Skip to main content

On Four Numerical Schemes for a Unipolar Degenerate Drift-Diffusion Model

  • Conference paper
  • First Online:
Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (FVCA 2020)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 323))

Included in the following conference series:

  • 1121 Accesses

Abstract

We consider a unipolar degenerate drift-diffusion system where the relation between the concentration of the charged species c and the chemical potential h is \(h(c)=\log \frac{c}{1-c}\). For four different finite volume schemes based on four different formulations of the fluxes of the problem, we discuss stability and existence results. For two of them, we report a convergence proof. Numerical experiments illustrate the behaviour of the different schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bessemoulin-Chatard, M.: A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter-Gummel scheme. Numer. Math. 121(4), 637–670 (2012)

    Article  MathSciNet  Google Scholar 

  2. Bezanson, J., Edelman, A.L., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017)

    Google Scholar 

  3. Cancès, C., Chainais-Hillairet, C., Fuhrmann, J., Gaudeul, B.: A numerical analysis focused comparison of several finite volume schemes for a unipolar degenerate drift-diffusion model. J. of Num. Anal. https://hal.archives-ouvertes.fr/hal-02194604 (to appear in IMA) (2020)

  4. Cancès, C., Guichard, C.: Numerical analysis of a robust free energy diminishing finite volume scheme for parabolic equations with gradient structure. Found. Comput. Math. 17(6), 1525–1584 (2017)

    Article  MathSciNet  Google Scholar 

  5. Coehoorn, R., Pasveer, W.F., Bobbert, P.A., Michels, M.A.J.: Charge-carrier concentration dependence of the hopping mobility in organic materials with gaussian disorder. Phys. Rev. B 72(15), 155206 (2005)

    Article  Google Scholar 

  6. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G. (ed.) Handbook of Numerical Analysis. North-Holland, Amsterdam, pp. 713–1020 (2000)

    Google Scholar 

  7. Fuhrmann, J.: Comparison and numerical treatment of generalised Nernst-Planck models. Comput. Phys. Commun. 196, 166–178 (2015)

    Article  MathSciNet  Google Scholar 

  8. Fuhrmann, J.: A numerical strategy for Nernst-Planck systems with solvation effect. Fuel Cells 16, 12 (2016)

    Article  Google Scholar 

  9. Fuhrmann, J.: VoronoiFVM.jl: Solver for coupled nonlinear partial differential equations based on the voronoi finite volume method (2019). https://doi.org/10.5281/zenodo.3529808

  10. Gajewski, H., Gärtner, K.: On the discretization of van Roosbroeck’s equations with magnetic field. Z. Angew. Math. Mech. 76(5), 247–264 (1996)

    Article  MathSciNet  Google Scholar 

  11. Revels, J., Lubin. M., Papamarkou, T.: Forward-mode automatic differentiation in Julia. arXiv:1607.07892 [cs.MS] (2016)

  12. Scharfetter, D.L., Gummel, H.K.: Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electron Dev. 16(1), 64–77 (1969)

    Google Scholar 

  13. Vágner, P., Guhlke, C., Miloš, V., Müller, R., Fuhrmann, J.: A continuum model for yttria-stabilized zirconia incorporating triple phase boundary, lattice structure and immobile oxide ions. J. Solid State Electrochem., pp. 1–20 (2019)

    Google Scholar 

  14. Yu, Z., Dutton, R.: SEDAN III. www-tcad.stanford.edu/tcad/programs/sedan3.html (1988)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Fuhrmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cancès, C., Hillairet, C.C., Fuhrmann, J., Gaudeul, B. (2020). On Four Numerical Schemes for a Unipolar Degenerate Drift-Diffusion Model. In: Klöfkorn, R., Keilegavlen, E., Radu, F.A., Fuhrmann, J. (eds) Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples. FVCA 2020. Springer Proceedings in Mathematics & Statistics, vol 323. Springer, Cham. https://doi.org/10.1007/978-3-030-43651-3_13

Download citation

Publish with us

Policies and ethics