Skip to main content

Abdominal Aortic Aneurysm Pathology and Progress Towards a Medical Therapy

  • Chapter
  • First Online:
Mechanisms of Vascular Disease

Abstract

Abdominal aortic aneurysm (AAA) is an important cause of mortality in older adults due to aortic rupture. Surgical repair (either by endovascular or open surgery) is the only treatment for AAA. However, large randomized controlled trials have demonstrated that elective repair of small (<55 mm) AAAs does not reduce all-cause mortality. Most AAAs detected through screening programs or incidental imaging are too small to warrant immediate surgical repair. Such patients are managed conservatively with repeated imaging to monitor AAA diameter. Nonetheless, 60–70% of AAAs managed in this way eventually grow to a size warranting elective surgery. Discovery of a drug therapy which effectively slows the growth of small AAAs has significant potential to improve patient welfare and reduce the number of individuals requiring elective surgery. This chapter reviews the current understanding of AAA pathogenesis gained through assessment of animal models and clinical samples. Previous AAA drug trials are also discussed. Finally, the challenges in developing AAA drugs are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Robertson V, Bown M. Abdominal aortic aneurysms: screening, epidemiology and open surgical repair. Surgery. 2018;36:295–9.

    Google Scholar 

  2. Iyer V, Rowbotham S, Biros E, Bingley J, Golledge J. A systematic review investigating the association of microRNAs with human abdominal aortic aneurysms. Atherosclerosis. 2017;261:78–89. https://doi.org/10.1016/j.atherosclerosis.2017.03.010.

    Article  CAS  PubMed  Google Scholar 

  3. Kontopodis N, Tzirakis K, Ioannou CV. The obsolete maximum diameter criterion, the evident role of biomechanical (pressure) indices, the new role of hemodynamic (flow) indices, and the multi-modal approach to the rupture risk assessment of abdominal aortic aneurysms. Ann Vasc Dis. 2018;11:78–83. https://doi.org/10.3400/avd.ra.17-00115.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Moxon JV, Parr A, Emeto TI, Walker P, Norman PE, Golledge J. Diagnosis and monitoring of abdominal aortic aneurysm: current status and future prospects. Curr Probl Cardiol. 2010;35:512–48. https://doi.org/10.1016/j.cpcardiol.2010.08.004.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jones GT, Sandiford P, Hill GB, Williams MJA, Khashram M, Tilyard MW, et al. Correcting for body surface area identifies the true prevalence of abdominal aortic aneurysm in screened women. Eur J Vasc Endovasc Surg. 2019;57(2):221–8. https://doi.org/10.1016/j.ejvs.2018.08.048.

    Article  PubMed  Google Scholar 

  6. Powell JT, Brady AR, Brown LC, Fowkes FG, Greenhalgh RM, Ruckley CV, et al. Long-term outcomes of immediate repair compared with surveillance of small abdominal aortic aneurysms. N Engl J Med. 2002;346:1445–52. https://doi.org/10.1056/NEJMoa013527.

    Article  CAS  PubMed  Google Scholar 

  7. Filardo G, Powell JT, Martinez MA, Ballard DJ. Surgery for small asymptomatic abdominal aortic aneurysms. Cochrane Database Syst Rev. 2015:Cd001835. https://doi.org/10.1002/14651858.CD001835.pub4.

  8. Lederle FA, Wilson SE, Johnson GR, Reinke DB, Littooy FN, Acher CW, et al. Immediate repair compared with surveillance of small abdominal aortic aneurysms. N Engl J Med. 2002;346:1437–44. https://doi.org/10.1056/NEJMoa012573.

    Article  PubMed  Google Scholar 

  9. Cao P. Comparison of surveillance vs Aortic Endografting for Small Aneurysm Repair (CAESAR) trial: study design and progress. Eur J Vasc Endovasc Surg. 2005;30:245–51.

    Article  CAS  Google Scholar 

  10. Ouriel K, Clair DG, Kent KC, Zarins CK. Endovascular repair compared with surveillance for patients with small abdominal aortic aneurysms. J Vasc Surg. 2010;51:1081–7. https://doi.org/10.1016/j.jvs.2009.10.113.

    Article  PubMed  Google Scholar 

  11. Chaikof EL, Dalman RL, Eskandari MK, Jackson BM, Lee WA, Mansour MA, et al. The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J Vasc Surg. 2018;67:2–77.e2. https://doi.org/10.1016/j.jvs.2017.10.044.

    Article  PubMed  Google Scholar 

  12. Sakalihasan N, Michel JB, Katsargyris A, Kuivaniemi H, Defraigne JO, Nchimi A, et al. Abdominal aortic aneurysms. Nat Rev Dis Primers. 2018;4:34. https://doi.org/10.1038/s41572-018-0030-7.

    Article  PubMed  Google Scholar 

  13. Kuivaniemi H, Ryer EJ, Elmore JR, Hinterseher I, Smelser DT, Tromp G. Update on abdominal aortic aneurysm research: from clinical to genetic studies. Scientifica (Cairo). 2014;2014:564734. https://doi.org/10.1155/2014/564734.

    Article  Google Scholar 

  14. Powell JT, Brown LC, Forbes JF, Fowkes FG, Greenhalgh RM, Ruckley CV, et al. Final 12-year follow-up of surgery versus surveillance in the UK Small Aneurysm Trial. Br J Surg. 2007;94:702–8. https://doi.org/10.1002/bjs.5778.

    Article  CAS  PubMed  Google Scholar 

  15. Sampson UK, Norman PE, Fowkes FG, Aboyans V, Song Y, Harrell FE Jr, et al. Estimation of global and regional incidence and prevalence of abdominal aortic aneurysms 1990 to 2010. Glob Heart. 2014;9:159–70. https://doi.org/10.1016/j.gheart.2013.12.009.

    Article  PubMed  Google Scholar 

  16. Golledge J, Norman PE, Murphy MP, Dalman RL. Challenges and opportunities in limiting abdominal aortic aneurysm growth. J Vasc Surg. 2017;65:225–33. https://doi.org/10.1016/j.jvs.2016.08.003.

    Article  PubMed  Google Scholar 

  17. Jacomelli J, Summers L, Stevenson A, Lees T, Earnshaw JJ. Impact of the first 5 years of a national abdominal aortic aneurysm screening programme. Br J Surg. 2016;103:1125–31. https://doi.org/10.1002/bjs.10173.

    Article  CAS  PubMed  Google Scholar 

  18. Svensjo S, Bjorck M, Gurtelschmid M, Djavani Gidlund K, Hellberg A, Wanhainen A. Low prevalence of abdominal aortic aneurysm among 65-year-old Swedish men indicates a change in the epidemiology of the disease. Circulation. 2011;124:1118–23. https://doi.org/10.1161/circulationaha.111.030379.

    Article  PubMed  Google Scholar 

  19. Hager J, Lanne T, Carlsson P, Lundgren F. Lower prevalence than expected when screening 70-year-old men for abdominal aortic aneurysm. Eur J Vasc Endovasc Surg. 2013;46:453–9. https://doi.org/10.1016/j.ejvs.2013.07.014.

    Article  CAS  PubMed  Google Scholar 

  20. Norman PE, Spilsbury K, Semmens JB. Falling rates of hospitalization and mortality from abdominal aortic aneurysms in Australia. J Vasc Surg. 2011;53:274–7. https://doi.org/10.1016/j.jvs.2010.08.087.

    Article  PubMed  Google Scholar 

  21. Sandiford P, Mosquera D, Bramley D. Trends in incidence and mortality from abdominal aortic aneurysm in New Zealand. Br J Surg. 2011;98:645–51. https://doi.org/10.1002/bjs.7461.

    Article  CAS  PubMed  Google Scholar 

  22. Choke E, Vijaynagar B, Thompson J, Nasim A, Bown MJ, Sayers RD. Changing epidemiology of abdominal aortic aneurysms in England and Wales: older and more benign? Circulation. 2012;125:1617–25. https://doi.org/10.1161/circulationaha.111.077503.

    Article  PubMed  Google Scholar 

  23. Lederle FA. The rise and fall of abdominal aortic aneurysm. Circulation. 2011;124:1097–9. https://doi.org/10.1161/circulationaha.111.052365.

    Article  PubMed  Google Scholar 

  24. Fleming C, Whitlock EP, Beil TL, Lederle FA. Screening for abdominal aortic aneurysm: a best-evidence systematic review for the U.S. Preventive Services Task Force. Ann Intern Med. 2005;142:203–11.

    Article  Google Scholar 

  25. Cosford PA, Leng GC, Thomas J. Screening for abdominal aortic aneurysm. Cochrane Database of Systematic Reviews. 2007:CD002945.

    Google Scholar 

  26. Guirguis-Blake JM, Beil TL, Senger CA, Whitlock EP. Ultrasonography screening for abdominal aortic aneurysms: a systematic evidence review for the U.S. Preventive Services Task Force. Ann Intern Med. 2014;160:321–9. https://doi.org/10.7326/m13-1844.

    Article  PubMed  Google Scholar 

  27. Johansson M, Zahl PH, Siersma V, Jorgensen KJ, Marklund B, Brodersen J. Benefits and harms of screening men for abdominal aortic aneurysm in Sweden: a registry-based cohort study. Lancet. 2018;391:2441–7. https://doi.org/10.1016/s0140-6736(18)31031-6.

    Article  PubMed  Google Scholar 

  28. McCaul KA, Lawrence-Brown M, Dickinson JA, Norman PE. Long-term outcomes of the Western Australian trial of screening for abdominal aortic aneurysms: secondary analysis of a randomized clinical trial. JAMA Intern Med. 2016;176:1761–7. https://doi.org/10.1001/jamainternmed.2016.6633.

