Skip to main content

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 128))

Abstract

In this chapter, we present different materials, devices structures, and different processing techniques for the fabrication of organic photovoltaic (OPV) cells. The manufacturer of these types of solar cells uses a new process to get the best efficiencies with low cost by using printing techniques and photoactive layers based on polymer materials. Also, many scientific research works are presented and some illustrations about processing techniques, such as roll-to-roll techniques, for the design of OPV cells are presented in this   chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Green, M.A., et al.: Solar cell efficiency tables (Version 38). Prog. Photovoltaics Res. Appl. 19(5), 565–572 (2011)

    Article  Google Scholar 

  2. Tang, C.: Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183 (1986)

    Article  CAS  Google Scholar 

  3. Sariciftci, N.S., et al.: Observation of a photoinduced electron transfer from a conducting polymer (MEHPPV) onto C60. Synth. Met. 56(2–3), 3125–3130 (1993)

    Article  CAS  Google Scholar 

  4. Spanggaard, H., Krebs, F.C.: A brief history of the development of organic and polymeric photovoltaics. Sol. Energy Mater. Sol. Cells 83(2–3), 125–146 (2004)

    Article  CAS  Google Scholar 

  5. Brabec, C.J., Sariciftci, N.S., Hummelen, J.: Plastic solar cells. Adv. Func. Mater. 11(1), 15–26 (2001)

    Article  CAS  Google Scholar 

  6. Coakley, K., McGehee, M.D.: Conjugated polymer photovoltaic cells. Chem. Mater. 16(23), 4533–4542 (2004)

    Article  CAS  Google Scholar 

  7. Hoppe, H., Sariciftci, N.S.: Organic solar cells: an overview. J Mater Researd 19(7), 1924–1945 (2004)

    Article  CAS  Google Scholar 

  8. Dennler, G., Sariciftci, N.S.: Flexible conjugated polymer-based plastic solar cells: from basics to applications. Proc. IEEE 93(8), 1429–1439 (2005)

    Article  CAS  Google Scholar 

  9. Brabec, C.J., Dyakonov, V., Scherf, U.: Organic Photovoltaics, Wiley-VCH (2008)

    Google Scholar 

  10. Krebs, F.C.: Polymer Photovoltaics: A Practical Approach. SPIE Publications (2008)

    Google Scholar 

  11. Thompson, B., Frechet, J.M.J.: Polymer—fullerene composite solarcells. Angew. Chem. Int. Ed. 47(1), 58–77 (2008)

    Article  CAS  Google Scholar 

  12. Deibel, C., Dyakonov, V.: Polymer–fullerene bulk-heterojunction solar cells. Rep. Prog. Phys. 73, 096401 (2010)

    Article  CAS  Google Scholar 

  13. Helgesen, M., Søndergaard, R., Krebs, F.C.: Advanced materials and processes for polymer solar cell devices. J. Mater. Chem. 20(1), 36–60 (2010)

    Article  CAS  Google Scholar 

  14. Po, R., Maggini, M., Camaioni, N.: Polymer solar cells: recent approaches and achievements. J. Phys. Chem. C 114(2), 695–706 (2010)

    Article  CAS  Google Scholar 

  15. Servaites, J.D., Ratner, M.A., Marks, T.J.: Organic solar cells: a new look at traditional models. Energy Environ. Sci. 4, 4410–4422 (2011)

    Article  CAS  Google Scholar 

  16. Zhang, F., et al.: Recent development of the inverted configuration organic solar cells. Sol. Energy Mater. Sol. Cells 95(7), 1785–1799 (2011)

    Article  CAS  Google Scholar 

  17. Krebs, F.C.: Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93(4), 394–412 (2009)

    Article  CAS  Google Scholar 

  18. Søndergaard, R., et al.: Roll-to-roll fabrication of polymer solar cells. Mater. Today 15(1–2), 36–49 (2012)

    Article  CAS  Google Scholar 

  19. Krebs, F.C., Tromholt, T., Jørgensen, M.: Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale 2(6), 873–886 (2010)

    Article  CAS  Google Scholar 

  20. Krebs, F.C.: All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps. Org. Electron. 10(5), 761–768 (2009)

    Article  CAS  Google Scholar 

  21. Kopola, P., et al.: Gravure printed flexible organic photovoltaic modules. Sol. Energy Mater. Sol. Cells 95(5), 1344–1347 (2011)

