Skip to main content

The Flexibility in Power System with High Photovoltaic Penetration into Extra-High Voltage Level

  • Chapter
  • First Online:
A Practical Guide for Advanced Methods in Solar Photovoltaic Systems

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 128))

Abstract

The governments are adopting the use of renewable energy sources in electricity generation due to reasons such as the increasing climate change and energy supply security concerns and the rise of energy demand. Therefore, the share of variable renewable sources, especially solar energy, in total installed power capacity increases day by day. The power systems with the integration of solar energy sources transform. A power system to cope with high shares of variable solar generation needs to be flexible. In this chapter, the power system flexibility concept, the effect of variable renewable energy penetration, especially power plants on power systems flexibility, are examined. In addition, simulation studies are carried out for PV power systems penetration into extra-high voltage levels, necessary regulations for grid codes are determined, and solution methods are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Energy Agency: Empowering Variable Renewables Options for Flexible Electricity Systems. Paris (2008)

    Google Scholar 

  2. Nosair, H., Bouffard, F.: Flexibility envelopes for power system operational planning. IEEE Trans. Sustain. Energy 6, 800–809 (2015)

    Article  Google Scholar 

  3. Denholm, P., Hand, M.: Grid flexibility and storage required to achieve very high penetration of variable renewable electricity. Energy Policy 39, 1817–1830 (2011)

    Article  Google Scholar 

  4. Lannoye, E., Flynn, D., O’Malley, M.: Evaluation of power system flexibility. IEEE Trans. Power Syst. 27, 922–931 (2012)

    Article  Google Scholar 

  5. Lannoye, E., Flynn, D., O’Malley, M.: The role of power system flexibility in generation planning. In: 2011 IEEE Power and Energy Society General Meeting, pp 1–6 (2011)

    Google Scholar 

  6. Dvorkin, Y., Kirschen, D.S., Ortega-Vazquez, M.A.: Assessing flexibility requirements in power systems. IET Gener. Transm. Distrib. 8, 1820–1830 (2014)

    Article  Google Scholar 

  7. Energiewirtschaftliches Institut an Der Universität Zu Köln: Flexibility Options in European Electricity Markets in High Res-E Scenarios. Study on Behalf of the International Energy Agency, Cologne (2012)

    Google Scholar 

  8. International Energy Agency: Harnessing Variable Renewables: A Guide to the Balancing Challenge. OECD Publishing, Paris (2011)

    Book  Google Scholar 

  9. Kehler, J.H., Hu, M.: Planning and operational considerations for power system flexibility. In: 2011 IEEE Power and Energy Society General Meeting, pp. 1–3 (2011)

    Google Scholar 

  10. Bouffard, F., Ortega-Vazquez, M.: The value of operational flexibility in power systems with significant wind power generation. In: 2011 IEEE Power and Energy Society General Meeting, pp. 1–5 (2011)

    Google Scholar 

  11. Bucher, M.A., Delikaraoglou, S., Heussen, K., Pinson, P., Andersson, G.: On quantification of flexibility in power systems. In: 2015 IEEE Eindhoven PowerTech, pp. 1–6 (2015)

    Google Scholar 

  12. Ma, J., Silva, V., Belhomme, R., Kirschen, D.S., Ochoa, L.F.: Evaluating and planning flexibility in sustainable power systems. In: 2013 IEEE Power and Energy Society General Meeting, pp 1–11 (2013)

    Google Scholar 

  13. Holttinen, H., Tuohy, A., Milligan, M., Lannoye, E., Silva, V., Müller, S., Sö, L.: The flexibility workout: managing variable resources and assessing the need for power system modification. IEEE Power Energy Mag. 11(6), 53–62 (2013)

    Article  Google Scholar 

  14. Kundur, P., Paserba, J., Ajjarapu, V., Andersson, G., Bose, A., Canizares, C., Hatziargyriou, N., Hill, D., Stankovic, A., Taylor, C.: Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. IEEE Trans. Power Syst. 19, 1387–1401 (2004)

    Article  Google Scholar 

  15. Tielens, P., Van Hertem, D.: The relevance of inertia in power systems. Renew. Sustain. Energy Rev. 55, 999–1009 (2016)