    Article  PubMed  Google Scholar 

  29. Lawrenson R. Screening for aortic abdominal aneurysm in New Zealand. N Z Med J. 2012;125:7–9.

    PubMed  Google Scholar 

  30. Sandiford P, Mosquera D, Bramley D. Ethnic inequalities in incidence, survival and mortality from abdominal aortic aneurysm in New Zealand. J Epidemiol Community Health. 2012;66:1097–103. https://doi.org/10.1136/jech-2011-200754.

    Article  PubMed  Google Scholar 

  31. Golledge J, Muller J, Daugherty A, Norman P. Abdominal aortic aneurysm: pathogenesis and implications for management. Arterioscler Thromb Vasc Biol. 2006;26:2605–13. https://doi.org/10.1161/01.ATV.0000245819.32762.cb.

    Article  CAS  PubMed  Google Scholar 

  32. Jones GT, Tromp G, Kuivaniemi H, Gretarsdottir S, Baas AF, Giusti B, et al. Meta-analysis of genome-wide association studies for abdominal aortic aneurysm identifies four new disease-specific risk loci. Circ Res. 2017;120:341–53. https://doi.org/10.1161/circresaha.116.308765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Krishna SM, Dear AE, Norman PE, Golledge J. Genetic and epigenetic mechanisms and their possible role in abdominal aortic aneurysm. Atherosclerosis. 2010;212:16–29. https://doi.org/10.1016/j.atherosclerosis.2010.02.008.

    Article  CAS  PubMed  Google Scholar 

  34. Trollope A, Moxon JV, Moran CS, Golledge J. Animal models of abdominal aortic aneurysm and their role in furthering management of human disease. Cardiovasc Pathol. 2011;20:114–23. https://doi.org/10.1016/j.carpath.2010.01.001.

    Article  PubMed  Google Scholar 

  35. Lysgaard Poulsen J, Stubbe J, Lindholt JS. Animal models used to explore abdominal aortic aneurysms: a systematic review. Eur J Vasc Endovasc Surg. 2016;52:487–99. https://doi.org/10.1016/j.ejvs.2016.07.004.

    Article  CAS  PubMed  Google Scholar 

  36. Patelis N, Moris D, Schizas D, Damaskos C, Perrea D, Bakoyiannis C, et al. Animal models in the research of abdominal aortic aneurysms development. Physiol Res. 2017;66:899–915.

    Article  CAS  Google Scholar 

  37. Golledge J. Abdominal aortic aneurysm: update on the pathogenesis and medical management. Nat Rev Cardiol. 2019;16:225–42. https://doi.org/10.1038/s41569-018-0114-9.

    Article  PubMed  Google Scholar 

  38. Moran CS, Rush CM, Dougan T, Jose RJ, Biros E, Norman PE, et al. Modulation of kinin B2 receptor signaling controls aortic dilatation and rupture in the angiotensin II-infused apolipoprotein E-deficient mouse. Arterioscler Thromb Vasc Biol. 2016;36:898–907. https://doi.org/10.1161/atvbaha.115.306945.

    Article  CAS  PubMed  Google Scholar 

  39. Moxon JV, Liu D, Moran CS, Crossman DJ, Krishna SM, Yonglitthipagon P, et al. Proteomic and genomic analyses suggest the association of apolipoprotein C1 with abdominal aortic aneurysm. Proteomics Clin Appl. 2014;8:762–72. https://doi.org/10.1002/prca.201300119.

    Article  CAS  PubMed  Google Scholar 

  40. Rush C, Nyara M, Moxon JV, Trollope A, Cullen B, Golledge J. Whole genome expression analysis within the angiotensin II-apolipoprotein E deficient mouse model of abdominal aortic aneurysm. BMC Genomics. 2009;10:298. https://doi.org/10.1186/1471-2164-10-298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lenk GM, Tromp G, Weinsheimer S, Gatalica Z, Berguer R, Kuivaniemi H. Whole genome expression profiling reveals a significant role for immune function in human abdominal aortic aneurysms. BMC Genomics. 2007;8:237. https://doi.org/10.1186/1471-2164-8-237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Biros E, Gabel G, Moran CS, Schreurs C, Lindeman JH, Walker PJ, et al. Differential gene expression in human abdominal aortic aneurysm and aortic occlusive disease. Oncotarget. 2015;6:12984–96. https://doi.org/10.18632/oncotarget.3848.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Raffort J, Lareyre F, Clement M, Hassen-Khodja R, Chinetti G, Mallat Z. Diabetes and aortic aneurysm: current state of the art. Cardiovasc Res. 2018;114(13):1702–13. https://doi.org/10.1093/cvr/cvy174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sweeting MJ, Thompson SG, Brown LC, Powell JT. Meta-analysis of individual patient data to examine factors affecting growth and rupture of small abdominal aortic aneurysms. Br J Surg. 2012;99:655–65. https://doi.org/10.1002/bjs.8707.

    Article  CAS  PubMed  Google Scholar 

  45. Golledge J, Norman PE. Atherosclerosis and abdominal aortic aneurysm: cause, response, or common risk factors? Arterioscler Thromb Vasc Biol. 2010;30:1075–7. https://doi.org/10.1161/atvbaha.110.206573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Toghill BJ, Saratzis A, Bown MJ. Abdominal aortic aneurysm-an independent disease to atherosclerosis? Cardiovasc Pathol. 2017;27:71–5. https://doi.org/10.1016/j.carpath.2017.01.008.

    Article  PubMed  Google Scholar 

  47. Takagi H, Umemoto T. Association of peripheral artery disease with abdominal aortic aneurysm growth. J Vasc Surg. 2016;64:506–13. https://doi.org/10.1016/j.jvs.2016.01.059.

    Article  PubMed  Google Scholar 

  48. Takagi H, Umemoto T. Associations of coronary and peripheral artery disease with presence, expansion, and rupture of abdominal aortic aneurysm—a grin without a cat! Vasa. 2017;46:151–8. https://doi.org/10.1024/0301-1526/a000606.

    Article  PubMed  Google Scholar 

  49. Matthews EO, Rowbotham SE, Moxon JV, Jones RE, Vega de Ceniga M, Golledge J. Meta-analysis of the association between peripheral artery disease and growth of abdominal aortic aneurysms. Br J Surg. 2017;104:1765–74. https://doi.org/10.1002/bjs.10675.

    Article  CAS  PubMed  Google Scholar 

  50. Dua MM, Dalman RL. Hemodynamic influences on abdominal aortic aneurysm disease: application of biomechanics to aneurysm pathophysiology. Vasc Pharmacol. 2010;53:11–21. https://doi.org/10.1016/j.vph.2010.03.004.

    Article  CAS  Google Scholar 

  51. Brady AR, Thompson SG, Fowkes FG, Greenhalgh RM, Powell JT. Abdominal aortic aneurysm expansion: risk factors and time intervals for surveillance. Circulation. 2004;110:16–21. https://doi.org/10.1161/01.Cir.0000133279.07468.9f.

    Article  PubMed  Google Scholar 

  52. Takagi H, Umemoto T. Coronary artery disease and abdominal aortic aneurysm growth. Vasc Med. 2016;21:199–208. https://doi.org/10.1177/1358863x15624026.

    Article  PubMed  Google Scholar 

  53. Rahman MN, Khan JA, Mazari FA, Mockford K, McCollum PT, Chetter IC. A randomized placebo controlled trial of the effect of preoperative statin use on matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in areas of low and peak wall stress in patients undergoing elective open repair of abdominal aortic aneurysm. Ann Vasc Surg. 2011;25:32–8. https://doi.org/10.1016/j.avsg.2010.06.006.

    Article  PubMed  Google Scholar 

  54. Moxon JV, Padula MP, Clancy P, Emeto TI, Herbert BR, Norman PE, et al. Proteomic analysis of intra-arterial thrombus secretions reveals a negative association of clusterin and thrombospondin-1 with abdominal aortic aneurysm. Atherosclerosis. 2011;219:432–9. https://doi.org/10.1016/j.atherosclerosis.2011.08.013.

    Article  CAS  PubMed  Google Scholar 

  55. Martinez-Pinna R, Madrigal-Matute J, Tarin C, Burillo E, Esteban-Salan M, Pastor-Vargas C, et al. Proteomic analysis of intraluminal thrombus highlights complement activation in human abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2013;33:2013–20. https://doi.org/10.1161/atvbaha.112.301191.

    Article  CAS  PubMed  Google Scholar 

  56. Owens AP 3rd, Edwards TL, Antoniak S, Geddings JE, Jahangir E, Wei WQ, et al. Platelet inhibitors reduce rupture in a mouse model of established abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol. 2015;35:2032–41. https://doi.org/10.1161/atvbaha.115.305537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Umebayashi R, Uchida HA, Kakio Y, Subramanian V, Daugherty A, Wada J. Cilostazol attenuates angiotensin II-induced abdominal aortic aneurysms but not atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2018;38:903–12. https://doi.org/10.1161/atvbaha.117.309707.

    Article  CAS  PubMed  Google Scholar 

  58. Moran CS, Seto SW, Krishna SM, Sharma S, Jose RJ, Biros E, et al. Parenteral administration of factor Xa/IIa inhibitors limits experimental aortic aneurysm and atherosclerosis. Sci Rep. 2017;7:43079. https://doi.org/10.1038/srep43079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lu G, Su G, Davis JP, Schaheen B, Downs E, Roy RJ, et al. A novel chronic advanced stage abdominal aortic aneurysm murine model. J Vasc Surg. 2017;66:232–42. https://doi.org/10.1016/j.jvs.2016.07.105.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hellenthal FA, Buurman WA, Wodzig WK, Schurink GW. Biomarkers of AAA progression. Part 1: extracellular matrix degeneration. Nat Rev Cardiol. 2009;6:464–74. https://doi.org/10.1038/nrcardio.2009.80.

    Article  CAS  PubMed  Google Scholar 

  61. Hellenthal FA, Buurman WA, Wodzig WK, Schurink GW. Biomarkers of abdominal aortic aneurysm progression. Part 2: inflammation. Nat Rev Cardiol. 2009;6:543–52. https://doi.org/10.1038/nrcardio.2009.102.

    Article  CAS  PubMed  Google Scholar 

  62. Golledge J, Tsao PS, Dalman RL, Norman PE. Circulating markers of abdominal aortic aneurysm presence and progression. Circulation. 2008;118:2382–92. https://doi.org/10.1161/circulationaha.108.802074.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wanhainen A, Mani K, Golledge J. Surrogate markers of abdominal aortic aneurysm progression. Arterioscler Thromb Vasc Biol. 2016;36:236–44. https://doi.org/10.1161/atvbaha.115.306538.

    Article  CAS  PubMed  Google Scholar 

  64. Sidloff DA, Stather PW, Choke E, Bown MJ, Sayers RD. A systematic review and meta-analysis of the association between markers of hemostasis and abdominal aortic aneurysm presence and size. J Vasc Surg. 2014;59:528–35. https://doi.org/10.1016/j.jvs.2013.10.088.

    Article  PubMed  Google Scholar 

  65. Moxon JV, Liu D, Wong G, Weir JM, Behl-Gilhotra R, Bradshaw B, et al. Comparison of the serum lipidome in patients with abdominal aortic aneurysm and peripheral artery disease. Circ Cardiovasc Genet. 2014;7:71–9. https://doi.org/10.1161/circgenetics.113.000343.

    Article  CAS  PubMed  Google Scholar 

  66. Golledge J, Kuivaniemi H. Genetics of abdominal aortic aneurysm. Curr Opin Cardiol. 2013;28:290–6. https://doi.org/10.1097/HCO.0b013e32835f0d55.

    Article  PubMed  Google Scholar 

  67. Nicorescu I, Dallinga GM, de Winther MPJ, Stroes ESG, Bahjat M. Potential epigenetic therapeutics for atherosclerosis treatment. Atherosclerosis. 2019;281:189–97. https://doi.org/10.1016/j.atherosclerosis.2018.10.006.

    Article  CAS  PubMed  Google Scholar 

  68. Khosla S, Morris DR, Moxon JV, Walker PJ, Gasser TC, Golledge J. Meta-analysis of peak wall stress in ruptured, symptomatic and intact abdominal aortic aneurysms. Br J Surg. 2014;101:1350–7. https://doi.org/10.1002/bjs.9578.

    Article  CAS  PubMed  Google Scholar 

  69. Parkinson F, Ferguson S, Lewis P, Williams IM, Twine CP. Rupture rates of untreated large abdominal aortic aneurysms in patients unfit for elective repair. J Vasc Surg. 2015;61:1606–12. https://doi.org/10.1016/j.jvs.2014.10.023.

    Article  PubMed  Google Scholar 

  70. Lindquist Liljeqvist M, Hultgren R, Siika A, Gasser TC, Roy J. Gender, smoking, body size, and aneurysm geometry influence the biomechanical rupture risk of abdominal aortic aneurysms as estimated by finite element analysis. J Vasc Surg. 2017;65:1014–21.e4. https://doi.org/10.1016/j.jvs.2016.10.074.

    Article  PubMed  Google Scholar 

  71. Drewe CJ, Parker LP, Kelsey LJ, Norman PE, Powell JT, Doyle BJ. Haemodynamics and stresses in abdominal aortic aneurysms: a fluid-structure interaction study into the effect of proximal neck and iliac bifurcation angle. J Biomech. 2017;60:150–6. https://doi.org/10.1016/j.jbiomech.2017.06.029.

    Article  PubMed  Google Scholar 

  72. McGloughlin TM, Doyle BJ. New approaches to abdominal aortic aneurysm rupture risk assessment: engineering insights with clinical gain. Arterioscler Thromb Vasc Biol. 2010;30:1687–94. https://doi.org/10.1161/atvbaha.110.204529.

    Article  CAS  PubMed  Google Scholar 

  73. Conlisk N, Geers AJ, McBride OM, Newby DE, Hoskins PR. Patient-specific modelling of abdominal aortic aneurysms: the influence of wall thickness on predicted clinical outcomes. Med Eng Phys. 2016;38:526–37. https://doi.org/10.1016/j.medengphy.2016.03.003.

    Article  PubMed  Google Scholar 

  74. Fashandi AZ, Hawkins RB, Salmon MD, Spinosa MD, Montgomery WG, Cullen JM, et al. A novel reproducible model of aortic aneurysm rupture. Surgery. 2018;163:397–403. https://doi.org/10.1016/j.surg.2017.10.003.

    Article  PubMed  Google Scholar 

  75. Wang XL, Thompson MM, Dole WP, Dalman RL, Zalewski A. Standardization of outcome measures in clinical trials of pharmacological treatment for abdominal aortic aneurysm. Expert Rev Cardiovasc Ther. 2012;10:1251–60. https://doi.org/10.1586/erc.12.128.

    Article  CAS  PubMed  Google Scholar 

  76. Rughani G, Robertson L, Clarke M. Medical treatment for small abdominal aortic aneurysms. Cochrane Database Syst Rev. 2012:Cd009536. https://doi.org/10.1002/14651858.CD009536.pub2.

  77. Ricci MA, Slaiby JM, Gadowski GR, Hendley ED, Nichols P, Pilcher DB. Effects of hypertension and propranolol upon aneurysm expansion in the Anidjar/Dobrin aneurysm model. Ann N Y Acad Sci. 1996;800:89–96.

    Article  CAS  Google Scholar 

  78. Simpson CF, Kling JM, Palmer RF. Beta-aminopropionitrile-induced dissecting aneurysms of turkeys: treatment with propranolol. Toxicol Appl Pharmacol. 1970;16:143–53.

    Article  CAS  Google Scholar 

  79. Slaiby JM, Ricci MA, Gadowski GR, Hendley ED, Pilcher DB. Expansion of aortic aneurysms is reduced by propranolol in a hypertensive rat model. J Vasc Surg. 1994;20:178–83.

    Article  CAS  Google Scholar 

  80. Boucek RJ, Gunja-Smith Z, Noble NL, Simpson CF. Modulation by propranolol of the lysyl cross-links in aortic elastin and collagen of the aneurysm-prone turkey. Biochem Pharmacol. 1983;32:275–80.

    Article  CAS  Google Scholar 

  81. Leach SD, Toole AL, Stern H, DeNatale RW, Tilson MD. Effect of beta-adrenergic blockade on the growth rate of abdominal aortic aneurysms. Arch Surg. 1988;123:606–9.

    Article  CAS  Google Scholar 

  82. Propanolol Aneurysm Trial Investigators. Propranolol for small abdominal aortic aneurysms: results of a randomized trial. J Vasc Surg. 2002;35:72–9.

    Article  Google Scholar 

  83. Lindholt JS, Henneberg EW, Juul S, Fasting H. Impaired results of a randomised double blinded clinical trial of propranolol versus placebo on the expansion rate of small abdominal aortic aneurysms. Int Angiol. 1999;18:52–7.

    CAS  PubMed  Google Scholar 

  84. Wilmink ABM, Hubbard CSFF, Day NE, Quick CRG. Effect of propanolol on hte expansion of abdominal aortic aneurysms: a randomised study. Br J Surg. 2000;87:490–516.

    Article  Google Scholar 

  85. Golledge J, Norman PE. Current status of medical management for abdominal aortic aneurysm. Atherosclerosis. 2011;217:57–63. https://doi.org/10.1016/j.atherosclerosis.2011.03.006.

    Article  CAS  PubMed  Google Scholar 

  86. Malekzadeh S, Fraga-Silva RA, Trachet B, Montecucco F, Mach F, Stergiopulos N. Role of the renin-angiotensin system on abdominal aortic aneurysms. Eur J Clin Investig. 2013;43:1328–38. https://doi.org/10.1111/eci.12173.

    Article  CAS  Google Scholar 

  87. Bicknell CD, Kiru G, Falaschetti E, Powell JT, Poulter NR. An evaluation of the effect of an angiotensin-converting enzyme inhibitor on the growth rate of small abdominal aortic aneurysms: a randomized placebo-controlled trial (AARDVARK). Eur Heart J. 2016;37:3213–21. https://doi.org/10.1093/eurheartj/ehw257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Baxter BT, Terrin MC, Dalman RL. Medical management of small abdominal aortic aneurysms. Circulation. 2008;117:1883–9. https://doi.org/10.1161/circulationaha.107.735274.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Manning MW, Cassis LA, Daugherty A. Differential effects of doxycycline, a broad-spectrum matrix metalloproteinase inhibitor, on angiotensin II-induced atherosclerosis and abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2003;23:483–8. https://doi.org/10.1161/01.Atv.0000058404.92759.32.

    Article  CAS  PubMed  Google Scholar 

  90. Bartoli MA, Parodi FE, Chu J, Pagano MB, Mao D, Baxter BT, et al. Localized administration of doxycycline suppresses aortic dilatation in an experimental mouse model of abdominal aortic aneurysm. Ann Vasc Surg. 2006;20:228–36. https://doi.org/10.1007/s10016-006-9017-z.

    Article  PubMed  Google Scholar 

  91. Lindeman JH, Abdul-Hussien H, van Bockel JH, Wolterbeek R, Kleemann R. Clinical trial of doxycycline for matrix metalloproteinase-9 inhibition in patients with an abdominal aneurysm: doxycycline selectively depletes aortic wall neutrophils and cytotoxic T cells. Circulation. 2009;119:2209–16. https://doi.org/10.1161/circulationaha.108.806505.

    Article  CAS  PubMed  Google Scholar 

  92. Mosorin M, Juvonen J, Biancari F, Satta J, Surcel HM, Leinonen M, et al. Use of doxycycline to decrease the growth rate of abdominal aortic aneurysms: a randomized, double-blind, placebo-controlled pilot study. J Vasc Surg. 2001;34:606–10. https://doi.org/10.1067/mva.2001.117891.

    Article  CAS  PubMed  Google Scholar 

  93. Baxter BT, Pearce WH, Waltke EA, Littooy FN, Hallett JW Jr, Kent KC, et al. Prolonged administration of doxycycline in patients with small asymptomatic abdominal aortic aneurysms: report of a prospective (Phase II) multicenter study. J Vasc Surg. 2002;36:1–12.

    Article  Google Scholar 

  94. Meijer CA, Stijnen T, Wasser MN, Hamming JF, van Bockel JH, Lindeman JH. Doxycycline for stabilization of abdominal aortic aneurysms: a randomized trial. Ann Intern Med. 2013;159:815–23. https://doi.org/10.7326/0003-4819-159-12-201312170-00007.

    Article  PubMed  Google Scholar 

  95. Tsuruda T, Kato J, Hatakeyama K, Kojima K, Yano M, Yano Y, et al. Adventitial mast cells contribute to pathogenesis in the progression of abdominal aortic aneurysm. Circ Res. 2008;102:1368–77. https://doi.org/10.1161/circresaha.108.173682.

    Article  CAS  PubMed  Google Scholar 

  96. Sun J, Zhang J, Lindholt JS, Sukhova GK, Liu J, He A, et al. Critical role of mast cell chymase in mouse abdominal aortic aneurysm formation. Circulation. 2009;120:973–82. https://doi.org/10.1161/circulationaha.109.849679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sillesen H, Eldrup N, Hultgren R, Lindeman J, Bredahl K, Thompson M, et al. Randomized clinical trial of mast cell inhibition in patients with a medium-sized abdominal aortic aneurysm. Br J Surg. 2015;102:894–901. https://doi.org/10.1002/bjs.9824.

    Article  CAS  PubMed  Google Scholar 

  98. Krishna SM, Seto SW, Moxon JV, Rush C, Walker PJ, Norman PE, et al. Fenofibrate increases high-density lipoprotein and sphingosine 1 phosphate concentrations limiting abdominal aortic aneurysm progression in a mouse model. Am J Pathol. 2012;181:706–18. https://doi.org/10.1016/j.ajpath.2012.04.015.

    Article  CAS  PubMed  Google Scholar 

  99. Golledge J, Cullen B, Rush C, Moran CS, Secomb E, Wood F, et al. Peroxisome proliferator-activated receptor ligands reduce aortic dilatation in a mouse model of aortic aneurysm. Atherosclerosis. 2010;210:51–6. https://doi.org/10.1016/j.atherosclerosis.2009.10.027.

    Article  CAS  PubMed  Google Scholar 

  100. Pinchbeck JL, Moxon JV, Rowbotham SE, Bourke M, Lazzaroni S, Morton SK, et al. Randomized placebo-controlled trial assessing the effect of 24-week fenofibrate therapy on circulating markers of abdominal aortic aneurysm: outcomes from the FAME2 trial. J Am Heart Assoc. 2018;7:e009866. https://doi.org/10.1161/JAHA.118.009866.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Rowbotham SE, Bourke B, Bourke M, Jaeggi R, Jenkins J, Moxon JV, et al. Fenofibrate in the management of AbdoMinal aortic aneurysm (FAME)-2: the study protocol for a randomized, placebo-controlled trial. Int J Clin Trials. 2016;3:217–24.

    Article  Google Scholar 

  102. Rowbotham SE, Cavaye D, Jaeggi R, Jenkins JS, Moran CS, Moxon JV, et al. Fenofibrate in the management of AbdoMinal aortic anEurysm (FAME): study protocol for a randomised controlled trial. Trials. 2017;18:1. https://doi.org/10.1186/s13063-016-1752-z.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Salata K, Syed M, Hussain MA, de Mestral C, Greco E, Mamdani M, et al. Statins reduces abdominal aortic aneurysm growth, rupture and perioperative mortality: a systematic review and meta-analysis. J Am Heart Assoc. 2018;7:e008657. https://doi.org/10.1161/JAHA.118.008657.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Moll FL, Powell JT, Fraedrich G, Verzini F, Haulon S, Waltham M, et al. Management of abdominal aortic aneurysms clinical practice guidelines of the European society for vascular surgery. Eur J Vasc Endovasc Surg. 2011;41(Suppl 1):S1–s58. https://doi.org/10.1016/j.ejvs.2010.09.011.

    Article  PubMed  Google Scholar 

  105. Baxter BT, Matsumura J, Curci J, McBride R, Blackwelder WC, Liu X, et al. Non-invasive treatment of abdominal aortic aneurysm clinical trial (N-TA(3)CT): design of a phase IIb, placebo-controlled, double-blind, randomized clinical trial of doxycycline for the reduction of growth of small abdominal aortic aneurysm. Contemp Clin Trials. 2016;48:91–8. https://doi.org/10.1016/j.cct.2016.03.008.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Dattani N, Sayers RD, Bown MJ. Diabetes mellitus and abdominal aortic aneurysms: a review of the mechanisms underlying the negative relationship. Diab Vasc Dis Res. 2018;15:367–74. https://doi.org/10.1177/1479164118780799.

    Article  PubMed  Google Scholar 

  107. Hsu CY, Su YW, Chen YT, Tsai SH, Chang CC, Li SY, et al. Association between use of oral-antidiabetic drugs and the risk of aortic aneurysm: a nested case-control analysis. Cardiovasc Diabetol. 2016;15:125. https://doi.org/10.1186/s12933-016-0447-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Itoga NK, Rothenberg KA, Suarez P, Ho TV, Mell MW, Xu B, et al. Metformin prescription status and abdominal aortic aneurysm disease progression in the U.S. veteran population. J Vasc Surg. 2019;69(3):710–716.e3. https://doi.org/10.1016/j.jvs.2018.06.194.

    Article  PubMed  Google Scholar 

  109. Golledge J, Morris DR, Pinchbeck J, Rowbotham S, Jenkins J, Bourke M, et al. Metformin prescription is associated with a reduction in the combined incidence of surgical repair and rupture related mortality in patients with abdominal aortic aneurysm. Eur J Vasc Endovasc Surg. 2019;57(1):94–101. https://doi.org/10.1016/j.ejvs.2018.07.035.

    Article  PubMed  Google Scholar 

  110. Golledge J, Moxon J, Pinchbeck J, Anderson G, Rowbotham S, Jenkins J, et al. Association between metformin prescription and growth rates of abdominal aortic aneurysms. Br J Surg. 2017;104:1486–93. https://doi.org/10.1002/bjs.10587.

    Article  CAS  PubMed  Google Scholar 

  111. Fujimura N, Xiong J, Kettler EB, Xuan H, Glover KJ, Mell MW, et al. Metformin treatment status and abdominal aortic aneurysm disease progression. J Vasc Surg. 2016;64:46–54.e8. https://doi.org/10.1016/j.jvs.2016.02.020.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Yang L, Shen L, Gao P, Li G, He Y, Wang M, et al. Effect of AMPK signal pathway on pathogenesis of abdominal aortic aneurysms. Oncotarget. 2017;8:92827–40. https://doi.org/10.18632/oncotarget.21608.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Hinchliffe RJ. Metformin and abdominal aortic aneurysm. Eur J Vasc Endovasc Surg. 2017;54:679–80. https://doi.org/10.1016/j.ejvs.2017.08.016.

    Article  PubMed  Google Scholar 

  114. Ford MD, Black AT, Cao RY, Funk CD, Piomelli U. Hemodynamics of the mouse abdominal aortic aneurysm. J Biomech Eng. 2011;133:121008. https://doi.org/10.1115/1.4005477.

    Article  PubMed  Google Scholar 

  115. Phillips EH, Di Achille P, Bersi MR, Humphrey JD, Goergen CJ. Multi-modality imaging enables detailed hemodynamic simulations in dissecting aneurysms in mice. IEEE Trans Med Imaging. 2017;36:1297–305. https://doi.org/10.1109/tmi.2017.2664799.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8:e1000412. https://doi.org/10.1371/journal.pbio.1000412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Morris DR, Cunningham MA, Ahimastos AA, Kingwell BA, Pappas E, Bourke M, et al. TElmisartan in the management of abDominal aortic aneurYsm (TEDY): The study protocol for a randomized controlled trial. Trials. 2015;16:274.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Golledge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moxon, J.V., Krishna, S.M., Singh, T.P., Golledge, J. (2020). Abdominal Aortic Aneurysm Pathology and Progress Towards a Medical Therapy. In: Fitridge, R. (eds) Mechanisms of Vascular Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-43683-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43683-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43682-7

  • Online ISBN: 978-3-030-43683-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics