article  Google Scholar 

  9. Grubb KJ, Kron IL. Sex and gender in thoracic aortic aneurysms and dissection. Semin Thorac Cardiovasc Surg. 2011;23:124–5. https://doi.org/10.1053/j.semtcvs.2011.08.009.

    Article  PubMed  Google Scholar 

  10. Criado FJ. Aortic dissection: a 250-year perspective. Tex Heart Inst J. 2011;38:694–700.

    PubMed  PubMed Central  Google Scholar 

  11. Roostalu U, Wong JK. Arterial smooth muscle dynamics in development and repair. Dev Biol. 2018;435:109–21. https://doi.org/10.1016/j.ydbio.2018.01.018.

    Article  CAS  PubMed  Google Scholar 

  12. Orekhov AN, Bobryshev YV, Chistiakov DA. The complexity of cell composition of the intima of large arteries: focus on pericyte-like cells. Cardiovasc Res. 2014;103:438–51. https://doi.org/10.1093/cvr/cvu168.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang X, Shen YH, LeMaire SA. Thoracic aortic dissection: are matrix metalloproteinases involved? Vascular. 2009;17:147–57. https://doi.org/10.2310/6670.2008.00087.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chung AW, Au Yeung K, Sandor GG, Judge DP, Dietz HC, van Breemen C. Loss of elastic fiber integrity and reduction of vascular smooth muscle contraction resulting from the upregulated activities of matrix metalloproteinase-2 and -9 in the thoracic aortic aneurysm in Marfan syndrome. Circ Res. 2007;101:512–22. https://doi.org/10.1161/CIRCRESAHA.107.157776.

    Article  CAS  PubMed  Google Scholar 

  15. Roccabianca S, Ateshian GA, Humphrey JD. Biomechanical roles of medial pooling of glycosaminoglycans in thoracic aortic dissection. Biomech Model Mechanobiol. 2014;13:13–25. https://doi.org/10.1007/s10237-013-0482-3.

    Article  PubMed  Google Scholar 

  16. He R, Guo DC, Estrera AL, Safi HJ, Huynh TT, Yin Z, et al. Characterization of the inflammatory and apoptotic cells in the aortas of patients with ascending thoracic aortic aneurysms and dissections. J Thorac Cardiovasc Surg. 2006;131:671–8. https://doi.org/10.1016/j.jtcvs.2005.09.018.

    Article  PubMed  Google Scholar 

  17. Macura KJ, Corl FM, Fishman EK, Bluemke DA. Pathogenesis in acute aortic syndromes: aortic aneurysm leak and rupture and traumatic aortic transection. AJR Am J Roentgenol. 2003;181:303–7. https://doi.org/10.2214/ajr.181.2.1810303.

    Article  PubMed  Google Scholar 

  18. Malashicheva A, Kostina D, Kostina A, Irtyuga O, Voronkina I, Smagina L, et al. Phenotypic and functional changes of endothelial and smooth muscle cells in thoracic aortic aneurysms. Int J Vasc Med. 2016;2016:3107879. https://doi.org/10.1155/2016/3107879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Arbustini E, Favalli V, Di Toro A, Giuliani L, Limongelli G. Common presentation of rare diseases: aortic aneurysms and valves. Int J Cardiol. 2018;257:358–65. https://doi.org/10.1016/j.ijcard.2018.01.003.

    Article  PubMed  Google Scholar 

  20. Coucke PJ, Willaert A, Wessels MW, Callewaert B, Zoppi N, De Backer J, et al. Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome. Nat Genet. 2006;38:452–7. https://doi.org/10.1038/ng1764.

    Article  CAS  PubMed  Google Scholar 

  21. Hucthagowder V, Sausgruber N, Kim KH, Angle B, Marmorstein LY, Urban Z. Fibulin-4: a novel gene for an autosomal recessive cutis laxa syndrome. Am J Hum Genet. 2006;78:1075–80. https://doi.org/10.1086/504304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Robertson E, Dilworth C, Lu Y, Hambly B, Jeremy R. Molecular mechanisms of inherited thoracic aortic disease—from gene variant to surgical aneurysm. Biophys Rev. 2015;7:105–15. https://doi.org/10.1007/s12551-014-0147-1.

    Article  CAS  PubMed  Google Scholar 

  23. Isselbacher EM, Lino Cardenas CL, Lindsay ME. Hereditary influence in thoracic aortic aneurysm and dissection. Circulation. 2016;133:2516–28. https://doi.org/10.1161/CIRCULATIONAHA.116.009762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. van Karnebeek CD, Naeff MS, Mulder BJ, Hennekam RC, Offringa M. Natural history of cardiovascular manifestations in Marfan syndrome. Arch Dis Child. 2001;84:129–37.

    Article  Google Scholar 

  25. Sengle G, Tsutsui K, Keene DR, Tufa SF, Carlson EJ, Charbonneau NL, et al. Microenvironmental regulation by fibrillin-1. PLoS Genet. 2012;8:e1002425. https://doi.org/10.1371/journal.pgen.1002425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lindsay ME, Dietz HC. The genetic basis of aortic aneurysm. Cold Spring Harb Perspect Med. 2014;4:a015909. https://doi.org/10.1101/cshperspect.a015909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL, Cooper TK, et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science. 2006;312:117–21. https://doi.org/10.1126/science.1124287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kuang SQ, Medina-Martinez O, Guo DC, Gong L, Regalado ES, Reynolds CL, et al. FOXE3 mutations predispose to thoracic aortic aneurysms and dissections. J Clin Invest. 2016;126:948–61. https://doi.org/10.1172/JCI83778.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Stuart AG, Williams A. Marfan’s syndrome and the heart. Arch Dis Child. 2007;92:351–6. https://doi.org/10.1136/adc.2006.097469.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Meester JAN, Verstraeten A, Schepers D, Alaerts M, Van Laer L, Loeys BL. Differences in manifestations of Marfan syndrome, Ehlers-Danlos syndrome, and Loeys-Dietz syndrome. Ann Cardiothorac Surg. 2017;6:582–94. https://doi.org/10.21037/acs.2017.11.03.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Williams JA, Loeys BL, Nwakanma LU, Dietz HC, Spevak PJ, Patel ND, et al. Early surgical experience with Loeys-Dietz: a new syndrome of aggressive thoracic aortic aneurysm disease. Ann Thorac Surg. 2007;83:S757–63. https://doi.org/10.1016/j.athoracsur.2006.10.091. discussion S85–90.

    Article  PubMed  Google Scholar 

  32. Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M, Holm T, et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet. 2005;37:275–81. https://doi.org/10.1038/ng1511.

    Article  CAS  PubMed  Google Scholar 

  33. Micha D, Guo DC, Hilhorst-Hofstee Y, van Kooten F, Atmaja D, Overwater E, et al. SMAD2 mutations are associated with arterial aneurysms and dissections. Hum Mutat. 2015;36:1145–9. https://doi.org/10.1002/humu.22854.

    Article  CAS  PubMed  Google Scholar 

  34. Lindsay ME, Schepers D, Bolar NA, Doyle JJ, Gallo E, Fert-Bober J, et al. Loss-of-function mutations in TGFB2 cause a syndromic presentation of thoracic aortic aneurysm. Nat Genet. 2012;44:922–7. https://doi.org/10.1038/ng.2349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bertoli-Avella AM, Gillis E, Morisaki H, Verhagen JMA, de Graaf BM, van de Beek G, et al. Mutations in a TGF-beta ligand, TGFB3, cause syndromic aortic aneurysms and dissections. J Am Coll Cardiol. 2015;65:1324–36. https://doi.org/10.1016/j.jacc.2015.01.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. van de Laar IM, Oldenburg RA, Pals G, Roos-Hesselink JW, de Graaf BM, Verhagen JM, et al. Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat Genet. 2011;43:121–6. https://doi.org/10.1038/ng.744.

    Article  CAS  PubMed  Google Scholar 

  37. Shprintzen RJ, Goldberg RB. A recurrent pattern syndrome of craniosynostosis associated with arachnodactyly and abdominal hernias. J Craniofac Genet Dev Biol. 1982;2:65–74.

    CAS  PubMed  Google Scholar 

  38. Doyle AJ, Doyle JJ, Bessling SL, Maragh S, Lindsay ME, Schepers D, et al. Mutations in the TGF-beta repressor SKI cause Shprintzen-Goldberg syndrome with aortic aneurysm. Nat Genet. 2012;44:1249–54. https://doi.org/10.1038/ng.2421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cannaerts E, van de Beek G, Verstraeten A, Van Laer L, Loeys B. TGF-beta signalopathies as a paradigm for translational medicine. Eur J Med Genet. 2015;58:695–703. https://doi.org/10.1016/j.ejmg.2015.10.010.

    Article  PubMed  Google Scholar 

  40. Meester JA, Vandeweyer G, Pintelon I, Lammens M, Van Hoorick L, De Belder S, et al. Loss-of-function mutations in the X-linked biglycan gene cause a severe syndromic form of thoracic aortic aneurysms and dissections. Genet Med. 2017;19:386–95. https://doi.org/10.1038/gim.2016.126.

    Article  CAS  PubMed  Google Scholar 

  41. Lin CJ, Lin CY, Stitziel NO. Genetics of the extracellular matrix in aortic aneurysmal diseases. Matrix Biol. 2018;71–72:128–43. https://doi.org/10.1016/j.matbio.2018.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Eagleton MJ. Arterial complications of vascular Ehlers-Danlos syndrome. J Vasc Surg. 2016;64:1869–80. https://doi.org/10.1016/j.jvs.2016.06.120.

    Article  PubMed  Google Scholar 

  43. Schwarze U, Schievink WI, Petty E, Jaff MR, Babovic-Vuksanovic D, Cherry KJ, et al. Haploinsufficiency for one COL3A1 allele of type III procollagen results in a phenotype similar to the vascular form of Ehlers-Danlos syndrome, Ehlers-Danlos syndrome type IV. Am J Hum Genet. 2001;69:989–1001. https://doi.org/10.1086/324123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Monroe GR, Harakalova M, van der Crabben SN, Majoor-Krakauer D, Bertoli-Avella AM, Moll FL, et al. Familial Ehlers-Danlos syndrome with lethal arterial events caused by a mutation in COL5A1. Am J Med Genet A. 2015;167:1196–203. https://doi.org/10.1002/ajmg.a.36997.

    Article  CAS  PubMed  Google Scholar 

  45. Malfait F, Symoens S, De Backer J, Hermanns-Le T, Sakalihasan N, Lapiere CM, et al. Three arginine to cysteine substitutions in the pro-alpha (I)-collagen chain cause Ehlers-Danlos syndrome with a propensity to arterial rupture in early adulthood. Hum Mutat. 2007;28:387–95. https://doi.org/10.1002/humu.20455.

    Article  CAS  PubMed  Google Scholar 

  46. Fox JW, Lamperti ED, Eksioglu YZ, Hong SE, Feng Y, Graham DA, et al. Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron. 1998;21:1315–25.

    Article  CAS  Google Scholar 

  47. de Wit MC, de Coo IF, Lequin MH, Halley DJ, Roos-Hesselink JW, Mancini GM. Combined cardiological and neurological abnormalities due to filamin A gene mutation. Clin Res Cardiol. 2011;100:45–50. https://doi.org/10.1007/s00392-010-0206-y.

    Article  PubMed  Google Scholar 

  48. Callewaert B, De Paepe A, Coucke P. Arterial tortuosity syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Stephens K, et al., editors. GeneReviews((R)). Seattle: University of Washington; 1993.

    Google Scholar 

  49. Morris SA. Arterial tortuosity in genetic arteriopathies. Curr Opin Cardiol. 2015;30:587–93. https://doi.org/10.1097/HCO.0000000000000218.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Berk DR, Bentley DD, Bayliss SJ, Lind A, Urban Z. Cutis laxa: a review. J Am Acad Dermatol. 2012;66:842.e1–17. https://doi.org/10.1016/j.jaad.2011.01.004.

    Article  Google Scholar 

  51. Loeys B, Van Maldergem L, Mortier G, Coucke P, Gerniers S, Naeyaert JM, et al. Homozygosity for a missense mutation in fibulin-5 (FBLN5) results in a severe form of cutis laxa. Hum Mol Genet. 2002;11:2113–8.

    Article  CAS  Google Scholar 

  52. Renard M, Holm T, Veith R, Callewaert BL, Ades LC, Baspinar O, et al. Altered TGFbeta signaling and cardiovascular manifestations in patients with autosomal recessive cutis laxa type I caused by fibulin-4 deficiency. Eur J Hum Genet. 2010;18:895–901. https://doi.org/10.1038/ejhg.2010.45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kappanayil M, Nampoothiri S, Kannan R, Renard M, Coucke P, Malfait F, et al. Characterization of a distinct lethal arteriopathy syndrome in twenty-two infants associated with an identical, novel mutation in FBLN4 gene, confirms fibulin-4 as a critical determinant of human vascular elastogenesis. Orphanet J Rare Dis. 2012;7:61. https://doi.org/10.1186/1750-1172-7-61.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Guo DC, Pannu H, Tran-Fadulu V, Papke CL, Yu RK, Avidan N, et al. Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet. 2007;39:1488–93. https://doi.org/10.1038/ng.2007.6.

    Article  CAS  PubMed  Google Scholar 

  55. Morisaki H, Akutsu K, Ogino H, Kondo N, Yamanaka I, Tsutsumi Y, et al. Mutation of ACTA2 gene as an important cause of familial and nonfamilial nonsyndromatic thoracic aortic aneurysm and/or dissection (TAAD). Hum Mutat. 2009;30:1406–11. https://doi.org/10.1002/humu.21081.

    Article  CAS  PubMed  Google Scholar 

  56. Zhu L, Vranckx R, Khau Van Kien P, Lalande A, Boisset N, Mathieu F, et al. Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus. Nat Genet. 2006;38:343–9. https://doi.org/10.1038/ng1721.

    Article  CAS  PubMed  Google Scholar 

  57. Wang L, Guo DC, Cao J, Gong L, Kamm KE, Regalado E, et al. Mutations in myosin light chain kinase cause familial aortic dissections. Am J Hum Genet. 2010;87:701–7. https://doi.org/10.1016/j.ajhg.2010.10.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Guo DC, Regalado E, Casteel DE, Santos-Cortez RL, Gong L, Kim JJ, et al. Recurrent gain-of-function mutation in PRKG1 causes thoracic aortic aneurysms and acute aortic dissections. Am J Hum Genet. 2013;93:398–404. https://doi.org/10.1016/j.ajhg.2013.06.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Guo DC, Gong L, Regalado ES, Santos-Cortez RL, Zhao R, Cai B, et al. MAT2A mutations predispose individuals to thoracic aortic aneurysms. Am J Hum Genet. 2015;96:170–7. https://doi.org/10.1016/j.ajhg.2014.11.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Semina EV, Brownell I, Mintz-Hittner HA, Murray JC, Jamrich M. Mutations in the human forkhead transcription factor FOXE3 associated with anterior segment ocular dysgenesis and cataracts. Hum Mol Genet. 2001;10:231–6.

    Article  CAS  Google Scholar 

  61. Barbier M, Gross MS, Aubart M, Hanna N, Kessler K, Guo DC, et al. MFAP5 loss-of-function mutations underscore the involvement of matrix alteration in the pathogenesis of familial thoracic aortic aneurysms and dissections. Am J Hum Genet. 2014;95:736–43. https://doi.org/10.1016/j.ajhg.2014.10.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gillis E, Kumar AA, Luyckx I, Preuss C, Cannaerts E, van de Beek G, et al. Candidate gene resequencing in a large bicuspid aortic valve-associated thoracic aortic aneurysm cohort: SMAD6 as an important contributor. Front Physiol. 2017;8:400. https://doi.org/10.3389/fphys.2017.00400.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gould RA, Aziz H, Woods CE, Seman-Senderos MA, Sparks E, Preuss C, et al. ROBO4 variants predispose individuals to bicuspid aortic valve and thoracic aortic aneurysm. Nat Genet. 2019;51:42–50. https://doi.org/10.1038/s41588-018-0265-y.

    Article  CAS  PubMed  Google Scholar 

  64. Guo DC, Regalado ES, Gong L, Duan X, Santos-Cortez RL, Arnaud P, et al. LOX mutations predispose to thoracic aortic aneurysms and dissections. Circ Res. 2016;118:928–34. https://doi.org/10.1161/CIRCRESAHA.115.307130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rifkin DB, Rifkin WJ, Zilberberg L. LTBPs in biology and medicine: LTBP diseases. Matrix Biol. 2018;71–72:90–9. https://doi.org/10.1016/j.matbio.2017.11.014.

    Article  CAS  PubMed  Google Scholar 

  66. Rensen SS, Doevendans PA, van Eys GJ. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth Heart J. 2007;15:100–8.

    Article  CAS  Google Scholar 

  67. Alexander MR, Owens GK. Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease. Annu Rev Physiol. 2012;74:13–40. https://doi.org/10.1146/annurev-physiol-012110-142315.

    Article  CAS  PubMed  Google Scholar 

  68. Milewicz DM, Trybus KM, Guo DC, Sweeney HL, Regalado E, Kamm K, et al. Altered smooth muscle cell force generation as a driver of thoracic aortic aneurysms and dissections. Arterioscler Thromb Vasc Biol. 2017;37:26–34. https://doi.org/10.1161/ATVBAHA.116.303229.

    Article  CAS  PubMed  Google Scholar 

  69. Karimi A, Milewicz DM. Structure of the elastin-contractile units in the thoracic aorta and how genes that cause thoracic aortic aneurysms and dissections disrupt this structure. Can J Cardiol. 2016;32:26–34. https://doi.org/10.1016/j.cjca.2015.11.004.

    Article  PubMed  Google Scholar 

  70. Schepers D, Tortora G, Morisaki H, MacCarrick G, Lindsay M, Liang D, et al. A mutation update on the LDS-associated genes TGFB2/3 and SMAD2/3. Hum Mutat. 2018;39:621–34. https://doi.org/10.1002/humu.23407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vander Ark A, Cao J, Li X. TGF-beta receptors: in and beyond TGF-beta signaling. Cell Signal. 2018;52:112–20. https://doi.org/10.1016/j.cellsig.2018.09.002.

    Article  CAS  PubMed  Google Scholar 

  72. MacFarlane EG, Parker SJ, Shin JY, Kang BE, Ziegler SG, Creamer TJ, et al. Lineage-specific events underlie aortic root aneurysm pathogenesis in Loeys-Dietz syndrome. J Clin Invest. 2019;129:659–75. https://doi.org/10.1172/JCI123547.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL. Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol. 2003;5:410–21. https://doi.org/10.1038/ncb975.

    Article  CAS  PubMed  Google Scholar 

  74. Olsson C, Thelin S, Stahle E, Ekbom A, Granath F. Thoracic aortic aneurysm and dissection: increasing prevalence and improved outcomes reported in a nationwide population-based study of more than 14,000 cases from 1987 to 2002. Circulation. 2006;114:2611–8. https://doi.org/10.1161/CIRCULATIONAHA.106.630400.

