Skip to main content

Role of Atomic and Molecular Non-observable Properties in the Understanding and Description of Real Observables of the Chemical Systems. A Review

  • Conference paper
  • First Online:
Computational Bioengineering and Bioinformatics (ICCB 2019)

Part of the book series: Learning and Analytics in Intelligent Systems ((LAIS,volume 11))

Included in the following conference series:

Abstract

Chemical species can be characterized by various observable features: mass, enthalpy of formation, charge (ions), dipole moment, magnetic susceptibility, electrical susceptibility, electromagnetic spectra, refraction index, polarizability, electron density distribution etc. But, on the other hand, the understanding of chemical an physical behavior is usually based on specific non-observable features - for example: electronegativity, partial atomic charges, nucleophilicity, atomic and molecular orbitals, aromaticity, hyperconjugation, … All non-observable features generally have no physical unit, and are not amenable to experimental measurements. For that reason the values ascribed to them are strongly dependent on the definition(s). For example, we know (and use) various electronegativity scales: Pauling’s, Mulliken’s, Alfred-Rochov’s [1, 2], Sanderson’s, Allen’s, and other. They are based on different theoretical assumptions, and produce (on many instances, significantly) different numerical values. On the other hand, all scales follow similar general trend, indicating that the values reflect some intrinsic chemical property.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allred, A.L., Rochow, E.G.: A scale of electronegativity based on electrostatic force. J. Inorg. Nucl. Chem. 5(4), 264–268 (1958). https://doi.org/10.1016/0022-1902(58)80003-2

    Article  Google Scholar 

  2. Ghosh, D.C., Chakraborty, T.: Gordy’s electrostatic scale of electronegativity revisited. J. Mol. Struct. (THOECHEM) 906, 87–93 (2009). https://doi.org/10.1016/j.theochem.2009.04.007

    Article  Google Scholar 

  3. Pauling, L.: The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. J. Am. Chem. Soc. 54, 3570–3582 (1932). https://doi.org/10.1021/ja01348a011

    Article  MATH  Google Scholar 

  4. Mulliken, R.S.: New electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J. Chem. Phys. 2, 782–793 (1934). https://doi.org/10.1063/1.1749394

    Article  Google Scholar 

  5. Hinze, J., Jaffé, H.H.: Electronegativity. I. Orbital electronegativity of neutral atoms. J. Am. Chem. Soc. 84, 540–546 (1962)

    Article  Google Scholar 

  6. Hinze, J., Whitehead, M.A., Jaffé, H.H.: Electronegativity. II. Bond and orbital electronegativities. J. Am. Chem. Soc. 85, 148–154 (1963)

    Article  Google Scholar 

  7. Hinze, J., Jaffé, H.H.: Electronegativity. III. Orbital electronegativities and electron affinities of transition metals. Can. J. Chem. 41, 1315–1328 (1963). https://doi.org/10.1139/v63-183

    Article  Google Scholar 

  8. Hinze, J., Jaffé, H.H.: Electronegativity. IV. Orbital electronegativities of the neutral atoms of the periods three A and four A and of positive ions of periods one and two. J. Phys. Chem. 67, 1501–1506 (1963). https://doi.org/10.1021/j100801a024

    Article  Google Scholar 

  9. Iczkowski, R.P., Margrave, J.L.: Electronegativity. J. Am. Chem. Soc. 83, 3547–3551 (1961). https://doi.org/10.1021/ja01478a001

    Article  Google Scholar 

  10. Coulson, C.A., Longuet-Higgins, H.C.: The electronic structure of conjugated systems. II. Unsaturated hydrocarbons and their hetero-derivatives. Proc. Roy. Soc. (London) A 192, 16–32 (1947). https://doi.org/10.1098/rspa1947.0136

    Article  MATH  Google Scholar 

  11. Mulliken, R.S.: Electronic population analysis on LCAO-MO molecular wave functions. I. J. Chem. Phys. 23(10), 1833–1840 (1955). https://doi.org/10.1063/1.1740588

    Article  Google Scholar 

  12. Mayer, I.: Charge, bond order and valence in the AB initio SCF theory. Chem. Phys. Lett. 97(3), 270–274 (1983). https://doi.org/10.1016/0009-2614(83)80005-0

    Article  Google Scholar 

  13. Mayer, I.: Charge, bond order and valence in the AB initio SCF theory. Chem. Phys. Lett. 117(4), 396 (1985). https://doi.org/10.1016/0009-2614(85)85253-2

    Article  Google Scholar 

  14. Juranić, I.: Molecular descriptors as proxies for the modeling of the materials and their environmental impact. Mater. Prot. 57(3), 359–369 (2016). https://doi.org/10.5937/ZasMat1603359J

    Article  Google Scholar 

  15. Oliferenko, A.A., Palyulin, V.A., Pisarev, S.A., Neiman, A.V., Zefirov, N.S.: Novel point charge models: reliable instruments for molecular electrostatic. J. Phys. Org. Chem. 14, 355–369 (2001). https://doi.org/10.1002/poc.378

    Article  Google Scholar 

  16. Abraham, R.J., Griffiths, L., Perez, M.: 1H NMR spectra. Part 30: 1H chemical shifts in amides and the magnetic anisotropy, electric field and steric effects of the amide group. Magn. Reson. Chem. 51(3), 143–155 (2013). https://doi.org/10.1002/mrc.3920

    Article  Google Scholar 

  17. Abraham, R.J., Bardsley, B., Mobli, M., Smith, R.J.: 1H chemical shifts in NMR. Part 21–prediction of the 1H chemical shifts of molecules containing the ester group: a modelling and ab initio investigation. Magn. Reson. Chem. 43(1), 3–15 (2004). https://doi.org/10.1002/mrc.1491

    Article  Google Scholar 

  18. Binev, Y., Aires-de-Sousa, J.: Structure-based predictions of 1H NMR chemical shifts using feed-forward neural networks. J. Chem. Inf. Comput. Sci. 44, 940–945 (2004). https://doi.org/10.1021/ci034228s

    Article  Google Scholar 

  19. Chis, V., Pîrnãu, A., Vasilescu, M., Varga, R.A., Oniga, O.: X-ray, 1H NMR and DFT study on 5-para-X-benzylidene-thiazolidine derivatives with X = Br, F. J. Mol. Struct. (THOECHEM) 851(1–3), 63–74 (2008). https://doi.org/10.1016/j.theochem.2007.10.041

    Article  Google Scholar 

  20. Pazderski, L., Toušek, J., Sitkowski, J., Kozerski, L., Szłyk, E.: Experimental and quantum-chemical studies of 1H, 13C and 15N NMR coordination shifts in Pd(II) and Pt(II) chloride complexes with quinoline, isoquinoline, and 2,2 -biquinoline. Magn. Reson. Chem. 45(12), 1059–1071 (2007). https://doi.org/10.1002/mrc.2105

    Article  Google Scholar 

  21. Shirts, R.B., Stolworthy, L.D.X.: Conformational sensitivity of polyether macrocycles to electrostatic potential: partial atomic charges, molecular mechanics, and conformational prediction. J. Inclusion Phenom. Mol. Recognit. Chem. 20(4), 297–321 (1994). https://doi.org/10.1007/bf00708876

    Article  Google Scholar 

  22. Wang, B., Truhlar, D.G.: Partial atomic charges and screened charge models of the electrostatic potential. J. Chem. Theory Comput. 8(6), 1989–1998 (2012). https://doi.org/10.1021/ct2009285

    Article  Google Scholar 

  23. Mehler, E.L., Solmajer, T.: Electrostatic effects in proteins: comparison of dielectric and charge models. Protein Eng. Des. Sel. 4(8), 903–910 (1991). https://doi.org/10.1093/protein/4.8.903

    Article  Google Scholar 

  24. Bertonati, C., Honig, B., Alexov, E.: Poisson-Boltzmann calculations of nonspecific salt effects on protein-protein binding free energies. Biophys. J. 92(6), 1891–1899 (2007). https://doi.org/10.1529/biophysj.106.092122

    Article  Google Scholar 

  25. Schröder, C.: Comparing reduced partial charge models with polarizable simulations of ionic liquids. Phys. Chem. Chem. Phys. 14(9), 3089 (2012). https://doi.org/10.1039/c2cp23329k

    Article  Google Scholar 

  26. Tsiper, E.V., Soos, Z.G.: Electronic polarization in pentacene crystals and thin films. Phys. Rev. B 68(8), 085201-10 (2003). https://doi.org/10.1103/physrevb.68.085301

    Article  Google Scholar 

  27. Tsiper, E.V., Soos, Z.G., Gao, W., Kahn, A.: Electronic polarization at surfaces and thin films of organic molecular crystals: PTCDA. Chem. Phys. Lett. 360(1–2), 47–52 (2002). https://doi.org/10.1016/s0009-2614(02)00774-1

    Article  Google Scholar 

  28. Anker, L.S., Jurs, P.C., Edwards, P.A.: Quantitative structure-retention relationship studies of odor-active aliphatic compounds with oxygen-containing functional groups. Anal. Chem. 62(24), 2676–2684 (1990). https://doi.org/10.1021/ac00223a006

    Article  Google Scholar 

  29. Stanton, D.T., Jurs, P.C.: Development and use of charged partial surface area structural descriptors in computer-assisted quantitative structure-property relationship studies. Anal. Chem. 62(21), 2323–2329 (1990). https://doi.org/10.1021/ac00220a013

    Article  Google Scholar 

  30. Katritzky, A.R., Mu, L., Lobanov, V.S.: Correlation of boiling points with molecular structure. 1. A training set of 298 diverse organics and a test set of 9 simple inorganics. J. Phys. Chem. 100, 10400–10407 (1996). https://doi.org/10.1021/jp953224q

