Skip to main content

Hypercoagulable States

  • Chapter
  • First Online:
Mechanisms of Vascular Disease
  • 1037 Accesses

Abstract

A significant proportion of patients with venous thrombosis have a definable underlying inherited or acquired predisposition to thrombosis known as a thrombophilia. Inherited thrombophilic conditions can be divided into type 1 conditions that involve a deficiency of naturally occurring inhibitors of coagulation (antithrombin, protein C and protein S), and type 2 conditions that result in a gain of function in a procoagulant protein (prothrombin gene and factor V Leiden mutations). Type 1 conditions are rarer and associated with a greater increase in the risk of thrombosis. While testing for an underlying thrombophilia may contribute to improved understanding of the causation of a thrombotic event in an individual patient, currently testing for an inherited thrombophilia rarely impacts on clinical decision making. Routine thrombophilia testing in unselected patients with venous or arterial thrombosis is not recommended. Thrombophilia testing in patients with provoked venous thrombosis should not be performed. Testing for thrombophilia, particularly type 1 conditions, may be considered in selected patients with unprovoked venous thrombosis. Patients in whom cessation of anticoagulation is being considered, or who have female first degree relative of reproductive age may be candidates for testing. Testing for acquired thrombophilic conditions such as antiphospholipid antibody syndrome, heparin induced thrombocytopenia, myeloproliferative disease, and paroxysmal nocturnal haemoglobinuria may change clinical management and should be considered in patients with suggestive clinical presentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nygaard KK, Brown GE. Essential thrombophilia: report of five cases. Arch Intern Med. 1937;59:82–106.

    Article  Google Scholar 

  2. Egeberg O. Inherited antithrombin deficiency causing thrombophilia. Thromb Diath Haemorrh. 1965;13:516–30.

    CAS  PubMed  Google Scholar 

  3. Lane DA, Mannucci PM, Bauer KA, et al. Inherited thrombophilia: part 1. Thromb Haemost. 1996;76:651–62.

    Article  CAS  PubMed  Google Scholar 

  4. Voorberg J, Roelse J, Koopman R, Buller HR, Berends F, ten Cate JW, et al. Association of idiopathic venous thromboembolism with single point-mutation at Arg506 of factor V. Lancet. 1994;343:1535–6.

    Article  CAS  PubMed  Google Scholar 

  5. Poort SR, Rosendaal FR, Reitsma PH, Bertina RM. A common genetic variation in the 30-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood. 1996;88:3698–703.

    Article  CAS  PubMed  Google Scholar 

  6. Middeldorp S, Levi M. Thrombophilia: an update. Semin Thromb Hemost. 2007;33:563–72.

    Article  CAS  PubMed  Google Scholar 

  7. Coppens M, van Mourik JA, Eckmann CM, Buller HR. Mid-deldorp S Current practice of testing for hereditary thrombophilia in The Netherlands. J Thromb Haemost. 2007;5:1979–81.

    Article  CAS  PubMed  Google Scholar 

  8. Middeldorp S, van Hylckama Vlieg A. Does thrombophilia testing help in the clinical management of patients? Brit J Haematol. 2008;143:321–35.

    Article  Google Scholar 

  9. Baglin T, Gray E, Greaves M, Hunt BJ, Keeling D, Machin S, Mackie I, Makris M, Nokes T, Perry D, Tait RC, Walker I, Watson H, British Committee for Standards in Haematology. Clinical guidelines for testing for heritable thrombophilia. Br J Haematol. 2010;149:209–20.

    Article  PubMed  Google Scholar 

  10. Connors JM. Thrombophilia testing and venous thrombosis. N Engl J Med. 2017;377:1177–87.

    Article  PubMed  Google Scholar 

  11. Hicks LK, Bering H, Carson KR, Kleinerman J, Kukreti V, Ma A, et al. The ASH choosing wisely® campaign: five hematologic tests and treatments to question. Blood. 2013;122:3879–83.

    Article  CAS  PubMed  Google Scholar 

  12. Crowther MA, Kelton JA. Congenital thrombophilic states associated with venous thrombosis: a qualitative overview and proposed classification system. Ann Intern Med. 2003;138:128–34.

    Article  PubMed  Google Scholar 

  13. Lijfering WM, Brouwer JL, Veeger NJ, Bank I, Coppens M, Middeldorp S, Hamulyák K, Prins MH, Büller HR, van der Meer J. Selective testing for thrombophilia in patients with first venous thrombosis: results from a retrospective family cohort study on absolute thrombotic risk for currently known thrombophilic defects in 2479 relatives. Blood. 2009;113:5314–20.

    Article  CAS  PubMed  Google Scholar 

  14. Segal JB, Brotman DJ, Necochea AJ, Emadi A, Samal L, Wilson LM, Crim MT, Bass EB. Predictive value of factor V Leiden and prothrombin G20210A in adults with venous thromboembolism and in family members of those with a mutation: a systematic review. JAMA. 2009;301:2472–85.

    Article  CAS  PubMed  Google Scholar 

  15. Tait RC, Walker ID, Perry DJ, et al. Prevalence of antithrombin deficiency in the healthy population. Br J Haematol. 1994;87:106–12.

    Article  CAS  PubMed  Google Scholar 

  16. Heijboer H, Brandjes DP, Buller HR, et al. Deficiencies of coagulation-inhibiting and fibrinolytic proteins in outpatients with deep-vein thrombosis. N Engl J Med. 1990;323:1512–6.

    Article  CAS  PubMed  Google Scholar 

  17. Croles FN, Borjas-Howard J, Nasserinejad K, Leebeek FWG, Meijer K. Risk of venous thrombosis in antithrombin deficiency. A systematic review and Bayesian meta-analysis. Semin Thromb Hemost. 2018;44:315–26.

    Article  CAS  PubMed  Google Scholar 

  18. Esmon CT. The protein C pathway. Chest. 2003;124:26S–32S.

    Article  CAS  PubMed  Google Scholar 

  19. Griffin JH, Evatt B, Zimmerman TS, et al. Deficiency of protein C in congenital thrombotic disease. J Clin Invest. 1981;68:1370–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Comp PC, Esmon CT. Recurrent venous thromboembolism in patients with a partial deficiency of protein S. N Engl J Med. 1984;311:1525–8.

    Article  CAS  PubMed  Google Scholar 

  21. Tait RC, Walker ID, Reitsma PH, et al. Prevalence of protein C deficiency in the healthy population. Thromb Haemost. 1995;73:87–93.

    Article  CAS  PubMed  Google Scholar 

  22. Beauchamp NJ, Dykes AC, Parikh N, Campbell Tait R, Daly ME. The prevalence of, and molecular defects underlying, inherited protein S deficiency in the general population. Br J Haematol. 2004;125:647–54.

    Article  CAS  PubMed  Google Scholar 

  23. Branson H, Marble R, Katz J, Griffin J. Inherited protein C deficiency and coumarin-responsive chronic relapsing purpura fulminans in a newborn infant. Lancet. 1983;322:1165–8.

    Article  Google Scholar 

  24. McGehee WG, Klotz TA, Epstein DJ, Rapaport SI. Coumarin necrosis associated with hereditary protein C deficiency. Ann Intern Med. 1984;101:59–60.

    Article  CAS  PubMed  Google Scholar 

  25. Dahlbäck B, Carlsson M, Svensson PJ. Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: prediction of a cofactor to activated protein C. Proc Natl Acad Sci U S A. 1993;90:1004–8.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ridker PM, Miletich JP, Hennekens CH, Buring JE. Ethnic distribution of factor V Leiden in 4047 men and women. Implications for venous thromboembolism screening. JAMA. 1997;277:1305–7.

    Article  CAS  PubMed  Google Scholar 

  27. Koster T, Rosendaal FR, de Ronde H, et al. Venous thrombosis due to poor anticoagulant response to activated protein C: Leiden Thrombophilia Study. Lancet. 1993;342:1503–6.

    Article  CAS  PubMed  Google Scholar 

  28. Rodeghiero F, Tosetto A. Activated protein C resistance and factor V Leiden mutation are independent risk factors for venous thromboembolism. Ann Intern Med. 1999;130:643–50.

    Article  CAS  PubMed  Google Scholar 

  29. Rosendaal FR, Koster T, Vandenbroucke JP, Reitsma PH. High risk of thrombosis in patients homozygous for factor V Leiden (activated protein C resistance). Blood. 1995;85:1504–8.

    Article  CAS  PubMed  Google Scholar 

  30. Gehring NH, Frede U, Neu-Yilik G, et al. Increased efficiency of mRNA 3′ end formation: a new genetic mechanism contributing to hereditary thrombophilia. Nat Genet. 2001;28:389–92.

    Article  CAS  PubMed  Google Scholar 

  31. Rosendaal FR, Doggen CJ, Zivelin A, et al. Geographic distribution of the 20210 G to A prothrombin variant. Thromb Haemost. 1998;79:706–8.

    Article  CAS  PubMed  Google Scholar 

  32. Emmerich J, Rosendaal FR, Cattaneo M, et al. Combined effect of factor V Leiden and prothrombin 20210A on the risk of venous thromboembolism-pooled analysis of 8 case-control studies including 2310 cases and 3204 controls. Study Group for Pooled-Analysis in Venous Thromboembolism. Thromb Haemost. 2001;86:809–16.

    Article  CAS  PubMed  Google Scholar 

  33. Verhoef P, Kok FJ, Kluijtmans LA, et al. The 677C->T mutation in the methylenetetrahydrofolate reductase gene: associations with plasma total homocysteine levels and risk of coronary atherosclerotic disease. Atherosclerosis. 1997;132:105–13.

    Article  CAS  PubMed  Google Scholar 

  34. den Heijer M, Lewington S, Clarke R. Homocysteine, MTHFR and risk of venous thrombosis: a meta-analysis of published epidemiological studies. J Thromb Haemost. 2005;3:292–9.

    Article  Google Scholar 

  35. Khandanpour N, Loke YK, Meyer FJ, Jennings B, Armon MP. Homocysteine and peripheral arterial disease: systematic review and meta-analysis. Eur J Vasc Endovasc Surg. 2009;38:316–22.

    Article  CAS  PubMed  Google Scholar 

  36. Kim RJ, Becker RC. Association between factor V Leiden, prothrombin G20210A, and methylenetetrahydrofolate reductase C677T mutations and events of the arterial circulatory system: a meta-analysis of published studies. Am Heart J. 2003;146:948–57.

    Article  CAS  PubMed  Google Scholar 

  37. Martí-Carvajal AJ, Solà I, Lathyris D, Dayer M. Homocysteine-lowering interventions (B-complex vitamin therapy) for preventing cardiovascular events. Cochrane Database Syst Rev. 2017;8:CD006612.

    PubMed  Google Scholar 

  38. Gohil R, Peck G, Sharma P. The genetics of venous thromboembolism. Thromb Haemost. 2009;102:360–7.

    Article  CAS  PubMed  Google Scholar 

  39. Ruiz-Irastorza G, Crowther M, Branch W, Khamashta MA. Antiphospholipid syndrome. Lancet. 2010;376:1498–509.

    Article  CAS  PubMed  Google Scholar 

  40. Favaloro EJ, Mohammed S, Curnow J, Pasalic L. Laboratory testing for lupus anticoagulant (LA) in patients taking direct oral anticoagulants (DOACs): potential for false positives and false negatives. Pathology. 2019;51:292–302.

    Article  CAS  PubMed  Google Scholar 

  41. Miyakis S, Lockshin MD, Atsumi T, Branch DW, Brey RL, Cervera R, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4:295–306.

    Article  CAS  PubMed  Google Scholar 

  42. Lim W. Antiphospholipid antibody syndrome. Hematology Am Soc Hematol Educ Program. 2013;2013:675–80.

    Article  PubMed  Google Scholar 

  43. Pengo V, Denas G, Zoppellaro G, Jose SP, Hoxha A, Ruffatti A, et al. Rivaroxaban vs warfarin in high-risk patients with antiphospholipid syndrome. Blood. 2018;132:1365–71.

    Article  CAS  PubMed  Google Scholar 

  44. Schulman S, Svenungsson E, Granqvist S. Anticardiolipin antibodies predict early recurrence of thromboembolism and death among patients with venous thromboembolism following anticoagulant therapy. Am J Med. 1998;104:332–8.

    Article  CAS  PubMed  Google Scholar 

  45. Amiral J, Bridey F, Vissoc AM, et al. Platelet factor 4 complexed to heparin is the target for antibodies generated in heparin-induced thrombocytopenia. Thromb Haemost. 1992;68:95–6.

    Article  CAS  PubMed  Google Scholar 

  46. Warkentin TE, Greinacher A, Koster A, Lincoff AM. Treatment and prevention of heparin-induced thrombocytopenia: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2008;1333:340–80.

    Article  CAS  Google Scholar 

  47. Cuker A, Arepally GM, Chong BH, Cines DB, Greinacher A, Gruel Y, et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: heparin-induced thrombocytopenia. Blood Adv. 2018;2:3360–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rungjirajittranon T, Owattanapanich W, Ungprasert P, Siritanaratkul N, Ruchutrakool T. A systematic review and meta-analysis of the prevalence of thrombosis and bleeding at diagnosis of Philadelphia-negative myeloproliferative neoplasms. BMC Cancer. 2019;19:184.

    Article  PubMed  PubMed Central  Google Scholar 

  49. McMullin MFF, Mead AJ, Ali S, Cargo C, Chen F, Ewing J, et al. British Society for Haematology Guideline. A guideline for the management of specific situations in polycythaemia vera and secondary erythrocytosis. Br J Haematol. 2019;184:161–75.

    Article  PubMed  Google Scholar 

  50. Ianotto JC, Couturier MA, Galinat H, Mottier D, Berthou C, Guillerm G, Lippert E, Delluc A. Administration of direct oral anticoagulants in patients with myeloproliferative neoplasms. Int J Hematol. 2017;106:517–21.

    Article  CAS  PubMed  Google Scholar 

  51. De Stefano V, Fiorini A, Rossi E, Za T, Farina G, Chiusolo P, et al. Incidence of the JAK2 V617F mutation among patients with splanchnic or cerebral venous thrombosis and without overt chronic myeloproliferative disorders. J Thromb Haemost. 2007;5:708–14.

    Article  PubMed  Google Scholar 

  52. Griffin M, Munir T. Management of thrombosis in paroxysmal nocturnal hemoglobinuria: a clinician’s guide. Ther Adv Hematol. 2017;8:119–26.

    Article  PubMed  Google Scholar 

  53. Prandoni P, Lensing AW, Cogo A, Cuppini S, Villalta S, Carta M, et al. The long-term clinical course of acute deep vein thrombosis. Ann Intern Med. 1996;125:1–7.

    Article  CAS  PubMed  Google Scholar 

  54. Iorio A, Kearon C, Filippucci E, et al. Risk of recurrence after a first episode of symptomatic venous thromboembolism provoked by a transient risk factor: a systematic review. Arch Intern Med. 2010;170:1710–6.

    PubMed  Google Scholar 

  55. Khan F, Rahman A, Carrier M, Kearon C, Weitz JI, Schulman S, Couturaud F, et al. Long-term risk of symptomatic recurrent venous thromboembolism after discontinuation of anticoagulant treatment for first unprovoked venous thromboembolism event: systematic review and meta-analysis. BMJ. 2019;366:14363.

    Google Scholar 

  56. Segal JB, Brotman DJ, Necochea AJ, Emadi A, Samal L, Wilson LM, et al. Predictive value of factor V Leiden and prothrombin G20210A in adults with venous thromboembolism and in family members of those with a mutation: a systematic review. JAMA. 2009;301:2472–8.

    Article  CAS  PubMed  Google Scholar 

  57. Lijfering WM, Brouwer JP, Veeger N, Bank I, Coppens M, Middeldorp S, et al. Selective testing for thrombophilia in patients with first venous thrombosis: results from a retrospective family cohort study on absolute thrombotic risk for currently known thrombophilic defects in 2479 relatives. Blood. 2009;113:5314–22.

    Article  CAS  PubMed  Google Scholar 

  58. van Vlijmen EFW, Wiewel-Verschueren S, Monster TBM, Meijer K. Combined oral contraceptives, thrombophilia and the risk of venous thromboembolism: a systematic review and meta-analysis. J Thromb Haemost. 2016;14:1393–403.

    Article  PubMed  Google Scholar 

  59. Croles FN, Duvekot JJ, Kruip M, Meijer K, Leebeek F. Pregnancy, thrombophilia, and the risk of a first venous thrombosis: systematic review and bayesian meta-analysis. BMJ. 2017;359:4452.

    Article  Google Scholar 

  60. Miller ER 3rd, Juraschek S, Pastor-Barriuso R, Bazzano LA, Appel LJ, Guallar E. Meta-analysis of folic acid supplementation trials on risk of cardiovascular disease and risk interaction with baseline homocysteine levels. Am J Cardiol. 2010;106:517–2.

    Article  PubMed  CAS  Google Scholar 

  61. Lussana F, Betti S, D’Angelo A, De Stefano V, Fedi S, Ferrazzi P, et al. Evaluation of the prevalence of severe hyperhomocysteinemia in adult patients with thrombosis who underwent screening for thrombophilia. Thromb Res. 2013;132:681–4.

    Article  CAS  PubMed  Google Scholar 

  62. Cohn DM, Vansenne F, Kaptein AA, de Borgie CA, Middeldorp S. The psychological impact of testing for thrombophilia: a systematic review. J Thromb Haemost. 2008;6:1099–104.

    Article  CAS  PubMed  Google Scholar 

  63. Kwon AJ, Roshal M, DeSancho MT. Clinical adherence to thrombophilia screening guidelines at a major tertiary care hospital. J Thromb Haemost. 2016;14:982–6.

    Article  CAS  PubMed  Google Scholar 

Further Reading

  • Baglin T, Gray E, Greaves M, Hunt BJ, Keeling D, Machin S, Mackie I, Makris M, Nokes T, Perry D, Tait RC, Walker I, Watson H, British Committee for Standards in Haematology. Clinical guidelines for testing for heritable thrombophilia. Br J Haematol. 2010;149(2):209–20.

    Article  PubMed  Google Scholar 

  • Crowther MA, Kelton JA. Congenital thrombophilic states associated with venous thrombosis: a qualitative overview and proposed classification system. Ann Intern Med. 2003;138:128–34.

    Article  PubMed  Google Scholar 

  • Hicks LK, Bering H, Carson KR, Kleinerman J, Kukreti V, Ma A, Mueller BU, O’Brien SH, Pasquini M, Sarode R, Solberg L Jr, Haynes AE, Crowther MA. The ASH Choosing Wisely® campaign: five hematologic tests and treatments to question. Blood. 2013;122(24):3879–83.

    Article  CAS  PubMed  Google Scholar 

  • Middeldorp S, van Hylckama Vlieg A. Does thrombophilia testing help in the clinical management of patients? Brit J Haem. 2008;143:321–35.

    Article  Google Scholar 

  • Pengo V, Denas G, Zoppellaro G, Jose SP, Hoxha A, Ruffatti A, Andreoli L, Tincani A, Cenci C, Prisco D, Fierro T, Gresele P, Cafolla A, De Micheli V, Ghirarduzzi A, Tosetto A, Falanga A, Martinell II, Testa S, Barcellona D, Gerosa M, Banzato A. Rivaroxaban vs warfarin in high-risk patients with antiphospholipid syndrome. Blood. 2018;132:1365–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon J. McRae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McRae, S.J. (2020). Hypercoagulable States. In: Fitridge, R. (eds) Mechanisms of Vascular Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-43683-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43683-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43682-7

  • Online ISBN: 978-3-030-43683-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics