Skip to main content

18F-Labeled Small-Molecule and Low-Molecular-Weight PET Tracers for the Noninvasive Detection of Cancer

  • Chapter
  • First Online:
Molecular Imaging in Oncology

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 216))

Abstract

Noninvasive molecular imaging of cancer by means of the scintigraphic imaging modalities PET, PET/CT, and PET/MRI represents a powerful diagnostic tool in modern nuclear medicine. Radiotracers labeled with the prominent positron emitter fluorine-18 are routinely used to target and visualize discrete biological structures dysregulated in the progression of cancer. Such tracers are therefore capable of detecting oncological pathologies in vivo at the cellular and subcellular level in a timely manner and are thereby used for early detection of cancer as well as monitoring for treatment response. This chapter describes a variety of important 18F-labeled radiopharmaceuticals that are frequently used in oncological PET imaging. Small-molecule and low-molecular-weight radiotracers for the detection of glucose utilization, amino acid transport, protein synthesis, membrane lipid synthesis, cell proliferation, cell death, hypoxia, estrogen receptor status, prostate-specific membrane antigen (PSMA) expression, and bone mineralization of tumors are introduced. The structural properties, common radiochemical synthesis approaches as well as in vivo metabolism and accumulation mechanisms of the clinically most important 18F-labeled radiotracers are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afshar-Oromieh A, Haberkorn U, Eder M, Eisenhut M, Zechmann C (2012) [68Ga]Gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: comparison with 18F-FECH. Eur J Nucl Med Mol Imaging 39(6):1085–1086

    CAS  Google Scholar 

  2. Alauddin MM (2018) Journey of 2′-deoxy-2′-fluoro-5-methyl-1-beta-D-arabinofuranosyluracil (FMAU): from antiviral drug to PET imaging agent. Curr Med Chem 25(16):1867–1878

    CAS  PubMed  Google Scholar 

  3. Alauddin MM, Conti PS, Fissekis JD (2003) A general synthesis of 2′-deoxy-2′-[18F]fluoro-1-β-D-arabinofuranosyluracil and its 5-substituted nucleosides. J Label Compd Rad 46(4):285–289

    CAS  Google Scholar 

  4. Alavi A, Dann R, Chawluk J, Alavi J, Kushner M, Reivich M (1986) Positron emission tomography imaging of regional cerebral glucose metabolism. Semin Nucl Med 16(1):2–34

    CAS  PubMed  Google Scholar 

  5. Amaraesekera B, Marchis PD, Bobinski KP, Radu CG, Czernin J, Barrio JR, Michael van Dam R (2013) High-pressure, compact, modular radiosynthesizer for production of positron emitting biomarkers. Appl Radiat Isot 78:88–101

    CAS  PubMed  Google Scholar 

  6. Asano A, Ueda S, Kuji I, Yamane T, Takeuchi H, Hirokawa E, Sugitani I, Shimada H, Hasebe T, Osaki A, Saeki T (2018) Intracellular hypoxia measured by 18F-fluoromisonidazole positron emission tomography has prognostic impact in patients with estrogen receptor-positive breast cancer. Breast Cancer Res 20(1):78

    PubMed  PubMed Central  Google Scholar 

  7. Asti M, Farioli D, Iori M, Guidotti C, Versari A, Salvo D (2010) Efficient automated one-step synthesis of 2-[18F]fluoroethylcholine for clinical imaging: optimized reaction conditions and improved quality controls of different synthetic approaches. Nucl Med Biol 37(3):309–315

    CAS  PubMed  Google Scholar 

  8. Bauman G, Belhocine T, Kovacs M, Ward A, Beheshti M, Rachinsky I (2012) 18F-fluorocholine for prostate cancer imaging: a systematic review of the literature. Prostate Cancer Prostatic Dis 15(1):45–55

    CAS  Google Scholar 

  9. Been LB, Suurmeijer AJ, Cobben DC, Jager PL, Hoekstra HJ, Elsinga PH (2004) [18F]FLT-PET in oncology: current status and opportunities. Eur J Nucl Med Mol Imaging 31(12):1659–1672

