Skip to main content

Theoretical Study of Quantum Well GaAsP(N)/GaP Structures for Solar Cells

  • Chapter
  • First Online:
A Practical Guide for Advanced Methods in Solar Photovoltaic Systems

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 128))

Abstract

In this theoretical study, we simulate a compressively strained GaAsxP1−x and tensile strain GaNyAsxP1−xy quantum well active zones with the aim to be inserted in solar cells. We will compare the ternary GaAsP/GaP and quaternary GaNAsP/GaP quantum well structures (QWs) by modeling these two types of systems. We first studied the introduction effect of arsenic (As) into the host material GaP and the optoelectronic properties of the obtained ternary alloy GaAsP. Then, we study the additional effect of just a few percent of nitrogen (N) in this ternary alloy. Incorporate nitrogen into the GaAsP alloy has been shown to split the conduction band into two bands E+ and E causing a reduction of the band gap energy. Addition of nitrogen to GaAsP induces a redshift in the emission wavelengths and increases the absorption coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tibbits, T.N.D., Beutel, P., Grave, M., Karcher, C., Oliva, E., Siefer, G. et al.: New efficiency frontiers with wafer-bonded multi-junction solar cells. In: Proceeding, The 29th European PV Solar Energy Conference and Exhibition. pp. 1–4 (2014)

    Google Scholar 

  2. Durand, O., Almosni, S., Cornet, C., Létoublon, A., Levallois, C., Rolland, A., Even, J., Rale, P., Lombez, L., Guillemoles, J.F.: Multijunctionphotovoltavics: integrating III–V semiconductor heterostructures on silicon. SPIE 1–3 (2015)

    Google Scholar 

  3. Luceño-Sánchez, J.A., Díez-Pascual, A.M., Capilla, R.P.: Materials for photovoltaics: state of art and recent developments. Int. J. Mol. Sci. 20, 1–42 (2019)

    Article  Google Scholar 

  4. Almosni, S., Delamarre, A., Jehla, Z., Suche, D. et al.: Material challenges for solar cells in the twenty-first century: directions in emerging technologies. Sci. Technol. Adv. Mater. 19, 336–369 (2018)

    Google Scholar 

  5. Mawst, L.J., Kim, T.W., Kim, H., Kim, Y., Kim, K., Lee, J.J., Kuech, T.F., Lingley, Z.R., LaLumondiere, S.D., Sin, Y., Lotshaw, W.T., Moss, S.C.: Dilute-nitride-antimonide materials grown by MOVPE for multi-junction solar cell application. ECS Trans. 66, 101–108 (2015)

    Article  CAS  Google Scholar 

  6. Kim, T.W., Forghani, K., Mawst, L.J., Kuech, T.F., LaLumondiere, S.D., Sin, Y., Lotshaw, W.T., Moss, S.C.: Properties of ‘bulk’ GaAsSbN/GaAs for multi-junction solar cell application: reduction of carbon background concentration. J. Cryst. Growth 393, 70–74 (2014)

    Article  CAS  Google Scholar 

  7. Kim, T.W., Kuech, T.F., Mawst, L.J.: Impact of growth temperature and substrate orientation on dilute-nitride-antimonide materials grown by MOVPE for multi-junction solar cell application. J. Cryst. Growth 405, 87–91 (2014)

    Article  CAS  Google Scholar 

  8. Gubanov, A., Polojärvi, V., Aho, A., Tukiainen, A., Tkachenko, N.V., Guina, M.: Dynamics of time-resolved photoluminescence in GaInNAs and GaNAsSb solar cells. Nanoscale Res. Lett. 9, 1–4 (2014)

    Article  CAS  Google Scholar 

  9. Tukiainen, A., Aho, A., Polojärvi, V., Ahorinta, R., Guina, M.: High efficiency dilute nitride solar cells: Simulations meet experiments. J. Green Eng. 5, 113–132 (2016)

    Article  Google Scholar 

  10. Rolland, A., Pedesseau, L., Even, J., Almosni, S., Robert, C., Cornet, C., Jancu, J.M., Benhlal, J., Durand, O., Le Corre, A., Rale, P., Lombez, L., Guillemoles, J.F., Tea, E., Laribi, S.: Design of a lattice-matched III–V–N/Si photovoltaic tandem cell monolithically integrated on silicon substrate. Opt. Quant. Electron. 46, 1397–1403 (2014)

    Article  CAS  Google Scholar 

  11. Zou, Y., Zhang, C., Honsberg, C., Vasileska, D., King, R., Goodnick, S.: A lattice-matched GaNP/Si three-terminal tandem solar cell. In: IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC). pp. 279–282 (2018)

    Google Scholar 

  12. Durand, O., Almosni, S., Wang, Y.P., Cornet, C., Létoublon, A., et al.: Monolithic integration of diluted-nitride III–V–N compounds on silicon substrates: toward the III–V/Si concentrated photovoltaics. Energy Harvesting Syst. 1, 147–156 (2014)

    Google Scholar 

  13. Bamham, K., Ballard, I., Barnes, J., Connolly, J., Griffin, P., Kluftinger, B., Nelson, J., Tsui, E., Zachariou, A.: Quantum well solar cells. Appl. Surf. Sci. 113(l14), 722–733 (1997)

    Google Scholar 

  14. Sayed, I., Bedair, S.M.: Quantum well solar cells: principles, recent progress, and potential. IEEE J. Photovoltaics 9, 402–423 (2019)

    Article  Google Scholar 

  15. Cabrera, C.I., Rimada, J.C., Courel, M., Hernandez, L., Connolly, J.P., Enciso, A., Contreras-Solorio, D.A.: Modeling multiple quantum well and superlattice solar cells. Nat. Resour. 4, 235–245 (2013)

    Google Scholar 

  16. Vaisman, M., Fan, S., Yaung, K.N., Perl, E., Martín-Martín, D., Yu, Z.J., Leilaeioun, M., Holman, Z.C., Lee, M.L.: 15.3%-Efficient GaAsP solar cells on GaP/Si templates. ACS Energy Lett. 2, 1–33 (2017)

    Google Scholar 

  17. Grassman, T.J., Chmielewski, D.J., Carnevale, S.D., Carlin, J.A., Ringel, S.A.: GaAs0.75P0.25/Si dual-junction solar cells grown by MBE and MOCVD. IEEE J. Photovoltaics 6, 326–331 (2016)

    Article  Google Scholar 

  18. Kim, B., Toprasertpong, K., Paszuk, A., Supplie, O., Nakano, Y., Hannappel, T., Sugiyama, M.: GaAsP/Si tandem solar cells: realistic prediction of efficiency gain by applying strain-balanced multiple quantum wells. Sol. Energy Mater. Sol. Cells 180, 303–310 (2017)

    Article  Google Scholar 

  19. Yaung, K.N., Lang, J.R., Lee, M.L.: Towards high efficiency GaAsP solar cells on (001) GaP/Si. In: IEEE 40th Photovoltaic Specialist Conference (PVSC). pp 831–835 (2014)

    Google Scholar 

  20. Fan, S., Yu, Z.J., Sun, Y., Weigand, W., Dhingra, P., Kim, M., Hoola, R.D., Ratta, E.D., Holman, Z.C., Lee, M.L.: 20% efficient epitaxial GaAsP/Si tandem solar cells. Sol. Energy Mater. Sol. Cells 202, 110144 (1/8)

    Google Scholar 

  21. Shakfa, M.K., Woscholski, R., Gies, S., Wegele, T., Wiemer, M., Ludewig, P., Jandieri, K., Baranovskii, S.D., Stolz, W., Volz, K., Heimbrodt, W., Koch, M.: Carrier dynamics in Ga(NAsP)/Si multi-quantum well heterostructures with varying well thickness. Superlattices Microstruct. 93, 67–72 (2016)

    Article  CAS  Google Scholar 

  22. Almosni, S., Robert, C., Thanh, T.N., Cornet, C., Létoublon, A. et al.: Evaluation of InGaPN and GaAsPN materials lattice-matched to Si for multi-junction solar cells. J. Appl. Phys. 113, 123509 (1/6) (2013)

    Google Scholar 

  23. Robert, C., Bondi, A., Nguyen Thanh, T., Even, J., Cornet, C. et al.: Room temperature operation of GaAsP(N)/GaP(N) quantum well based light-emitting diodes: effect of the incorporation of nitrogen. Appl. Phys. Lett. 98, 251110 (2011)

    Article  Google Scholar 

  24. Rosemann, N.W., Metzger, B., Kunert, B., Volz, K., Stolz, W., Chatterjee, S.: Temperature-dependent quantum efficiency of Ga(N, As, P) quantum wells. Appl. Phys. Lett. 103, 252105 (2013)

    Article  Google Scholar 

  25. Németh, I., Torunski, T., Kunert, B., Stolz, W., Volz, K.: Microstructural analysis of Ga(NAs)/GaP heterostructures. J. Appl. Phys. 101, 123524 (2007)

    Article  Google Scholar 

  26. Almosni, S., Rale, P., Cornet, C., Perrin, M., Lombez, L., Létoublon, A., Tavernier, K., Levallois, C., Rohel, T., Bertru, N., Guillemoles, J.F., Durand, O.: Correlations between electrical and optical properties in lattice-matched GaAsPN/GaP solar cells. Sol. Energy Mater. Sol. Cells 147, 53–60 (2016)

    Article  CAS  Google Scholar 

  27. Ilahi, S., Almosni, S., Chouchane, F., Perrin, M., Zelazna, K., Yacoubi, N., Kudrawiec, R., Râle, P., Lombez, L., Guillemoles, J.-F., Durand, O., Cornet, C.: Optical absorption and thermal conductivity of GaAsPN absorbers grown on GaP in view of their use in multijunction solar cells. Sol. Energy Mater. Sol. Cells 141, 291–298 (2015)

    Article  CAS  Google Scholar 

  28. Chenini, L., Aissat, A., Vilcot, J.P.: Theoretical study of intersubband absorption coefficient of conduction band in GaAsP/GaP quantum well structures. In: IEEE, 2019 International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET) (2019)

    Google Scholar 

  29. Adachi, S.: Material for optoelectronics and photonics. In: Springer Handbook of Electronic and Photonic Materials. pp. 725–741 (2017)

    Google Scholar 

  30. Zhang, Y., Ning, Y., Zhang, L., Zhang, J., Zhang, J., Wang, Z., Zhang, J., Zeng, Y., Wang, L.: Design and comparison of GaAs, GaAsP and InGaAlAs quantum-well active regions for 808-nm VCSELs. Opt. Express 19, 1–13 (2011)

    Article  Google Scholar 

  31. Kudrawiec, R.: Parametrization of energy gap at the Γ point and outside this point for dilute nitrides: Ga1−yInyNxP1−x and GaNxAs1−x−zPz alloys. J. Appl. Phys. 105, 063529 (2009)

    Article  Google Scholar 

  32. Aissat, A., Nacer, S., Bensebti, M., Vilcot, J.P.: Investigation on the emission wavelength of GaInNAs/GaAs strained compressive quantum wells on GaAs substrates. Microelectron. J. 39, 63–66 (2008)

    Article  CAS  Google Scholar 

  33. Bousbih, F., Ben Bouzid, S., Chtourou, R., Charfi, F.F., Harmand, J.C., Ungaro, G.: Effect of nitrogen in the electronic structure of GaAsN and GaAsSb(N) compounds. Mater. Sci. Eng. C 21, 251–254 (2002)

    Article  Google Scholar 

  34. Zhao, C.Z., et al.: The parameters in the band-anticrossing model for InxGa1-xNyP1-y before and after annealing. Sci. China Phys. Mech. Astron. 52, 2160–2163 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Aissat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chenini, L., Aissat, A. (2020). Theoretical Study of Quantum Well GaAsP(N)/GaP Structures for Solar Cells. In: Mellit, A., Benghanem, M. (eds) A Practical Guide for Advanced Methods in Solar Photovoltaic Systems. Advanced Structured Materials, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-030-43473-1_4

Download citation

Publish with us

Policies and ethics