Skip to main content

Optical Optimization of Tandem Structure Formed by Organic Photovoltaic Cells Based on P3HT: PCBM and PBBTDPP2: PCBM Interpenetrating Blends

  • Chapter
  • First Online:
A Practical Guide for Advanced Methods in Solar Photovoltaic Systems

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 128))

Abstract

The chapter focuses on the optical optimization of the tandem structure composed of organic photovoltaic (OPV) cells based on interpenetrating blend materials P3HT: PCBM and pBBTDPP2: PCBM. For this purpose, a simulation based on the transfer matrix formalism is developed. The aim is to calculate the current (JSC) (assuming 100% internal Quantum efficiency). Optical performance of the two OPV cells separately is studied. Firstly, the P3HT: PCBM OPV cell is optimized to find the geometry of the stack giving the best optical properties. The OPV cell structure is given by: glass/ITO/PEDOT: PSS/P3HT: PCBM/Ca/Al. The best JSC current value (in this case 12.48 mA/cm2) is reached for an active layer thickness dActive layer = 91 nm. In a second time, the optical yield of the OPV cell based on pBBTDPP2: PCBM interpenetrating blend is optimized. A comparison of the optical performance of this cell with those of OPV cells based on materials commonly used in the field of OPVs is carry out. The simulation shows a pBBTDPP2: PCBM interpenetrating blend OPV cell offering the best result (JSC = 17 mA/cm2) in addition of a high absorption in the 600–800 nm range. Finally, the tandem structure formed by the two OPV cells is studied taking into account the arrangement of the two cells with respect to each other. Two configurations are considered namely, the Normal Tandem Solar Cell (NTSC) which considers P3HT: PCBM blend layer as the front active layer and pBBTDPP2: PCBM blend layer as the back active layer and the Reverse Tandem Solar Cell (RTSC) which considers pBBTDPP2: PCBM blend layer on top of the tandem structure and P3HT: PCBM blend layer on the back of the device. The aim is to find for both configurations the optimized thicknesses of the blend active layers of the front and rear OPV cells giving the highest current matching. Results show that NTSC configuration is more efficient for the large thicknesses of the top cell, whereas the RTSC configuration is more efficient for the thin thicknesses of the top cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dennler, G., Scharber, M.C., Brabec, C.J.: Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 21, 1323–1338 (2009)

    Article  CAS  Google Scholar 

  2. Nelson, J.: Polymer: fullerene bulk heterojunction solar cells. Mater. Todays 14(10), 462–470 (2011)

    Article  CAS  Google Scholar 

  3. Gevaerts, V.S., Anton Koster, L.J., Wienk, M.M., Janssen, R.A.J.: Discriminating between bilayer and bulk heterojunction polymer: fullerene solar cells using the external quantum efficiency. ACS Appl. Mater. Interfaces. 3, 3252–3255 (2011)

    Article  CAS  Google Scholar 

  4. Rasi, D.D.C., Janssen, R.A.J.: Advances in solution-processed multijunction organic solar cells. Adv. Mater. 31, 1806499 (2019)

    Google Scholar 

  5. Meng, L., Zhang, Y., Wan, X., Li, C., Zhang, X., Wang, Y., Ke, X., Xiao, Z., Ding, L., Xia, R., Yip, H.-L., Cao, Y. Chen, Y.: Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361, 1094–1098 (2018)

    Google Scholar 

  6. Gilot, J., Wienk, M.M., Janssen, R.A.J.: Optimizing polymer tandem solar cells. Adv. Energy Mater. 22, E67–E71 (2010)

    Article  CAS  Google Scholar 

  7. Wang, Z., Zhang, C., Chen, D., Zhang, J., Feng, Q., Xu, S., Zhou, X., Hao, Y.: Investigation of controlled current matching in polymer tandem solar cells considering different layer sequences and optical spacer. Jpn. J. Appl. Phys. 51, 122301 (2012)

    Article  Google Scholar 

  8. Pettersson, L.A.A., Roman, L.S., Inganas, O.: Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 86(1), 487–496 (1999)

    Article  CAS  Google Scholar 

  9. Peumans, P, Yakimov, A., Forrest, S.R.: Small molecular weight organic thin-film photodetectors and solar cells. J. Appl. Phys. 93(7) (2003)

    Article  CAS  Google Scholar 

  10. Monestier, F., Simon, J.J., Torchio, P., Escoubas, L., Flory, F., Bailly, S., de Bettignies, R., Guillerez, S., Defranoux, C.: Modeling the short-circuit current density of polymer solar cells based on P3HT:P CBM blend. Solar Energy Mater. Solar Cells 91(5), 405–410 (2007)

    Article  CAS  Google Scholar 

  11. Nam, Y., Huh, J., Jo, W.H.: Optimization of thickness and morphology of active layer for high performance of bulk-heterojunction organic solar cells. Sol. Energy Mater. Sol. Cells 94, 1118–1124 (2010)

    Article  CAS  Google Scholar 

  12. Liang, C., Wang, Y., Li, D., Ji, X., Zhang, F., He, Z.: Modeling and simulation of bulk heterojunction polymer solar cells. Sol. Energy Mater. Sol. Cells 127, 67–86 (2014)

    Article  CAS  Google Scholar 

  13. Burkhard, G.F., Hoke, E.T.: Transfert Matrix Optical Modeling. McGehee Group (Stanford Univ). http://www.stanford.edu/group/mcgehee (2011)

  14. Burkhard, G.F., Hoke, E.T., McGehee, M.D.: Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells. Adv. Mater. 22, 3293–3297 (2010)

    Article  CAS  Google Scholar 

  15. Vedraine, S., Torchio, Ph., Derbal-Habak, H., Flory, F., Brissonneau, V., Duché, D., Simon, J.J., Escoubas, L.: Plasmonic structures integrated in organic solar cells. Proc. SPIE Conf. 7772, 777219-1–6777219-6 (2010)

    Google Scholar 

  16. Guedes, A.F.S., Guedes,, V.P., Tartari, S., Souza, M.L., Cunha, I.J.: New organic semiconductor materials applied in organic photovoltaic and optical devices. Systemics, Cybern. Inform. 13(2), 38–40 (2015)

    Google Scholar 

  17. Abada, Z., Mellit, A.: Optical optimization of organic solar cells based on P3HT: PCBM interpenetrating blend. In: 2017 5th International Conference on Electrical Engineering—Boumerdes (ICEE-B), pp. 1–6, (2017). https://doi.org/10.1109/icee-b.2017.8191966

  18. Shen, H., Maes, B.: Combined plasmonic gratings in organic. Opt. Express 19(S6), A1202–A1210 (2011)

    Article  CAS  Google Scholar 

  19. Niggemann, M., Ziegler, T., Glatthaar, M., Riede, M., Zimmermann, B., Gombert, A.: Optical near field phenomena in planar and structured organic solar cells. Proc. SPIE Photonics Sol. Energy Syst. 6197, 61970D-1–61970D-10 (2006)

    Google Scholar 

  20. Armin, A., Velusamy, M., Wolfer, P., Zhang, Y., Burn, P.L., Meredith, P., Pivrikas, A.: Quantum efficiency of organic solar cells: electro-optical cavity considerations. ACS Photonics 1(3), 173–181 (2014)

    Article  CAS  Google Scholar 

  21. Supriyanto, A., Mustaqim, A., Agustin, M., Ramelan, A.H., Septa Rosa, S.E., Yofentina, Nurosyid, F.: Fabrication of organic solar cells with design blend P3HT: PCBM variation of mass ratio. In: IOP Conference Series: Materials Science and Engineering. vol. 107, p. 012050. https://doi.org/10.1088/1757-899x/107/1/012050 (2016)

    Article  Google Scholar 

  22. You, J., Dou, L., Hong, Z., Li, G., Yang, Y.: Recent trends in polymer tandem solar cells research. Progress Polym. Sci. 38, 1909–1928 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The second author would like to thank the Simons Foundation for financial support. A part of this work was carried out at the ICTP, Trieste, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Abada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abada, Z., Mellit, A. (2020). Optical Optimization of Tandem Structure Formed by Organic Photovoltaic Cells Based on P3HT: PCBM and PBBTDPP2: PCBM Interpenetrating Blends. In: Mellit, A., Benghanem, M. (eds) A Practical Guide for Advanced Methods in Solar Photovoltaic Systems. Advanced Structured Materials, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-030-43473-1_3

Download citation

Publish with us

Policies and ethics