    Google Scholar 

  10. Beheshti M (2018) 18F-sodium fluoride PET/CT and PET/MR imaging of bone and joint disorders. PET Clin 13(4):477–490

    PubMed  Google Scholar 

  11. Beheshti M, Pöcher S, Vali R, Waldenberger P, Broinger G, Nader M, Kohlfürst S, Pirich C, Dralle H, Langsteger W (2009) The value of 18F-DOPA PET-CT in patients with medullary thyroid carcinoma: comparison with 18F-FDG PET-CT. Eur Radiol 19(6):1425–1434

    PubMed  Google Scholar 

  12. Beheshti M, Vali R, Waldenberger P, Fitz F, Nader M, Loidl W, Broinger G, Stoiber F, Foglman I, Langsteger W (2008) Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging 35(10):1766–1774

    PubMed  Google Scholar 

  13. Belt JA, Marina NM, Phelps DA, Crawford CR (1993) Nucleoside transport in normal and neoplastic cells. Adv Enzyme Regul 33:235–252

    CAS  PubMed  Google Scholar 

  14. Blau M, Nagler W, Bender MA (1962) Fluorine-18: a new isotope for bone scanning. J Nucl Med 3:332–334

    Google Scholar 

  15. Bostwick DG, Pacelli A, Blute M, Roche P, Murphy GP (1998) Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer Metastasis Rev 82(11):2256–2261

    CAS  Google Scholar 

  16. Bouchelouche K, Oehr P (2008) Positron emission tomography and positron emission tomography/computerized tomography of urological malignancies: an update review. J Urol 179(1):34–45

    CAS  PubMed  Google Scholar 

  17. Bourdier T, Greguric I, Roselt P, Jackson T, Faragalla J, Katsifis A (2011) Fully automated one-pot radiosynthesis of O-(2-[18F]fluoroethyl)-L-tyrosine on the TracerLab FX(FN) module. Nucl Med Biol 38(5):645–651

    CAS  Google Scholar 

  18. Bouvet V, Wüst M, Jans H-S, Janzen N, Genady AR, Valliant JF, Benard F, Wüst F (2016) Automated synthesis of [18F]DCFPyL via direct radiofluorination and validation in preclinical prostate cancer models. EJNMMI Res 6(1):40

    PubMed  PubMed Central  Google Scholar 

  19. Bozkurt MF, Virgolini I, Balogova S, Beheshti M, Rubello D, Decristoforo C, Ambrosini V, Kjaer A, Delgado-Bolton R, Kunikowska J, Oyen WJG, Chiti A, Giammarile F, Sundin A, Fanti S (2017) Guideline for PET/CT imaging of neuroendocrine neoplasms with 68Ga-DOTA-conjugated somatostatin receptor targeting peptides and 18F-DOPA. Eur J Nucl Med Mol Imaging 44(9):1588–1601

    CAS  PubMed  Google Scholar 

  20. Brock CS, Meikle SR, Price P (1997) Does fluorine-18 fluorodeoxyglucose metabolic imaging of tumours benefit oncology? Eur J Nucl Med 24(6):691–705

    CAS  PubMed  Google Scholar 

  21. Busch H, Davis JR, Honig GR, Anderson DC, Nair PV, Nyhan WL (1959) The uptake of a variety of amino acids into nuclear proteins of tumors and other tissues. Cancer Res 19:1030–1039

    CAS  PubMed  Google Scholar 

  22. Calabria F, Gallo G, Schillaci O, Cascini GL (2015) Bio-Distribution, imaging protocols and diagnostic accuracy of PET with tracers of lipogenesis in imaging prostate cancer: a comparison between 11C-choline, 18F-fluoroethylcholine and 18F-methylcholine. Curr Pharm Des 21(32):4738–4747

    CAS  Google Scholar 

  23. Cardinale J, Martin R, Remde Y, Schäfer M, Hienzsch A, Hübner S, Zerges A-M, Marx H, Hesse R, Weber K (2017) Procedures for the GMP-compliant production and quality control of [18F]PSMA-1007: a next generation radiofluorinated tracer for the detection of prostate cancer. Pharmaceuticals 10(4):77