    Article  Google Scholar 

  31. Ghatee, M.H., Zolghadr, A.R., Moosavi, F., Ansari, Y.: Studies of structural, dynamical, and interfacial properties of 1-alkyl-3-methylimidazolium iodide ionic liquids by molecular dynamics simulation. J. Chem. Phys. 136, 124706-14 (2012). https://doi.org/10.1063/1.3696004

    Article  Google Scholar 

  32. Knight, J.L., Yesselman, J.D., Brooks III, C.L.: Assessing the quality of absolute hydration free energies among CHARMM-compatible ligand parameterization schemes. J. Comput. Chem. 34, 893–903 (2013). https://doi.org/10.1002/jcc.23199

    Article  Google Scholar 

  33. Lísal, M., Chval, Z., Storch, J., Izák, P.: Towards molecular dynamics simulations of chiral room-temperature ionic liquids. J. Mol. Liq. 189, 85–94 (2014). https://doi.org/10.1016/j.molliq.2013.04.017

    Article  Google Scholar 

  34. Bhatta, R.S., Yimer, Y.Y., Perry, D.S., Tsige, M.: Improved force field for molecular modeling of poly(3hexylthiophene). J. Phys. Chem. B 117, 10035–10045 (2013). https://doi.org/10.1021/jp404629a

    Article  Google Scholar 

  35. Núnez-Rojas, E., García-Melgarejo, V., de la Luz, A.P., Alejandre, J.: Systematic parameterization procedure to develop force fields for molecular fluids using explicit water. Fluid Phase Equilib. 490, 1–12 (2019). https://doi.org/10.1016/j.fluid.2019.02.018

    Article  Google Scholar 

  36. Vitnik, Ž.J., Vitnik, V.D., Pokorni, S.V., Juranić, I.O.: Correlation of pKa values for series of benzoic acids with the theoretically calculated atomic charges. In: Physical Chemistry 2012, 11th International Conference on Fundamental and Applied Aspects of Physical Chemistry, Belgrade, September 2012, Proceedings, A-9-P, pp. 61–63 (2012)

    Google Scholar 

  37. Wang, H., Ulander, J.: High-throughput pKa screening and prediction amenable for ADME profiling. Expert Opin. Drug Metabol. Toxicol. 2, 139–155 (2006)

    Article  Google Scholar 

  38. Grierson, L., Perkins, M.J., Rzepa, H.S.: A comparison of the MNDO and AM1 SCF-MO methods for dipolar cycloaddition and the claisen reaction. J. Chem. Soc. Chem. Commun. 1779 (1987)

    Google Scholar 

  39. Rzepa, H.: Cheletropic elimination reactions. A comparison of the MNDO, AM1 and ab initio SCF-MO methods. J. Chem. Res. 224 (1988)

    Google Scholar 

  40. Juranic, I., Rzepa, H.S., Yi, M-Y.: Molecular orbital studies of molecular exciplexes. Part 1: AM1 and PM3 calculations of the ammonia-oxygen complex and its solvation by water. J. Chem. Soc. Perkin Trans. 877 (1990)

    Google Scholar 

  41. Pfendt, L., Dražić, B., Popović, G., Drakulić, B., Vitnik, Ž., Juranić, I.: Determination of all pKa values of some di- and tri-carboxylic unsaturated and epoxy acids and their polylinear correlation with the carboxylic group atomic charges. J. Chem. Res. (S) 2003, 247 (2003)

    Article  Google Scholar 

  42. Vitnik, Ž.: Correlations between physical and chemical properties of carboxylic acids with a calculated atomic charges. Ph.D. thesis, University of Belgrade, 12 December 2011

    Google Scholar 

  43. Juranić, I.: Simple method for the estimation of pKa of amines. Croat. Chem. Acta 87(4), 343–347 (2014). https://doi.org/10.5562/cca2462

    Article  Google Scholar 

  44. Jovanović, B., Juranić, I., Mišić-Vuković, M., Brkić, D., Vitnik, Ž.: Kinetics and mechanism of the reaction of substituted 4-pyrimidine carboxylic acids with diazodiphenylmethane in dimethylformamide. J. Chem. Res. (S) 2000, 506–507 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

Ministry of Education, Science, and Technological Development of the Republic of Serbia supported this work, Grant No. 172035. Author gratefully acknowledge the computational time provided on the PARADOX cluster at the Scientific Computing Laboratory of the Institute of Physics, Belgrade.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Juranić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Juranić, I. (2020). Role of Atomic and Molecular Non-observable Properties in the Understanding and Description of Real Observables of the Chemical Systems. A Review. In: Filipovic, N. (eds) Computational Bioengineering and Bioinformatics. ICCB 2019. Learning and Analytics in Intelligent Systems, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-43658-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43658-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43657-5

  • Online ISBN: 978-3-030-43658-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics