Skip to main content

Study of Dynamic Behavior Milling for an Aluminum Alloy Part of Type 6061-T6

  • Conference paper
  • First Online:
Proceedings of the 4th International Symposium on Materials and Sustainable Development (ISMSD 2019)

Included in the following conference series:

  • 302 Accesses

Abstract

During a machining operation, the cutting forces cause a relative movement between the part and the tool that melts the various cutting forces. This phenomenon, called regenerative vibration (self-sustaining), greatly affects the tool life and surface condition of the part. Traditional regenerative stability theory predicts a set of optimally stable spindle speedsat integer fractions of the natural frequency of the most flexible mode of the system. Being able to predict these phenomena therefore makes it easier to choose cutting conditions in order to improve productivity. Over the past twenty years, many theoretical models have been developed for various applications, but there have been very few studies on the particular case of three-axis milling. In this research, it is planned to study the stability of milling operations using a hemispheric tool, using differential equations of delay terms. In this article, a different model is proposed compared to the existing models for peripheral milling and for an aluminum alloy part of type 6061-T6. The model is based on the method of discretization of the lagged terms of the dynamic equation. The work was devoted first to the study of stability by the semi-discretization method, using end mill and secondly to the study of stability by the semi-discretization method, using ball-end mill.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Tlusty, J.: Manufacturing Processes and Equipment, p. 2000. Prentice Hall, Upper Saddle River (2000)

    Google Scholar 

  • Taylor, F.W.: On the art of cutting metals. Trans. ASME 28, 31–350 (1907)

    Google Scholar 

  • Tlusty, J., Polacek, A., Danek, C., Spacek, J.: SelbsterregteSchwin-gungenanWerkzeug-maschinen. VEB Verlag Technik, Berlin (1962)

    Google Scholar 

  • Tobias, A.: Machine Tool Vibration, p. 1965. Blackie, London (1962)

    Google Scholar 

  • Kudinov, V.A.: Theory of vibration generated from metal cutting. New Technology of Mechanical Engineering. USSR Academy of Sciences Publishing House, Moscow (1955). (in Russian)

    Google Scholar 

  • Kudinov, V.A.: Dynamics of Tool-Lathe. Mashinos-troenie, Moscow (1967). (in Russian)

    Google Scholar 

  • Moon, F.C.: Dynamics and Chaos in Manufacturing Processes, p. 1998. Wiley, New York (1998)

    Google Scholar 

  • Seagalman, D.J., Butcher, E.A.: Suppression of regenerative chatter via impendance modulation. J. Vibr. Control 6(2000), 243–256 (2000)

    Article  Google Scholar 

  • Stépán, G.: Modelling nonlinear regenerative effects in metal cutting. Philos. Trans. Roy. Soc. 359, 739–757 (2001)

    Article  Google Scholar 

  • Gouskov, A.M., Voronov, S.A., Paris, H., Batzer, S.A.: Cylindrical workpiece turning using multiple-cutter tool heads. In: Proceedings of the ASME (2001)

    Google Scholar 

  • Minis, I., Yanushevsky, R.: A new theoretical approach for the prediction of machine tool chatter in milling. J. Eng. Ind. 115(1993), 1–8 (1993)

    Article  Google Scholar 

  • Stépán, G.: Retarded Dynamical Systems, Longman, Harlow (1989)

    Google Scholar 

  • Shi, H.M., Tobias, S.A.: Theory of finite amplitude machine tool instability. Int. J. Mach. Tool Des. Res. 24(1984), 45–69 (1984)

    Article  Google Scholar 

  • Steépan, G., Kalmar-Nagy, T.: Nonlinear regenerative machine tool vibration. In: Proceedings of the 1997 (1997)

    Google Scholar 

  • Balachandran, B.: Nonlinear dynamics of milling processes. Phil. Trans. Roy. Soc. Lond. A. 359(1781), 793–819 (2001)

    Article  Google Scholar 

  • Young, S.M.: Dynamics of low immersion milling. Master of Science (2008)

    Google Scholar 

  • Moreau, V.: Etude dynamique de l’usinage et de l’interaction pièce-outil par mesure des déplacements: application au fraisage et au tournage. École doctorale n° 432. Sciences des Métiers de l’Ingénieur, institut des sciences et technologies ParisTech, Arts et Métiers (2010)

    Google Scholar 

  • Altintas, Y.: Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design, p. 2000. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  • Piègne, G.: Etude et simulation des effets dynamiques de la coupe sur la stabilité de la coupe et la qualité géométrique de la surface usinée: application au fraisage de profil. Thèse de Doctorat, Université de Grenoble (2003)

    Google Scholar 

  • Seguy, S.: De l’adaptation à la variation continue de la vitesse de broche afin de contrôler le broutement en fraisage de parois minces, modélisations et études expérimentales. Thèse de Doctorat, l’Institut National Polytechnique de Toulouse, 3 December 2008 (2008)

    Google Scholar 

  • Davies, M.A., et al.: Stability prediction for low radial immersion milling. J. Manuf. Sci. Eng. 124(2), 217–225 (2002)

    Article  Google Scholar 

  • Zeroudi, N.: Prédiction des efforts de coupe en fraisage 3 axes à partir de trajectoires issues de FAO. Thèse de Doctorat, Ecole Militaire Polytechnique (2012)

    Google Scholar 

  • Fontaine, M.: Predictive force model for ball-end milling and experimental validation with a wavelike form machining test (2006)

    Google Scholar 

  • Fontaine, M.: Modelling of cutting forces in ball-end milling with tool–surface inclination part I: predictive force model and experimental validation (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ikkache .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ikkache, K., Chellil, A., Lecheb, S., Sichaib, M.O. (2020). Study of Dynamic Behavior Milling for an Aluminum Alloy Part of Type 6061-T6. In: Benmounah, A., Abadlia, M.T., Saidi, M., Zerizer, A. (eds) Proceedings of the 4th International Symposium on Materials and Sustainable Development. ISMSD 2019. Springer, Cham. https://doi.org/10.1007/978-3-030-43268-3_8

Download citation

Publish with us

Policies and ethics