    Article  CAS  Google Scholar 

  22. Eom, S.H., et al.: High efficiency polymer solar cells via sequential inkjet-printing of PEDOT:PSS and P3HT:PCBM inks with additives. Org. Electron. 11(9), 1516–1522 (2010)

    Article  CAS  Google Scholar 

  23. Nielsen, T., et al.: Business, market and intellectual property analysis of polymer solar cells. Sol. Energy Mater. Sol. Cells 94(10), 1553–1571 (2010)

    Article  CAS  Google Scholar 

  24. Koster, L., Mihailetchi, V., Blom, P.W.M.: Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells. Appl. Phys. Lett. 88, 093511 (2006)

    Article  CAS  Google Scholar 

  25. Scharber, M.C., et al.: Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv. Mater. 18(6), 789–794 (2006)

    Article  CAS  Google Scholar 

  26. Krebs, F.C., Spanggaard, H.: Significant improvement of polymer solar cell stability. Chem. Mater. 17(21), 5235–5237 (2005)

    Article  CAS  Google Scholar 

  27. Hauch, J., et al.: Flexible organic P3HT: PCBM bulk-heterojunction modules with more than 1 year outdoor lifetime. Sol. Energy Mater. Sol. Cells 92(7), 727–731 (2008)

    Article  CAS  Google Scholar 

  28. Zimmermann, B., Würfel, U., Niggemann, M.: Longterm stability of efficient inverted P3HT: PCBM solar cells. Sol. Energy Mater. Sol. Cells 93(4), 491–496 (2009)

    Article  CAS  Google Scholar 

  29. Voroshazi, E., et al.: Long-term operational lifetime and degradation analysis of P3HT:PCBM photovoltaic cells. Sol. Energy Mater. Sol. Cells 95(5), 1303–1307 (2011)

    Article  CAS  Google Scholar 

  30. Basics of OSC: Organic solar cells, [Online]. Available: https://www.iapp.de/iapp/agruppen/osol/?Research:Organic_Solar_Cells:Basics_of_OSC

  31. Dam, H.F., Larsen-Olsen, T.T.: How do polymer solar cells work [Online]. Available: http://plasticphotovoltaics.org/lc/lc-polymersolarcells/lc-how.html

  32. Blom, P.W.M., et al.: Device physics of polymer: fullerene bulk heterojunction solar cells. Adv. Mater. 19(12), 1551–1566 (2007)

    Article  CAS  Google Scholar 

  33. Halls, J., et al.: Exciton diffusion and dissociation in a poly (p-phenylenevi-nylene)/C60 heterojunction photovoltaic cell. Appl. Phys. Lett. 68, 3120 (1996)

    Article  CAS  Google Scholar 

  34. Haugeneder, A., et al.: Exciton diffusion and dissociation in conjugated polymer/fullerene blends and heterostructures. Phys. Rev. B 59(23), 15346 (1999)

    Article  CAS  Google Scholar 

  35. Pettersson, L.A.A., Roman, L.S., Inganäs, O.: Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 86, 487 (1999)

    Article  CAS  Google Scholar 

  36. Piris, J., et al.: Photogeneration and ultrafast dynamics of excitons and charges in P3HT/PCBM blends. J. Phys. Chem. C 113(32), 14500–14506 (2009)

    Article  CAS  Google Scholar 

  37. Li, G., et al.: High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4, 864–868 (2005)

    Article  CAS  Google Scholar 

  38. Ma, W., et al.: Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Func. Mater. 15(10), 1617–1622 (2005)

    Article  CAS  Google Scholar 

  39. Espinosa, N., et al.: A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions. Sol. Energy Mater. Sol. Cells 95(5), 1293–1302 (2011)

    Article  CAS  Google Scholar 

  40. Galagan, Y., Rubingh, J.M., et al.: ITO-free flexible organic solar cells with printed current collecting grids. Solar Energy Mater. Solar Cells, 95(5), 1339–1343 (2011a)

    Article  CAS  Google Scholar 

  41. Po, R., et al.: The role of buffer layers in polymer solar cells. Energy Environ. Sci. 4(2), 285–310 (2011)

    Article  CAS  Google Scholar 

  42. Søndergaard, R., et al.: Fabrication of polymer solar cells using aqueous processing for all layers including the metal back electrode. Adv. Energy Mater. 1(1), 68–71 (2010)

    Article  CAS  Google Scholar 

  43. Gilot, J., et al.: The use of ZnO as optical spacer in polymer solar cells: theoretical and experimental study. Appl. Phys. Lett. 91(11), 113520–4 (2007)

    Article  CAS  Google Scholar 

  44. Hayakawa, A., et al.: High performance polythiophene/fullerene bulk-hetero-junction solar cell with a TiOx hole blocking layer. Appl. Phys. Lett. 90(16), 163517–4 (2007)

    Article  CAS  Google Scholar 

  45. Lee, K., et al.: Air-stable polymer electronic devices. Adv. Mater. 19(18), 2445–2449 (2007)

    Article  CAS  Google Scholar 

  46. Huang, J.-S., Chou, C.-Y., Lin, C.-F.: Efficient and air-stable polymer photo-voltaic devices with WO3-V2O5 mixed oxides as anodic modification. Electron Device Lett. IEEE 31(4), 332–334 (2010)

    Article  CAS  Google Scholar 

  47. Dupont, S.R., et al.: Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells. Sol. Energy Mater. Sol. Cells 97, 171–175 (2012)

    Article  CAS  Google Scholar 

  48. Brabec, C.J., et al.: Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl. Phys. Lett. 80(7), 1288 (2002)

    Article  CAS  Google Scholar 

  49. Krebs, F.C., Søndergaard, R., Jørgensen, M.: Printed metal back electrodes for R2R fabricated polymer solar cells studied using the LBIC technique. Sol. Energy Mater. Sol. Cells 95(5), 1348–1353 (2011)

    Article  CAS  Google Scholar 

  50. Dennler, G., Lungenschmied, C., Neugebauer, H.: Flexible, conjugated polymer-fullerene-based bulk-heterojunction solar cells: Basics, encapsulation and integration. J. Mater. Res. 20(12), 3224–3233 (2005)

    Article  CAS  Google Scholar 

  51. Lungenschmied, C., Dennler, G., Neugebauer, H.: Flexible, long-lived, large-area, organic solar cells. Sol. Energy Mater. Sol. Cells 91(5), 379–384 (2007)

    Article  CAS  Google Scholar 

  52. Tanenbaum, D.M., et al.: Edge sealing for low cost stability enhancement of roll-to-roll processed flexible polymer solar cell modules. Sol. Energy Mater. Sol. Cells 97, 157–163 (2012)

    Article  CAS  Google Scholar 

  53. Yu, G., et al.: Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270(5243), 1789–1791 (1995)

    Article  CAS  Google Scholar 

  54. Bundgaard, E., Krebs, F.C.: Low band gap polymers for organic photovoltaics. Sol. Energy Mater. Sol. Cells 91(11), 954–985 (2007)

    Article  CAS  Google Scholar 

  55. Boland, P., Lee, K., Namkoong, G.: Device optimization in PCPDTBT:PCBM plastic solar cells. Sol. Energy Mater. Sol. Cells 94(5), 915–920 (2010)

    Article  CAS  Google Scholar 

  56. Kumar, P., Chand, S.: Recent progress and future aspects of organic solar cells. Prog. Photovoltaics Res. Appl. 20, 377–415 (2011)

    Article  CAS  Google Scholar 

  57. Dang, M.T., et al.: Polymeric solar cells based on P3HT:PCBM role of the casting solvent. Sol. Energy Mater. Sol. Cells 95(12), 3408–3418 (2011)

    Article  CAS  Google Scholar 

  58. Dennler, G., Scharber, M.C., Brabec, C.J.: Polymer-fullerene bulk-hetero-junction solar cells. Adv. Mater. 21(13), 1323–1338 (2009)

    Article  CAS  Google Scholar 

  59. Padinger, F., Rittberger, R., Sariciftci, N.S.: Effects of postproduction treatment on plastic solar cells. Adv. Func. Mater. 13(1), 85–88 (2003)

    Article  CAS  Google Scholar 

  60. Benanti, T., Venkataraman, D.: Organic solar cells: an overview focusing on active layer morphology. Photosynth. Res. 87(1), 73–81 (2006)

    Article  CAS  Google Scholar 

  61. Chirvase, D., Parisi, J., Hummelen, J.: Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites. Nanotechnology 15, 1317–1323 (2004)

    Article  CAS  Google Scholar 

  62. Zhao, Y., et al.: Solvent-vapor treatment induced performance enhancement of poly (3-hexylthiophene): methanofullerene bulk-heterojunction photovoltaic cells. Appl. Phys. Lett. 90, 043504 (2007)

    Article  CAS  Google Scholar 

  63. Gevorgyan, S.A., Krebs, F.C.: Bulk heterojunctions based on nativepolythiophene. Chem. Mater. 20(13), 4386–4390 (2008)

    Article  CAS  Google Scholar 

  64. Petersen, M., Gevorgyan, S.A., Krebs, F.C.: Thermocleavable low band gap polymers and solar cells therefrom with remarkable stability toward oxygen. Macromolecules 41(23), 8986–8994 (2008)

    Article  CAS  Google Scholar 

  65. Jørgensen, M., Hagemann, O., Alstrup, J.: Thermo-cleavable solvents for printing conjugated polymers: application in polymer solar cells. Sol. Energy Mater. Sol. Cells 93(4), 413–421 (2009)

    Article  CAS  Google Scholar 

  66. Sista, S., et al.: Tandem polymer photovoltaic cells—current status, challenges and future outlook. Energy Environ. Sci. 4(5), 1606 (2011)

    Article  CAS  Google Scholar 

  67. Weickert, J., et al.: Nanostructured organic and hybrid solar cells. Adv. Mater. 23(16), 1810–1828 (2011)

    Article  CAS  Google Scholar 

  68. Peumans, P., Yakimov, A., Forrest, S.R.: Small molecular weight organic thin-film photodetectors and solar cells. J. Appl. Phys. 93(7), 3693–3723 (2003)

    Article  CAS  Google Scholar 

  69. Rand, B.P., et al.: Solar cells utilizing small molecular weight organic semiconductors. Prog. Photovoltaics Res. Appl. 15(8), 659–676 (2007)

    Article  CAS  Google Scholar 

  70. Maennig, B., et al.: Organic p-i-n solar cells. Appl. Phys. A Mater. Sci. Process. 79(1), 1–14 (2004)

    Article  CAS  Google Scholar 

  71. Riede, M., et al.: Small-molecule solar cells—status and perspectives. Nanotechnology, 19(42), 424001 (2008)

    Article  CAS  Google Scholar 

  72. Yoo, S., Domercq, B., Kippelen, B.: Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions. Appl. Phys. Lett. 85(22), 5427 (2004)

    Article  CAS  Google Scholar 

  73. Schulze, K., et al.: Efficient vacuum-deposited organic solar cells based on a new low-bandgap oligothiophene and fullerene C60. Adv. Mater. 18(21), 2872–2875 (2006)

    Article  CAS  Google Scholar 

  74. Riede, M., et al.: Efficient organic tandem solar cells based on small molecules. Adv. Func. Mater. 21(16), 3019–3028 (2011)

    Article  CAS  Google Scholar 

  75. Zhang, L., et al.: Triisopropylsilylethynyl-functionalized dibenzo[def, mno]chrysene: a solution-processed small molecule for bulk heterojunction solar cells. J. Mater. Chem. 22(10), 4266 (2012)

    Article  CAS  Google Scholar 

  76. Voigt, M.M., et al.: Gravure printing for three subsequent solar cell layers of inverted structures on flexible substrates. Sol. Energy Mater. Sol. Cells 95, 731–734 (2011)

    Article  CAS  Google Scholar 

  77. Zhang, B., Chae, H., Cho, S.: Screen-printed polymer: fullerene bulk-heterojunction solar cells. Jap. J. Appl. Phys. 48(2), 020208–1–020208–3 (2009)

    Article  CAS  Google Scholar 

  78. Lange, A., et al.: A new approach to the solvent system for inkjet-printed P3HT:PCBM solar cells and its use in devices with printed passive and active layers. Sol. Energy Mater. Sol. Cells 94(10), 1816–1821 (2010)

    Article  CAS  Google Scholar 

  79. Krebs, F.C., Jørgensen, M., Norrman, K., Hagemann, O., et al.: A complete process for production of flexible large area polymer solar cells entirely using screen printing—first public demonstration. Sol. Energy Mater. Sol. Cells 93(4), 422–441 (2009)

    Article  CAS  Google Scholar 

  80. Galagan, Y., Rubingh, J.-E., et al.: ITO-free flexible organic solar cells with printed current collecting grids. Solar Energy Mater. Solar Cells, 95(5), 1339–1343 (2011a)

    Article  CAS  Google Scholar 

  81. Hoppe, H., Seeland, M., Muhsin, B.: Optimal geometric design of monolithic thin-film solar modules: architecture of polymer solar cells. Sol. Energy Mater. Sol. Cells 97, 119–126 (2012)

    Article  CAS  Google Scholar 

  82. Manceau, M., et al.: ITO-free flexible polymer solar cells: from small model devices to roll-to-roll processed large modules. Org. Electron. 12(4), 566–574 (2011)

    Article  CAS  Google Scholar 

  83. Gutoff, E.B., Cohen, E.D.: Coating and drying defects, 2nd edn. Wiley, Hoboken, NJ (2006)

    Book  Google Scholar 

  84. Tracton, A.A.: Coatings Technology. CRC Press, Boca Raton, FL (2007)

    Google Scholar 

  85. Kipphan, H.: Handbook of print media. Springer Verlag, Berlin, Heidelberg, New York (2001)

    Book  Google Scholar 

  86. Krebs, F.C., Gevorgyan, S.A., Alstrup, J.: A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies. J. Mater. Chem. 19(30), 5442–5451 (2009)

    Article  CAS  Google Scholar 

  87. Alstrup, J., et al.: Ultra fast and parsimonious materials screening for polymer solar cells using differentially pumped slot-die coating. ACS Appl. Mater. Interfaces. 10(2), 2819–2827 (2010)

    Article  CAS  Google Scholar 

  88. Krebs, F.C., et al.: Large area plastic solar cell modules. Mater. Sci. Eng., B 138(2), 106–111 (2007)

    Article  CAS  Google Scholar 

  89. Kopola, P., et al.: High efficient plastic solar cells fabricated with a high-throughput gravure printing method. Sol. Energy Mater. Sol. Cells 94(10), 1673–1680 (2010)

    Article  CAS  Google Scholar 

  90. Hübler, A.C., et al.: Printed paper photovoltaic cells. Adv Energy Mater 1(6), 1018–1022 (2011)

    Article  CAS  Google Scholar 

  91. Deganello, D., et al.: Patterning of micro-scale conductive networks using reel-to-reel flexographic printing. Thin Solid Films 518(21), 6113–6116 (2010)

    Article  CAS  Google Scholar 

  92. Derby, B.: Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 40, 395–414 (2010)

    Article  CAS  Google Scholar 

  93. Pond, S.F.: Inkjet technology and product development strategies. Torrey Pines Res, Carlsbad (2000)

    Google Scholar 

  94. Magdassi, S.: The Chemistry of Inkjet Inks. World Scientific Publishing, Singapore (2010)

    Google Scholar 

  95. Hoth, C.N., et al.: High photovoltaic performance of inkjet printedpolymer: fullerene blends. Adv. Mater. 19(22), 3973–3978 (2007)

    Article  CAS  Google Scholar 

  96. Hoth, C.N., et al.: Printing highly efficient organic solar cells. Nano Lett. 8(9), 2806–2813 (2008)

    Article  CAS  Google Scholar 

  97. Kim, J.-M., et al.: Polymer based organic solar cells using ink-jet printed active layers. Appl. Phys. Lett. 92, 033306 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the deanship of scientific research at Islamic University (Madinah, KSA) for supporting this first (Tamayouz) program of academic year 2018/2019, research project No.: 1/40. All collaboration works are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Benghanem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benghanem, M., Almohammedi, A. (2020). Organic Solar Cells: A Review. In: Mellit, A., Benghanem, M. (eds) A Practical Guide for Advanced Methods in Solar Photovoltaic Systems. Advanced Structured Materials, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-030-43473-1_5

Download citation

Publish with us

Policies and ethics