    Article  PubMed  Google Scholar 

  75. Geisbusch S, Kuehnl A, Salvermoser M, Reutersberg B, Trenner M, Eckstein HH. Increasing incidence of thoracic aortic aneurysm repair in germany in the endovascular era: secondary data analysis of the nationwide german DRG microdata. Eur J Vasc Endovasc Surg. 2019;57:499–509. https://doi.org/10.1016/j.ejvs.2018.08.013.

    Article  PubMed  Google Scholar 

  76. Ho N, Mohadjer A, Desai MY. Thoracic aortic aneurysms: state of the art and current controversies. Expert Rev Cardiovasc Ther. 2017;15:667–80. https://doi.org/10.1080/14779072.2017.1362983.

    Article  CAS  PubMed  Google Scholar 

  77. Fukui T. Management of acute aortic dissection and thoracic aortic rupture. J Intensive Care. 2018;6:15. https://doi.org/10.1186/s40560-018-0287-7.

    Article  PubMed  PubMed Central  Google Scholar 

  78. MacCarrick G, Black JH 3rd, Bowdin S, El-Hamamsy I, Frischmeyer-Guerrerio PA, Guerrerio AL, et al. Loeys-Dietz syndrome: a primer for diagnosis and management. Genet Med. 2014;16:576–87. https://doi.org/10.1038/gim.2014.11.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Andelfinger G, Loeys B, Dietz H. A decade of discovery in the genetic understanding of thoracic aortic disease. Can J Cardiol. 2016;32:13–25. https://doi.org/10.1016/j.cjca.2015.10.017.

    Article  PubMed  Google Scholar 

  80. Ladouceur M, Fermanian C, Lupoglazoff JM, Edouard T, Dulac Y, Acar P, et al. Effect of beta-blockade on ascending aortic dilatation in children with the Marfan syndrome. Am J Cardiol. 2007;99:406–9. https://doi.org/10.1016/j.amjcard.2006.08.048.

    Article  CAS  PubMed  Google Scholar 

  81. Shores J, Berger KR, Murphy EA, Pyeritz RE. Progression of aortic dilatation and the benefit of long-term beta-adrenergic blockade in Marfan’s syndrome. N Engl J Med. 1994;330:1335–41. https://doi.org/10.1056/NEJM199405123301902.

    Article  CAS  PubMed  Google Scholar 

  82. Williams A, Davies S, Stuart AG, Wilson DG, Fraser AG. Medical treatment of Marfan syndrome: a time for change. Heart. 2008;94:414–21. https://doi.org/10.1136/hrt.2006.109454.

    Article  CAS  PubMed  Google Scholar 

  83. Brooke BS, Habashi JP, Judge DP, Patel N, Loeys B, Dietz HC 3rd. Angiotensin II blockade and aortic-root dilation in Marfan’s syndrome. N Engl J Med. 2008;358:2787–95. https://doi.org/10.1056/NEJMoa0706585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lacro RV, Dietz HC, Sleeper LA, Yetman AT, Bradley TJ, Colan SD, et al. Atenolol versus losartan in children and young adults with Marfan’s syndrome. N Engl J Med. 2014;371:2061–71. https://doi.org/10.1056/NEJMoa1404731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mullen MJ, Flather MD, Jin XY, Newman WG, Erdem G, Gaze D, et al. A prospective, randomized, placebo-controlled, double-blind, multicenter study of the effects of irbesartan on aortic dilatation in Marfan syndrome (AIMS trial): study protocol. Trials. 2013;14:408. https://doi.org/10.1186/1745-6215-14-408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Further Reading

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart L. Loeys .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perik, M.H.A.M., Verstraeten, A., Loeys, B.L. (2020). Pathophysiology and Principles of Management of Hereditary Aneurysmal Aortopathies. In: Fitridge, R. (eds) Mechanisms of Vascular Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-43683-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43683-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43682-7

  • Online ISBN: 978-3-030-43683-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics