Skip to main content

Photovoltaic Plant Output Power Forecast by Means of Hybrid Artificial Neural Networks

  • Chapter
  • First Online:
A Practical Guide for Advanced Methods in Solar Photovoltaic Systems

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 128))

Abstract

The main goal of this chapter is to show the set up a well-defined method to identify and properly train the hybrid artificial neural network both in terms of number of neurons, hidden layers and training set size in order to perform the day-ahead power production forecast applicable to any photovoltaic (PV) plant, accurately. Therefore, this chapter has been addressed to describe the adopted hybrid method (PHANN—Physic Hybrid Artificial Neural Network) combining both the deterministic clear sky solar radiation algorithm (CSRM) and the stochastic artificial neural network (ANN) method in order to enhance the day-ahead power forecast. In the previous works, this hybrid method had been tested on different PV plants by assessing the role of different training sets varying in the amount of data and number of trials, which should be included in the “ensemble forecast.” In this chapter, the main results obtained by applying the above-mentioned procedure specifically referred to the available data of the PV power production of a single PV module are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mitcell, R.B.: International Environmental Agreements Database Project (Version 2014.3) [Online]. Available: https://iea.uoregon.edu/. Accessed 20 Dec 2019

  2. OECD/IEA and IRENA: Perspectives for the Energy Transition: Investment Needs for a Low-Carbon Energy System, p. 204. International Energy Agency (2017)

    Google Scholar 

  3. IEA: Executive Summary of the World Energy Investment, 2018. International Energy Agency (IEA) [Online]. Available: https://webstore.iea.org/download/summary/1242?fileName=English-WEI-2018-ES.pdf (2018). Accessed 20 Dec 2019

  4. Renewables 2018. Solar Energy [Online]. Available: https://www.iea.org/topics/renewables/solar/. Accessed 20 Dec 2019

  5. Coimbra, C.F.M., Kleissl, J., Marquez, R.: Overview of solar-forecasting methods and a metric for accuracy evaluation. In: Solar Energy Forecasting and Resource Assessment, pp. 171–193 (2013)

    Chapter  Google Scholar 

  6. World Meteorological Organization: Manual on the Global Data-Processing and Forecasting System, vol. WMO-No. 48, no. 485 (2010)

    Google Scholar 

  7. Das, U.K., et al.: Forecasting of photovoltaic power generation and model optimization: a review. Renew. Sustain. Energy Rev. 81, 912–928 (2018)

    Article  Google Scholar 

  8. Ulbricht, R., Fischer, U., Lehner, W., Donker, H.: First steps towards a systematical optimized strategy for solar energy supply forecasting. In: ECML/PKDD 2013, 1st International Workshop on Data Analytics for Renewable Energy Integration, pp. 14–25 (2013)

    Google Scholar 

  9. Mellit, A., Pavan, A.M.: A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy. Sol. Energy 84(5), 807–821 (2010)

    Article  Google Scholar 

  10. Reikard, G.: Predicting solar radiation at high resolutions: a comparison of time series forecasts. Sol. Energy 83(3), 342–349 (2009)

    Article  CAS  Google Scholar 

  11. Izgi, E., Öztopal, A., Yerli, B., Kaymak, M.K., Şahin, A.D.: Short-mid-term solar power prediction by using artificial neural networks. Sol. Energy 86(2), 725–733 (2012)

    Article  Google Scholar 

  12. Shi, J., Lee, W.J., Liu, Y., Yang, Y., Wang, P.: Forecasting power output of photovoltaic systems based on weather classification and support vector machines. IEEE Trans. Ind. Appl. 48(3), 1064–1069 (2012)

    Article  Google Scholar 

  13. Pedro, H.T.C., Coimbra, C.F.M.: Assessment of forecasting techniques for solar power production with no exogenous inputs. Sol. Energy 86(7), 2017–2028 (2012)

    Article  Google Scholar 

  14. Monteiro, C., Fernandez-Jimenez, A., Ramirez-Rosadoc, I., Munoz-Jimenez, A., Lara-Santillan, P.: Short-term forecasting models for photovoltaic plants: analytical versus soft-computing techniques. Math. Probl. Eng. 9 (2013)

    Google Scholar 

  15. Wang, F., Mi, Z., Su, S., Zhao, H.: Short-term solar irradiance forecasting model based on artificial neural network using statistical feature parameters. Energies 5(5), 1355–1370 (2012)

    Article  Google Scholar 

  16. Yang, H.-T., Chao-Ming, H., Huang, Y.-C., Yi-Shiang, P.: A weather-based hybrid method for one-day ahead hourly forecasting of PV power output. In: Proceedings of 2014 9th IEEE Conference on Industrial Electronics and Applications, ICIEA 2014, vol. 5, no. 3, pp. 526–531 (2014)

    Google Scholar 

  17. Dolara, A., Lazaroiu, G.C., Leva, S., Manzolini, G.: Experimental investigation of partial shading scenarios on PV (photovoltaic) modules. Energy 55, 466–475 (2013)

    Article  CAS  Google Scholar 

  18. Bacher, P., Madsen, H., Nielsen, H.A.: Online short-term solar power forecasting. Sol. Energy 83(10), 1772–1783 (2009)

