Skip to main content

New Reconfiguration Method Based on Logic Gates for Small Dynamic Photovoltaic Array

  • Chapter
  • First Online:
A Practical Guide for Advanced Methods in Solar Photovoltaic Systems

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 128))

  • 665 Accesses

Abstract

This chapter proposes a new method for reconfiguring the dynamic photovoltaic (PV) array under repeating shade conditions. The repeating shades are often caused in photovoltaic installations, especially in residential installations where PV modules can be subjected to shades occurred by nearby buildings or trees. The proposed method is based on logic gates and aims to minimize the processing time in the way that controller does not have to perform an exhaustive calculations at each shade condition to achieve the optimal configuration of the PV generator . Simulation of 2 × 2 size dynamic photovoltaic array has been carried out. Experimental tests of 1 × 1 size Dynamic Photovoltaic array under different irradiance conditions have been also conducted. The simulation and experimental tests have validated the proposed method in identification of the optimal configuration with less processing time and with an improvement in reducing power losses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mutoh, N., Ohno, M., Inoue, T.: A method for MPPT control while searching for parameters corresponding to weather conditions for PV generation systems. IEEE Trans. Ind. Electron. 53(4), 1055–1065 (2008)

    Article  Google Scholar 

  2. Khezzar, R., Zereg, M., Khezzar, A.: Modeling improvement of the four parameter model for photovoltaic modules. Sol. Energy 110, 452–462 (2014)

    Article  Google Scholar 

  3. Ishaque, K., Syafaruddin, Salam Z.: A comprehensive MATLAB Simulink PV system simulator with partial shading capability based on two-diode model. Sol. Energy 85(9), 2217–2227 (2011)

    Article  Google Scholar 

  4. Bidram, A., Davoudi, A., Balog, R.S.: Control and circuit techniques to mitigate partial shading effects in photovoltaic arrays. IEEE J. Photovolt. 2(4), 532–546 (2012)

    Article  Google Scholar 

  5. Malathy, S., Ramaprabha, R., Mathur, B.L.: Asymmetrical multilevel inverters for partially shaded PV systems. In: Proceedings of IEEE Conference on Circuits, Power and Computing Technologies, pp. 579–58 (2013)

    Google Scholar 

  6. Jaleel, J.A., Omega, A.R.: Maximum power point tacking simulation of PV array at partially shaded condition using lab view. In: Proceedings IEEE Conference on Control Communication and Computing, pp. 319–324 (2013)

    Google Scholar 

  7. Koutroulis, E., Blaabjerg, F.: A new technique for tracking the global maximum power point of PV arrays operating under partial-shading conditions. IEEE J. Photovolt. 2(2), 184–190 (2012)

    Article  Google Scholar 

  8. Malathy, S., Ramaprabha, R.: Reconfiguration strategies to extract maximum power from photovoltaic array under partially shaded conditions. Renew. Sustain. Energy Rev. 1–13 (2017)

    Google Scholar 

  9. Nguyen, D., Member, S., Lehman, B.: An adaptive solar photovoltaic array using model-based reconfiguration algorithm. IEEE Trans. Ind. Electron. 55(7), 2644–2654 (2008)

    Article  Google Scholar 

  10. Nguyen, D,, Lehman, B.: A reconfigurable solar photovoltaic array under shadow conditions. In: IEEE Twenty-Third Annual Applied Power Electronics Conference and Exposition, pp. 980–986 (2008)

    Google Scholar 

  11. Patnaik, B., Sharma, P., Trimurthulu, E., Duttagupta, S.P., Agarwal, V.: Reconfiguration strategy for optimization of solar photovoltaic array under non-uniform illumination conditions. In: IEEE 37th Photovoltaic Specialists Conference, pp. 1859–1864 (2011)

    Google Scholar 

  12. Patnaik, B., Mohod, J.D., Duttagupta, S.P.: Distributed multi-sensor network for real time monitoring of illumination states for a reconfigurable solar photovoltaic array. In: IR International Symposium on Physics and Technology of Sensors, pp. 106–109 (2012)

    Google Scholar 

  13. Shams El-Dein, M.Z., Kazerani, M., Salama, M.M.A.: Optimal photovoltaic array reconfiguration to reduce partial shading losses. IEEE Trans. Sustain. Energy 4, 145–153 (2013). https://doi.org/10.1109/TSTE.2012.2208128

    Article  Google Scholar 

  14. Orozco-Gutierrez, M.L., Spagnuol, G., Ramirez-Scarpetta, J.M., Petrone, G., Ramos-Paja, C.A.: Optimized configuration of mismatched photovoltaic arrays. IEEE J. Photovolt. 6, 1210–1220 (2016). https://doi.org/10.1109/JPHOTOV.2016.2581481

    Article  Google Scholar 

  15. Carotenuto, P.L., Della Cioppa, A., Marcelli, A., Spagnuolo, G.: An evolutionary approach to the dynamical reconfiguration of photovoltaic fields. Neurocomputing 170, 393–405 (2015)

    Article  Google Scholar 

  16. Rajan, N.A., Shrikant, K.D., Dhanalakshmi, B., Rajasekar, N.: Solar PV array reconfiguration using the concept of standard deviation and genetic algorithm. Energy Procedia 117, 1062–1069 (2017)

    Article  Google Scholar 

  17. Babu, T.S., Ram, J.P., Dragicevic, T., Miyatake, M., Blaabjerg, F., Rajasekar, N.: Particle swarm optimization based solar PV array reconfiguration of the maximum power extraction under partial shading conditions. IEEE Trans. Sustain. Energy 9, 74–85 (2018). https://doi.org/10.1109/TSTE.2017.2714905

    Article  Google Scholar 

  18. Velasco, G., Guinjoan-gispert, F., Piqué-lópez, R., Román-lumbreras, M., Conesa-roca, A.: Electrical PV array reconfiguration strategy for energy extraction improvement in grid-connected PV systems. IEEE Trans. Ind. Electron. 56(11), 4319–4331 (2009)

    Article  Google Scholar 

  19. Romano, P., Candela, R., Cardinale, M., VigniV, L., Sanseverino, E.R.: Optimization of photovoltaic energy production through an efficient switching matrix. J. Sustain. Dev. Energy, Water Environ. Syst. 1(3), 227–236 (2013)

    Article  Google Scholar 

  20. Ngo Ngoc, T., Phung, Q.N., Tung, L.N., Riva Sanseverino, E., Romano, P., Viola, F.: Increasing efficiency of photovoltaic systems under non-homogeneous solar irradiation using improved dynamic programming methods. Sol. Energy 150, 325–334 (2017)

    Article  Google Scholar 

  21. Wilson, P., Storey, J., Bagnall, D.: Improved optimization strategy for irradiance equalization in dynamic photovoltaic arrays. IEEE Trans. Power Electron. 28, 2946–2956 (2013)

    Article  Google Scholar 

  22. Bouselham, L., Hajji, B., Mellit, A., Rabhi, A.: A reconfigurable PV architecture based on new irradiance equalization algorithm. In: Lecture Notes in Electrical Engineering, pp. 470–477 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Hajji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bouselham, L., Rabhi, A., Hajji, B. (2020). New Reconfiguration Method Based on Logic Gates for Small Dynamic Photovoltaic Array. In: Mellit, A., Benghanem, M. (eds) A Practical Guide for Advanced Methods in Solar Photovoltaic Systems. Advanced Structured Materials, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-030-43473-1_7

Download citation

Publish with us

Policies and ethics