    Article  Google Scholar 

  16. Seneviratne, C., Ozansoy, C.: Frequency response due to a large generator loss with the increasing penetration of wind/Pv generation–a literature review. Renew. Sustain. Energy Rev. 57, 659–668 (2016)

    Article  Google Scholar 

  17. Hsieh, E., Anderson, R.: Grid flexibility: the quiet revolution. The Electr. J. 30, 1–8 (2017)

    Article  Google Scholar 

  18. Papaefthymiou, G., Grave, K., Dragoon, K.: Flexibility Options in Electricity Systems. ECOFYS, Berlin (2014)

    Google Scholar 

  19. Makarov, Y.V., Loutan, C., Ma, J., De Mello, P.: Operational impacts of wind generation on California power systems. IEEE Trans. Power Syst. 24, 1039–1050 (2009)

    Article  Google Scholar 

  20. Ela, E., Milligan, M., Bloom, A., Botterud, A., Townsend, A., Levin, T., Frew, B.A.: Wholesale electricity market design with increasing levels of renewable generation: incentivizing flexibility in system operations. The Electr. J. 29, 51–60 (2016)

    Article  Google Scholar 

  21. National Renewable Energy Laboratory: Flexibility in 21st Century Power Systems. https://www.nrel.gov/docs/fy14osti/61721.pdf (2014). Accessed 01 Dec 2019

  22. International Energy Agency: Status of Power System Transformation 2018 Advanced Power Plant Flexibility. Paris (2018)

    Google Scholar 

  23. North American Electric Reliability Corporation: Flexibility Requirements and Potential Metrics for Variable Generation: Implications for System Planning Studies. Princeton, NJ (2010)

    Google Scholar 

  24. Lee, C.T., Hsu, C.W., Cheng, P.T.: A low-voltage ride-through technique for grid-connected converters of distributed energy resources. IEEE Trans. Ind. Appl. 47, 1821–1832 (2011)

    Article  Google Scholar 

  25. Yang, L., Xu, Z., Ostergaard, J., Dong, Z.Y., Wong, K.P.: Advanced control strategy of Dfig wind turbines for power system fault ride through. IEEE Trans. Power Syst. 27, 713–722 (2012)

    Article  Google Scholar 

  26. Alizadeh, M., Moghaddam, M.P., Amjady, N., Siano, P., Sheikh-El-Eslami, M.: Flexibility in future power systems with high renewable penetration: a review. Renew. Sustain. Energy Rev. 57, 1186–1193 (2016)

    Article  Google Scholar 

  27. Troy, N., Denny, E., O’Malley, M.: Base-load cycling on a system with significant wind penetration. IEEE Trans. Power Syst. 25(2), 1088–1097 (2010)

    Article  Google Scholar 

  28. Henderson, C.: Increasing the Flexibility of Coal-Fired Power Plants. IEA Clean Coal Centre, London (2014)

    Google Scholar 

  29. Lefton, S.A., Besuner, P., Grimsrud, G., Strauss, S.: Understand what it really costs to cycle fossil-fired units. Power 141, 41–46 (1997)

    Google Scholar 

  30. Van den Bergh, K., Delarue, E.: Cycling of conventional power plants: technical limits and actual costs. Energy Convers. Manag. 97, 70–77 (2015)

    Article  Google Scholar 

  31. International Energy Agency: Solar Energy Mapping the Road Ahead. Paris (2019)

    Google Scholar 

  32. Vittal, V.: The impact of renewable resources on the performance and reliability of the electricity grid. The Bridge 40, 5–12 (2010)

    Google Scholar 

  33. Hecker, L., Zhou, Z., Osborn, D., Lawhorn, J.: Value based transmission planning process for joint coordinated system plan. In: 2009 IEEE Power and Energy Society General Meeting, pp 1–6 (2009)

    Google Scholar 

  34. Neville, A.: Top Plant: Desoto Next Generation Solar Energy Center, Desoto County, Florida. Power 154, 32 (2010)

    Google Scholar 

  35. Romero-Cadaval, E., Francois, B., Malinowski, M., Zhong, Q.C.: Grid-connected photovoltaic generation plants as alternative energy sources. IEEE Ind. Electron. Mag. 9, 18–32 (2015)

    Article  Google Scholar 

  36. Shah, R., Mithulananthan, N., Bansal, R., Ramachandaramurthy, V.: A review of key power system stability challenges for large-scale Pv integration. Renew. Sustain. Energy Rev. 41, 1423–1436 (2015)

    Article  Google Scholar 

  37. Zhang, Y., Zhu, S., Sparks, R., Green, I.: Impacts of solar Pv generators on power system stability and voltage performance. In: 2012 IEEE Power and Energy Society General Meeting, pp. 1–7 (2012)

    Google Scholar 

  38. Eftekharnejad, S., Vittal, V., Heydt, G.T., Keel, B., Loehr, J.: Impact of increased penetration of photovoltaic generation on power systems. IEEE Trans. Power Syst. 28, 893–901 (2013)

    Article  Google Scholar 

  39. Tamimi, B., Cañizares, C., Bhattacharya, K.: System stability impact of large-scale and distributed solar photovoltaic generation: the case of Ontario, Canada. IEEE Trans. Sustain. Energy 4(3), 680–688 (2013)

    Article  Google Scholar 

  40. Liu, H., Jin, L., Le, D., Chowdhury, A.: Impact of high penetration of solar photovoltaic generation on power system small signal stability. In: 2010 International Conference Power System Technology, IEEE, Hangzhou, 24–28 Oct 2010

    Google Scholar 

  41. Ravichandran, S., Dasan, S.B., Devi, R.K.: Small signal stability analysis of grid connected photo voltaic distributed generator system. In: 2011 International Conference on Power and Energy Systems, IEEE, Chennai, 22–24 Dec 2011

    Google Scholar 

  42. Du, W., Wang, H., Xiao, L.: Power system small-signal stability as affected by grid-connected photovoltaic generation. Int. Trans. Electr. Energy Syst. 22, 688–703 (2012)

    Google Scholar 

  43. Eftekharnejad, S., Vittal, V., Heydt, G.T., Keel, B., Loehr, J.: Small signal stability assessment of power systems with increased penetration of photovoltaic generation: a case study. IEEE Trans. Sustain. Energy 4, 960–967 (2013)

    Article  Google Scholar 

  44. Alquthami, T., Ravindra, H., Faruque, M., Steurer, M., Baldwin, T.: Study of photovoltaic integration impact on system stability using custom model of Pv arrays integrated with PSS/E. In: North American Power Symposium, IEEE, Arlington, 26–28 Sept 2010

    Google Scholar 

  45. Abdlrahem, A., Venayagamoorthy, G.K., Corzine, K.A.: Frequency stability and control of a power system with large Pv plants using Pmu information. In: North American Power Symposium (NAPS), IEEE, Manhattan 22–24 Sept 2013

    Google Scholar 

  46. Kroposki, B., Johnson, B., Zhang, Y., Gevorgian, V., Denholm, P., Hodge, B.M., Hannegan, B.: Achieving a 100% renewable grid: operating electric power systems with extremely high levels of variable renewable energy. IEEE Power Energ. Mag. 15, 61–73 (2017)

    Article  Google Scholar 

  47. Liu, Y., Choi, S., Meliopoulos, A.S., Fan, R., Sun, L., Tan, Z.: Dynamic state estimation enabled preditive inverter control. In: 2016 IEEE Power and Energy Society General Meeting, IEEE, Boston, 17–21 July 2016

    Google Scholar 

  48. DIgSILENT: Digsilent Powerfactory 2018 User Manual. DIgSILENT GmbH, Gomaringen (2018)

    Google Scholar 

  49. Çiftkaya B.: Investigation of heavy duty gas turbines and their simulation. M.Sc. Thesis, Istanbul Technical University (2013)

    Google Scholar 

  50. Kundur, P.: Power System Stability and Control. McGraw-Hill, New York (1994)

    Google Scholar 

  51. Zea, A.A.: Power system stabilizers for the synchronous generator-tuning and performance evaluation. M.Sc. Thesis, Chalmers University of Technology (2013)

    Google Scholar 

  52. Oguz, G.: Voltage stability control on power systems by fuzzy logic. M.Sc. Thesis, Istanbul Technical University (2004)

    Google Scholar 

  53. Ackermann, T., Martensen, N., Brown, T., Schierhorn, P., Boshell, F., Gafaro, F., Ayuso, M.: Scaling up Variable Renewable Power: The Role of Grid Codes. International Renewable Energy Agency, Abu Dhabi (2016)

    Google Scholar 

  54. European Network of Transmission System Operators for Electricity: ENTSO-E Network Code for Requirements for Grid Connection Applicable to all Generators. Brussels (2013)

    Google Scholar 

  55. International Electrotechnical Commission: Grid Integration of Large Capacity Renewable Energy Sources and Use of Large-Capacity Electrical Energy Storage. Geneva (2012)

    Google Scholar 

  56. Cabrera-Tobar, A., Bullich-Massagué, E., Aragüés-Peñalba, M., Gomis-Bellmunt, O.: Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system. Renew. Sustain. Energy Rev. 62, 971–987 (2016)

    Article  Google Scholar 

  57. Sourkounis, C., Tourou, P.: Grid code requirements for wind power integration in Europe. In: Power Options for the Eastern Mediterranean Region, Limassol, 19–21 Nov 2012

    Google Scholar 

  58. Energy Sector Management Assistance Program: Grid Integration Requirements For Variable Renewable Energy Technical Guide. World Bank, Washington, DC (2019)

    Book  Google Scholar 

  59. Energinet, D.K.: Technical Regulation 3.2.2 for PV Power Plants Above 11 kW. Fredericia (2016)

    Google Scholar 

  60. Energinet, D.K.: Technical Regulation 3.2.5 for Wind Power Plants Above 11 kW. Fredericia (2016)

    Google Scholar 

  61. Spanish Wind Energy Associations: Operation Procedure O.P. 12.2: Technical Requirements for Wind Power and Photovoltaic Installations and Any Generating Facilities Whose Technology Does Not Consist on a Synchronous Generator Directly Connected to the Grid. Madrid (2008)

    Google Scholar 

  62. International Energy Agency: The Power Transformation Wind, Sun and the Economics of Flexible Power System. Paris (2014)

    Google Scholar 

  63. Kirschen, D.S., Rosso, A., Ma, J., Ochoa, L.F.: Flexibility from the demand side. In: 2012 IEEE Power and Energy Society General Meeting, pp. 1–6 (2012)

    Google Scholar 

  64. Pina, A., Silva, C., Ferrão, P.: The impact of demand side management strategies in the penetration of renewable electricity. Energy 41, 128–137 (2012)

    Article  Google Scholar 

  65. Lund, P.D., Lindgren, J., Mikkola, J., Salpakari, J.: Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renew. Sustain. Energy Rev. 45, 785–807 (2015)

    Article  Google Scholar 

  66. Strbac, G.: Demand side management: benefits and challenges. Energy Policy 36, 4419–4426 (2008)

    Article  Google Scholar 

  67. Moura, P.S., De Almeida, A.T.: The role of demand-side management in the grid integration of wind power. Appl. Energy 87, 2581–2588 (2010)

    Article  Google Scholar 

  68. Martinot, E.: Grid integration of renewable energy: flexibility, innovation, and experience. Annu. Rev. Environ. Resour. 41, 223–251 (2016)

    Article  Google Scholar 

  69. International Atomic Energy Agency: Non-Baseload Operation in Nuclear Power Plants: Load Following and Frequency Control Modes of Flexible Operation. Vienna (2018)

    Google Scholar 

  70. International Energy Agency: Large-Scale Electricity Interconnection-Technology and Prospects for Cross-Regional Networks. Paris (2016)

    Google Scholar 

  71. World Bank Group: Bringing Variable Renewable Energy Up to Scale: Options for Grid Integration Using Natural Gas and Energy Storage. Washington, DC (2015)

    Google Scholar 

  72. Beer, M., Huber, M., Mauch, W.: Flexible operation of cogeneration plants-chances for the integration of renewables. In: 11th IAEE European Conference Energy Economy, Policies and Supply Security: Surviving the Global Economic Crisis, Vilnius, 25–28 Aug 2010

    Google Scholar 

  73. Chen, X., Kang, C., O’Malley, M., Xia, Q., Bai, J., Liu, C., Sun, R., Wang, W., Li, H.: Increasing the flexibility of combined heat and power for wind power integration in China: modeling and implications. IEEE Trans. Power Syst. 30, 1848–1857 (2015)

    Article  Google Scholar 

  74. Cogeneration Observatory and Dissemination Europe: D5.1—Final Cogeneration Roadmap Member State: Denmark. http://www.code2-project.eu/wp-content/uploads/Code-2-D5-1-Final-non-pilor-Roadmap-Denmark_f2.pdf (2014). Accessed 20 Sept 2019

  75. Bird, L., Lew, D., Milligan, M., Carlini, E.M., Estanqueiro, A., Flynn, D., Gomez-Lazaro, E., Holttinen, H., Menemenlis, N., Orths, A.: Wind and solar energy curtailment: a review of international experience. Renew. Sustain. Energy Rev. 65, 577–586 (2016)

    Article  Google Scholar 

  76. Burke, D.J., O’Malley, M.J.: Factors influencing wind energy curtailment. IEEE Trans. Sustain. Energy 2, 185–193 (2011)

    Article  Google Scholar 

  77. International Renewable Energy Agency (IRENA): Renewable Capacity Statistics 2018, Abu Dhabi (2018)

    Google Scholar 

  78. Li, C., Shi, H., Cao, Y., Wang, J., Kuang, Y., Tan, Y., Wei, J.: Comprehensive review of renewable energy curtailment and avoidance: a specific example in China. Renew. Sustain. Energy Rev. 41, 1067–1079 (2015)

    Article  Google Scholar 

  79. Zhang, S., Andrews-Speed, P., Li, S.: To what extent will China’s ongoing electricity market reforms assist the integration of renewable energy. Energy Policy 114, 165–172 (2018)

    Article  CAS  Google Scholar 

  80. Global Wind Energy Council: Global Wind Report. Brussels (2016)

    Google Scholar 

  81. International Energy Agency: China Power System Transformation Assessing the Benefit of Optimised Operations and Advanced Flexibility Options. Paris (2019)

    Google Scholar 

  82. EirGrid and SONI: Annual Renewable Energy Constraint and Curtailment Report 2016. Dublin (2017)

    Google Scholar 

  83. Schermeyer, H., Vergara, C., Fichtner, W.: Renewable energy curtailment: a case study on today’s and tomorrow’s congestion management. Energy Policy 112, 427–436 (2018)

    Article  Google Scholar 

  84. Miller, M., et al.: Status Report on Power System Transformation: A 21st Century Power Partnership Report. National Renewable Energy Laboratory, Golden (2015)

    Book  Google Scholar 

  85. Hasan, K.N., Saha, T.K., Eghbal, M., Chattopadhyay, D.: Review of transmission schemes and case studies for renewable power integration into the remote grid. Renew. Sustain. Energy Rev. 18, 568–582 (2013)

    Article  Google Scholar 

  86. Smith, J.C., et al.: Transmission planning for wind energy in the United States and Europe: status and prospects. Wiley Interdiscip. Rev.: Energy Environ. 2, 1–13 (2013)

    Article  CAS  Google Scholar 

  87. Brown, T.: Transmission network loading in Europe with high shares of renewables. IET Renew. Power Gener. 9, 57–65 (2014)

    Article  Google Scholar 

  88. Málek, J., Rečka, L., Janda, K.: Impact of German Energiewende on transmission lines in the Central European region. Energ. Effi. 11, 683–700 (2018)

    Article  Google Scholar 

  89. European Network of Transmission System Operators for Electricity: Ten-Year Network Development Plan 2016 Project Sheets. https://docstore.entsoe.eu/Documents/TYNDP%20documents/TYNDP%202016/projects/TYNDP2016-project-sheets.pdf (2014). Accessed 15 Oct 2019

  90. European Network of Transmission System Operators for Electricity: Connecting Europe: Electricity 2025–2030–2040. Brussels (2019)

    Google Scholar 

  91. Cain, N.L., Nelson, H.T.: What drives opposition to high-voltage transmission lines. Land Use Policy 33, 204–213 (2013)

    Article  Google Scholar 

  92. Papaefthymiou, G., Dragoon, K.: Towards 100% renewable energy systems: uncapping power system flexibility. Energy Policy 92, 69–82 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Varbak Neşe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Impram, S., Varbak Neşe, S., Oral, B. (2020). The Flexibility in Power System with High Photovoltaic Penetration into Extra-High Voltage Level. In: Mellit, A., Benghanem, M. (eds) A Practical Guide for Advanced Methods in Solar Photovoltaic Systems. Advanced Structured Materials, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-030-43473-1_9

Download citation

Publish with us

Policies and ethics