    Article  Google Scholar 

  19. Iqdour, R., Zeroual, A.: A rule based fuzzy model for the prediction of daily solar radiation. In: Proceedings of IEEE International Conference on Industrial Technology, vol. 3, pp. 1482–1487 (2004)

    Google Scholar 

  20. Capizzi, G., Bonanno, F., Napoli, C.: A wavelet based prediction of wind and solar energy for long-term simulation of integrated generation systems. In: SPEEDAM 2010—International Symposium on Power Electronics, Electrical Drives, Automation and Motion, no. 3, pp. 586–592 (2010)

    Google Scholar 

  21. Chen, S.H., Jakeman, A.J., Norton, J.P.: Artificial intelligence techniques: an introduction to their use for modelling environmental systems. Math. Comput. Simul. 78(2–3), 379–400 (2008)

    Article  Google Scholar 

  22. Sfetsos, A., Coonick, A.H.: Univariate and multivariate forecasting of hourly solar radiation with artificial intelligence techniques. Sol. Energy 68(2), 169–178 (2000)

    Article  Google Scholar 

  23. Ogliari, E., Grimaccia, F., Leva, S., Mussetta, M.: Hybrid predictive models for accurate forecasting in PV systems. Energies 6(4), 1918–1929 (2013)

    Article  Google Scholar 

  24. Soman, S.S., Zareipour, H., Malik, O., Mandal, P.: A review of wind power and wind speed forecasting methods with different time horizons. In: North American Power Symposium 2010, NAPS 2010, pp. 1–8 (2010)

    Google Scholar 

  25. Rosenblatt, F.: Principles of neurodynamics: perceptron and the theory of brain mechanism. Am. Math. Mon.VG-1196-G-8, 3–621 (1961)

    Google Scholar 

  26. Krose, B., van der Smagt, P.: Introduction to neural networks. Int. J. Join. Mater. 6(1), 4–6 (1994)

    Google Scholar 

  27. Jain, A.K., Mao, J., Mohiuddin, K.M.: Artificial neural networks: a tutorial. Computer (Long. Beach. Calif.) 29(3), 31–44 (1996)

    Article  Google Scholar 

  28. Dolara, A., Grimaccia, F., Leva, S., Mussetta, M., Ogliari, E.: Comparison of training approaches for photovoltaic forecasts by means of machine learning. Appl. Sci. 8(2), 228 (2018)

    Article  Google Scholar 

  29. Leva, S., Mussetta, M., Ogliari, E.: PV module fault diagnosis based on micro-converters and day-ahead forecast. IEEE Trans. Ind. Electron. 1 (2018)

    Google Scholar 

  30. Kasten, F., Czeplak, G.: Solar and terrestrial radiation dependent on the amount and type of cloud. Sol. Energy 24(2), 177–189 (1980)

    Article  Google Scholar 

  31. Bird, R.E., Riordan, C.: Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth’s surface for cloudless atmospheres. J. Clim. Appl. Meteorol. 25, 87–97 (1986)

    Article  Google Scholar 

  32. Coimbra, C.F.M., Kleissl, J., Marquez, R.: Chapter 8—overview of solar-forecasting methods and a metric for accuracy evaluation. In: Kleissl, J. (ed.) Solar Energy Forecasting and Resource Assessment, pp. 171–194. Academic Press, Boston (2013)

    Chapter  Google Scholar 

  33. Murphy, A.H.: Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Weather Rev. 116, 2417–2424 (1988)

    Article  Google Scholar 

  34. Beale, M.H., Hagan, M.T., Demuth, H.B.: Neural Network Toolbox™ User’s Guide. MathWorks Inc, USA (1992)

    Google Scholar 

  35. Grimaccia, F., Leva, S., Mussetta, M., Ogliari, E.: ANN sizing procedure for the day-ahead output power forecast of a PV plant. Appl. Sci. 7(6) (2017)

    Article  Google Scholar 

  36. Leva, S., Dolara, A., Grimaccia, F., Mussetta, M., Ogliari, E.: Analysis and validation of 24 hours ahead neural network forecasting of photovoltaic output power. Math. Comput. Simul. 131, 88–100 (2017)

    Article  Google Scholar 

  37. Leva, S., Mussetta, M., Nespoli, A., Ogliari, E.: PV power forecasting improvement by means of a selective ensemble approach. In: 2019 IEEE Milan PowerTech, pp. 1–5 (2019)

    Google Scholar 

  38. Ogliari, E., Dolara, A., Manzolini, G., Leva, S.: Physical and hybrid methods comparison for the day ahead PV output power forecast. Renew. Energy 113, 11–21 (2017)

    Article  Google Scholar 

  39. Ogliari, E., Niccolai, A., Leva, S., Zich, R.E.: Computational intelligence techniques applied to the day ahead PV output power forecast: PHANN, SNO and mixed. Energies 11(6), 1487 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ogliari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ogliari, E., Nespoli, A. (2020). Photovoltaic Plant Output Power Forecast by Means of Hybrid Artificial Neural Networks. In: Mellit, A., Benghanem, M. (eds) A Practical Guide for Advanced Methods in Solar Photovoltaic Systems. Advanced Structured Materials, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-030-43473-1_10

Download citation

Publish with us

Policies and ethics