    Google Scholar 

  24. Cardinale J, Schäfer M, Benešová M, Bauder-Wüst U, Leotta K, Eder M, Neels OC, Haberkorn U, Giesel FL, Kopka K (2017) Preclinical evaluation of 18F-PSMA-1007, a new prostate-specific membrane antigen ligand for prostate cancer imaging. J Nucl Med 58(3):425–431

    CAS  Google Scholar 

  25. Caroli P, De Giorgi U, Scarpi E, Fantini L, Moretti A, Galassi R, Celli M, Conteduca V, Rossi L, Bianchi E, Paganelli G, Matteucci F (2018) Prognostic value of 18F-choline PET/CT metabolic parameters in patients with metastatic castration-resistant prostate cancer treated with abiraterone or enzalutamide. Eur J Nucl Med Mol Imaging 45(3):348–354

    CAS  PubMed  Google Scholar 

  26. Chakraborty D, Bhattacharya A, Mete UK, Mittal BR (2013) Comparison of 18F fluoride PET/CT and 99mTc-MDP bone scan in the detection of skeletal metastases in urinary bladder carcinoma. Clin Nucl Med 38(8):616–621

    PubMed  Google Scholar 

  27. Chapman JD, Franko AJ, Sharplin J (1981) A marker for hypoxic cells in tumours with potential clinical applicability. Br J Cancer 43(4):546–550

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen Y, Pullambhatla M, Foss CA, Byun Y, Nimmagadda S, Senthamizhchelvan S, Sgouros G, Mease RC, Pomper MG (2011) 2-(3-{1-Carboxy-5-[(6-[18F]Fluoro-Pyridine-3-Carbonyl)-Amino]-Pentyl}-Ureido)-pentanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin Cancer Res 17(24):7645

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cherif A, Yang DJ, Tansey W, Kim EE, Wallace S (1994) Rapid synthesis of 3-[18F]Fluoro-l-(2′-Nitro-1′-Imidazolyl)-2-Propanol ([18F]Fluoromisonidazole). Pharm Res 11(3):466–469

    CAS  PubMed  Google Scholar 

  30. Clary GL, Tsai CF, Guynn RW (1987) Substrate specificity of choline kinase. Arch Biochem Biophys 254(1):214–221

    CAS  Google Scholar 

  31. Coleman R, DeGrado T, Wang S, Baldwin S, Orr M, Reiman R, Price D (2000) Preliminary evaluation of F-18 Fluorocholine (FCH) as a PET tumor imaging agent. Clin Positron Imaging 3(4):147

    CAS  PubMed  Google Scholar 

  32. Collins J, Waldmann CM, Drake C, Slavik R, Ha NS, Sergeev M, Lazari M, Shen B, Chin FT, Moore M, Sadeghi S, Phelps ME, Murphy JM, van Dam RM (2017) Production of diverse PET probes with limited resources: 24 18F-labeled compounds prepared with a single radiosynthesizer. Proc Natl Acad Sci USA 114(43):11309–11314

    CAS  PubMed  Google Scholar 

  33. Conti P, Chen K, Tripathy D, Jadvar H (2015) [18F]FMAU for PET imaging in breast cancer patients. J Clin Oncol 33(15_suppl):11056–11056

    Google Scholar 

  34. DeGrado TR, Baldwin SW, Wang S, Orr MD, Liao RP, Friedman HS, Reiman R, Price DT, Coleman RE (2001) Synthesis and evaluation of 18F-labeled choline analogs as oncologic PET tracers. J Nucl Med 42(12):1805–1814

    CAS  Google Scholar 

  35. DeGrado TR, Coleman RE, Wang S, Baldwin SW, Orr MD, Robertson CN, Polascik TJ, Price DT (2001) Synthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res 61(1):110–117

    CAS  PubMed  Google Scholar 

  36. Debus C, Afshar-Oromieh A, Floca R, Ingrisch M, Knoll M, Debus J, Haberkorn U, Abdollahi A (2018) Feasibility and robustness of dynamic 18F-FET PET based tracer kinetic models applied to patients with recurrent high-grade glioma prior to carbon ion irradiation. Sci Rep 8(1):14760

    PubMed  PubMed Central  Google Scholar 

  37. Debus C, Waltenberger M, Floca R, Afshar-Oromieh A, Bougatf N, Adeberg S, Heiland S, Bendszus M, Wick W, Rieken S, Haberkorn U, Debus J, Knoll M, Abdollahi A (2018) Impact of 18F-FET PET on target volume definition and tumor progression of recurrent high grade glioma treated with carbon-ion radiotherapy. Sci Rep 8(1):7201

    PubMed  PubMed Central  Google Scholar 

  38. Deves R, Krupka RM (1979) The binding and translocation steps in transport as related to substrate structure. a study of the choline carrier of erythrocytes. Biochim Biophys Acta 557(2):469–485

    Google Scholar 

  39. Dixit M, Shi J, Wei L, Afari G, Bhattacharyya S (2013) Synthesis of clinical-grade [18F]-fluoroestradiol as a surrogate PET biomarker for the evaluation of estrogen receptor-targeting therapeutic drug. Int J Mol Imaging 2013:10

    Google Scholar 

  40. Dolle F, Demphel S, Hinnen F, Fournier D, Vaufrey F, Crouzel C (1998) 6-[18F]Fluoro-L-DOPA by radiofluorodestannylation: a short and simple synthesis of a new labelling precursor. J Label Compd Rad 41(2):105–114

    CAS  Google Scholar 

  41. Dunet V, Rossier C, Buck A, Stupp R, Prior JO (2012) Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and Metaanalysis. J Nucl Med 53(2):207–214

    CAS  PubMed  Google Scholar 

  42. Eckel F, Herrmann K, Schmidt S, Hillerer C, Wieder HA, Krause BJ, Schuster T, Langer R, Wester HJ, Schmid RM, Schwaiger M, Buck AK (2009) Imaging of proliferation in hepatocellular carcinoma with the in vivo marker 18F-fluorothymidine. J Nucl Med 50(9):1441–1447

    CAS  PubMed  Google Scholar 

  43. Edwards R, Wirth T (2015) [18F]6-fluoro-3,4-dihydroxy-L-phenylalanine—recent modern syntheses for an elusive radiotracer. J Label Compd Rad 58(5):183–187

    CAS  Google Scholar 

  44. Egerton A, Demjaha A, McGuire P, Mehta MA, Howes OD (2010) The test-retest reliability of 18F-DOPA PET in assessing striatal and extrastriatal presynaptic dopaminergic function. NeuroImage 50(2):524–531

    PubMed  Google Scholar 

  45. Elsinga PH, Hatano K, Ishiwata K (2006) PET tracers for imaging of the dopaminergic system. Curr Med Chem 13(18):2139–2153

    CAS  Google Scholar 

  46. Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 47(2):287–297

    Google Scholar 

  47. Fedorova O, Kuznetsova O, Stepanova M, Maleev V, Belokon Y, Wester H-J, Krasikova R (2014) A facile direct nucleophilic synthesis of O-(2-[18F]-fluoroethyl)-l-tyrosine ([18F]FET) without HPLC purification. J Radioanal Nucl Chem 301(2):505–512

    CAS  Google Scholar 

  48. Fisher B, Costantino J, Redmond C, Poisson R, Bowman D, Couture J, Dimitrov NV, Wolmark N, Wickerham DL, Fisher ER, Margolese R, Robidoux A, Shibata H, Terz J, Paterson AHG, Feldman MI, Farrar W, Evans J, Lickley HL, Ketner M (1989) A randomized clinical trial evaluating tamoxifen in the treatment of patients with node-negative breast cancer who have estrogen-receptor–positive tumors. N Engl J Med 320(8):479–484

    CAS  PubMed  Google Scholar 

  49. Foo SS, Abbott DF, Lawrentschuk N, Scott AM (2004) Functional imaging of intratumoral hypoxia. Mol Imaging Biol 6(5):291–305

    PubMed  Google Scholar 

  50. Fraioli F, Shankar A, Hargrave D, Hyare H, Gaze MN, Groves AM, Alongi P, Stoneham S, Michopoulou S, Syed R, Bomanji JB (2015) 18F-fluoroethylcholine (18F-Cho) PET/MRI functional parameters in pediatric astrocytic brain tumors. Clin Nucl Med 40(1):e40–e45

    PubMed  Google Scholar 

  51. Füchtner F, Steinbach J, Mäding P, Johannsen B (1996) Basic hydrolysis of 2-[18F]fluoro-1, 3, 4, 6-tetra-O-acetyl-glucose in the preparation of 2-[18F]fluoro-2-deoxy-D-glucose. Appl Radiat Isot 47(1):61–66

    Google Scholar 

  52. Füchtner F, Zessin J, Mäding P, Wüst F (2008) Aspects of 6-[18F]fluoro-L-DOPA preparation. Nuklearmedizin 47(01):62–64

    PubMed  Google Scholar 

  53. Gallagher BM, Fowler JS, Gutterson NI, MacGregor RR, Wan CN, Wolf AP (1978) Metabolic trapping as a principle of oradiopharmaceutical design: some factors resposible for the biodistribution of [18F] 2-deoxy-2-fluoro-D-glucose. J Nucl Med 19(10):1154–1161

    CAS  PubMed  Google Scholar 

  54. Gallagher CL, Johnson SC, Bendlin BB, Chung MK, Holden JE, Oakes TR, Brooks BR, Konopacki RA, Dogan S, Abbs JH, Xu G, Nickles RJ, Pyzalski RW, DeJesus OT, Brown WD (2011) A longitudinal study of motor performance and striatal [18F]fluorodopa uptake in Parkinson’s disease. Brain Imaging Behav 5(3):203–211

    PubMed  PubMed Central  Google Scholar 

  55. Garnett E, Firnau G, Chan P, Sood S, Belbeck L (1978) [18F]Fluoro-dopa, an analogue of dopa, and its use in direct external measurements of storage, degradation, and turnover of intracerebral dopamine. Proc Nat Acad Sci USA 75(1):464–467

    CAS  PubMed  Google Scholar 

  56. Garnett E, Firnau G, Nahmias C (1983) Dopamine visualized in the basal ganglia of living man. Nature 305(5930):137

    CAS  PubMed  Google Scholar 

  57. Gerstner ER, Zhang Z, Fink JR, Muzi M, Hanna L, Greco E, Prah M, Schmainda KM, Mintz A, Kostakoglu L, Eikman EA, Ellingson BM, Ratai EM, Sorensen AG, Barboriak DP, Mankoff DA, Group AT (2016) ACRIN 6684: assessment of tumor hypoxia in newly diagnosed glioblastoma using 18F-FMISO PET and MRI. Clin Cancer Res 22(20):5079–5086

    Google Scholar 

  58. Giesel FL, Hadaschik B, Cardinale J, Radtke J, Vinsensia M, Lehnert W, Kesch C, Tolstov Y, Singer S, Grabe N, Duensing S, Schäfer M, Neels OC, Mier W, Haberkorn U, Kopka K, Kratochwil C (2017) F-18 labelled PSMA-1007: biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. Eur J Nucl Med Mol Imaging 44(4):678–688

    CAS  Google Scholar 

  59. Giesel FL, Knorr K, Spohn F, Will L, Maurer T, Flechsig P, Neels O, Schiller K, Amaral H, Weber W, Schwaiger M, Hohenfellner M, Kratochwil C, Debus J, Haberkorn U, Choyke P, Kramer V, Kopka K, Eiber M (2018) Detection efficacy of [18F]PSMA-1007 PET/CT in 251 patients with biochemical recurrence after radical prostatectomy. J Nucl Med. https://doi.org/10.2967/jnumed.118.212233

    Article  PubMed  PubMed Central  Google Scholar 

  60. Giesel FL, Will L, Lawal I, Lengana T, Kratochwil C, Vorster M, Neels O, Reyneke F, Haberkon U, Kopka K, Sathekge M (2018) Intraindividual Comparison of 18F-PSMA-1007 and 18F-DCFPyL PET/CT in the prospective evaluation of patients with newly diagnosed prostate carcinoma: a pilot study. J Nucl Med 59(7):1076–1080

    CAS  PubMed  Google Scholar 

  61. Golubic AT, Pasini Nemir E, Zuvic M, Mutvar A, Kusacic Kuna S, Despot M, Samardzic T, Huic D (2017) The value of 18F-DOPA PET/CT in patients with medullary thyroid carcinoma and increased calcitonin values. Nucl Med Commun 38(7):636–641

    PubMed  Google Scholar 

  62. Gong C, Yang Z, Sun Y, Zhang J, Zheng C, Wang L, Zhang Y, Xue J, Yao Z, Pan H, Wang B, Zhang Y (2017) A preliminary study of 18F-FES PET/CT in predicting metastatic breast cancer in patients receiving docetaxel or fulvestrant with docetaxel. Sci Rep 7(1):6584

    PubMed  PubMed Central  Google Scholar 

  63. Gray LH, Conger AD, Ebert M, Hornsey S, Scott OC (1953) The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 26(312):638–648

    CAS  Google Scholar 

  64. Grierson JR, Link JM, Mathis CA, Rasey JS, Krohn KA (1989) A radiosynthesis of fluorine-18 fluoromisonidazole. J Nucl Med 30(3):343–350

    CAS  Google Scholar 

  65. Grkovski M, Schöder H, Lee NY, Carlin SD, Beattie BJ, Riaz N, Leeman JE, O’Donoghue JA, Humm JL (2017) Multiparametric imaging of tumor hypoxia and perfusion with 18F-fluoromisonidazole dynamic PET in head and neck cancer. J Nucl Med 58(7):1072–1080

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Grosu A-L, Souvatzoglou M, Röper B, Dobritz M, Wiedenmann N, Jacob V, Wester H-J, Reischl G, Machulla H-J, Schwaiger M, Molls M, Piert M (2007) Hypoxia imaging with FAZA-PET and theoretical considerations with regard to dose painting for individualization of radiotherapy in patients with head and neck cancer. Int J Radiat Oncol Biol Phys 69(2):541–551

    CAS  PubMed  Google Scholar 

  67. Hamacher K, Coenen HH, Stöcklin G (1986) Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med 27(2):235–238

    CAS  Google Scholar 

  68. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    CAS  Google Scholar 

  69. Hara T, Kosaka N, Kishi H (2002) Development of 18F-fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med 43(2):187–199

    CAS  PubMed  Google Scholar 

  70. Hatt M, Majdoub M, Vallieres M, Tixier F, Le Rest CC, Groheux D, Hindie E, Martineau A, Pradier O, Hustinx R, Perdrisot R, Guillevin R, El Naqa I, Visvikis D (2015) 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med 56(1):38–44

    CAS  Google Scholar 

  71. Hawkins RA, Choi Y, Huang S-C, Hoh CK, Dahlbom M, Schiepers C, Satyamurthy N, Barrio JR, Phelps ME (1992) Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET. J Nucl Med 33(5):633–642

    CAS  PubMed  Google Scholar 

  72. Hayashi K, Furutsuka K, Takei M, Muto M, Nakao R, Aki H, Suzuki K, Fukumura T (2011) High-yield automated synthesis of [18F]fluoroazomycin arabinoside ([18F]FAZA) for hypoxia-specific tumor imaging. Appl Radiat Isot 69(7):1007–1013

    CAS  Google Scholar 

  73. Heiss P, Mayer S, Herz M, Wester HJ, Schwaiger M, Senekowitsch-Schmidtke R (1999) Investigation of transport mechanism and uptake kinetics of O-(2-[18F]fluoroethyl)-L-tyrosine in vitro and in vivo. J Nucl Med 40(8):1367–1373

    CAS  PubMed  Google Scholar 

  74. Herrmann K, Buck AK, Schuster T, Junger A, Wieder HA, Graf N, Ringshausen I, Rudelius M, Wester HJ, Schwaiger M, Keller U, Dechow T (2011) Predictive value of initial 18F-FLT uptake in patients with aggressive non-Hodgkin lymphoma receiving R-CHOP treatment. J Nucl Med 52(5):690–696

    PubMed  Google Scholar 

  75. Hofman MS, Violet J, Hicks RJ, Ferdinandus J, Thang SP, Akhurst T, Iravani A, Kong G, Ravi Kumar A, Murphy DG, Eu P, Jackson P, Scalzo M, Williams SG, Sandhu S (2018) [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol 19(6):825–833

    CAS  PubMed  Google Scholar 

  76. Högerle S, Altehöfer C, Ghanem N, Brink I, Moser E, Nitzsche E (2001) 18F-DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels. Eur J Nucl Med 28(1):64–71

    Google Scholar 

  77. Högerle S, Nitzsche E, Altehöfer C, Ghanem N, Manz T, Brink I, Reincke M, Moser E, Neumann HP (2002) Pheochromocytomas: detection with 18F DOPA whole-body PET—initial results. Radiology 222(2):507–512

    Google Scholar 

  78. Höpping A, Müller M, Smits R, Mollitor J, Clausnitzer A, Baumgart D (2014) Precursors and process for the production of 18F-labelled amino acids. Google Patents

    Google Scholar 

  79. Ido T, Wan CN, Casella V, Fowler J, Wolf A, Reivich M, Kuhl D (1978) Labeled 2‐deoxy‐D‐glucose analogs. 18F‐labeled 2‐deoxy‐2‐fluoro‐D‐glucose, 2‐deoxy‐2‐fluoro‐D‐mannose and 14C‐2‐deoxy‐2‐fluoro‐D‐glucose. J Label Compd Rad 14(2):175–183

    Google Scholar 

  80. Imani F, Agopian VG, Auerbach MS, Walter MA, Imani F, Benz MR, Dumont RA, Lai CK, Czernin JG, Yeh MW (2009) 18F-FDOPA PET and PET/CT accurately localize pheochromocytomas. J Nucl Med 50(4):513–519

    PubMed  Google Scholar 

  81. Isselbacher KJ (1972) Sugar and amino acid transport by cells in culture–differences between normal and malignant cells. N Engl J Med 286(17):929–933

    CAS  Google Scholar 

  82. Itoh M, Meguro K, Fujiwara T, Hatazawa J, Iwata R, Ishiwata K, Takahashi T, Ido T, Sasaki H (1994) Assessment of dopamine metabolism in brain of patients with dementia by means of 18F-fluorodopa and PET. Ann Nucl Med 8(4):245–251

    CAS  PubMed  Google Scholar 

  83. Iwata R, Pascali C, Bogni A, Furumoto S, Terasaki K, Yanai K (2002) [18F]fluoromethyl triflate, a novel and reactive [18F]fluoromethylating agent: preparation and application to the on-column preparation of [18F]fluorocholine. Appl Radiat Isot 57(3):347–352

    CAS  PubMed  Google Scholar 

  84. Jager PL, Chirakal R, Marriott CJ, Brouwers AH, Koopmans KP, Gulenchyn KY (2008) 6-L-18F-fluorodihydroxyphenylalanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J Nucl Med 49(4):573

    CAS  PubMed  Google Scholar 

  85. Jambor I, Kuisma A, Kähkönen E, Kemppainen J, Merisaari H, Eskola O, Teuho J, Perez IM, Pesola M, Aronen HJ, Boström PJ, Taimen P, Minn H (2018) Prospective evaluation of 18F-FACBC PET/CT and PET/MRI versus multiparametric MRI in intermediate- to high-risk prostate cancer patients (FLUCIPRO trial). Eur J Nucl Med 45(3):355–364

    Google Scholar 

  86. Johnstone RM, Scholefield PG (1965) Amino acid transport in tumor cells. Adv Cancer Res 9:143–226

    CAS  PubMed  Google Scholar 

  87. Kameyama R, Yamamoto Y, Izuishi K, Sano T, Nishiyama Y (2011) Correlation of 18F-FLT uptake with equilibrative nucleoside transporter-1 and thymidine kinase-1 expressions in gastrointestinal cancer. Nucl Med Commun 32(6):460–465

    CAS  PubMed  Google Scholar 

  88. Kameyama R, Yamamoto Y, Izuishi K, Takebayashi R, Hagiike M, Murota M, Kaji M, Haba R, Nishiyama Y (2009) Detection of gastric cancer using 18F-FLT PET: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging 36(3):382–388

    Google Scholar 

  89. Kao C-HK, Hsu W-L, Xie H-L, Lin M-C, Lan W-C, Chao H-Y (2011) GMP production of [18F]FDOPA and issues concerning its quality analyses as in USP “Fluorodopa F18 Injection”. Ann Nucl Med 25(5):309–316

    PubMed  Google Scholar 

  90. Kauhanen S, Seppänen M, Ovaska J, Minn H, Bergman J, Korsoff P, Salmela P, Saltevo J, Sane T, Välimäki M (2009) The clinical value of [18F]fluoro-dihydroxyphenylalanine positron emission tomography in primary diagnosis, staging, and restaging of neuroendocrine tumors. Endocr Relat Cancer 16(1):255–265

    CAS  PubMed  Google Scholar 

  91. Kauhanen S, Schalin-Jäntti C, Seppänen M, Kajander S, Virtanen S, Schildt J, Lisinen I, Ahonen A, Heiskanen I, Väisänen M (2011) Complementary roles of 18F-DOPA PET/CT and 18F-FDG PET/CT in medullary thyroid cancer. J Nucl Med 52(12):1855

    Google Scholar 

  92. Kawaguchi M, Tateishi U, Shizukuishi K, Suzuki A, Inoue T (2010) 18F-fluoride uptake in bone metastasis: morphologic and metabolic analysis on integrated PET/CT. Ann Nucl Med 24(4):241–247

    PubMed  Google Scholar 

  93. Kawai N, Maeda Y, Kudomi N, Miyake K, Okada M, Yamamoto Y, Nishiyama Y, Tamiya T (2011) Correlation of biological aggressiveness assessed by 11C-methionine PET and hypoxic burden assessed by 18F-fluoromisonidazole PET in newly diagnosed glioblastoma. Eur J Nucl Med Mol Imaging 38(3):441–450

    CAS  PubMed  Google Scholar 

  94. Kiesewetter DO, Kilbourn MR, Landvatter SW, Heiman DF, Katzenellenbogen JA, Welch MJ (1984) Preparation of four fluorine-18-labeled estrogens and their selective uptakes in target tissues of immature rats. J Nucl Med 25(11):1212–1221

    CAS  Google Scholar 

  95. Kikuchi M, Yamane T, Shinohara S, Fujiwara K, Hori SY, Tona Y, Yamazaki H, Naito Y, Senda M (2011) 18F-fluoromisonidazole positron emission tomography before treatment is a predictor of radiotherapy outcome and survival prognosis in patients with head and neck squamous cell carcinoma. Ann Nucl Med 25(9):625–633

    CAS  PubMed  Google Scholar 

  96. Kinoshita T, Fujii H, Hayashi Y, Kamiyama I, Ohtsuka T, Asamura H (2016) Prognostic significance of hypoxic PET using 18F-FAZA and 62Cu-ATSM in non-small-cell lung cancer. Lung Cancer 91:56–66

    PubMed  Google Scholar 

  97. Kizaka-Kondoh S, Konse-Nagasawa H (2009) Significance of nitroimidazole compounds and hypoxia-inducible factor-1 for imaging tumor hypoxia. Cancer Sci 100(8):1366–1373

    CAS  PubMed  Google Scholar 

  98. Kondo A, Ishii H, Aoki S, Suzuki M, Nagasawa H, Kubota K, Minamimoto R, Arakawa A, Tominaga M, Arai H (2016) Phase IIa clinical study of [18F]fluciclovine: efficacy and safety of a new PET tracer for brain tumors. Ann Nucl Med 30(9):608–618

    CAS  PubMed  Google Scholar 

  99. Kopka K, Benešová M, Bařinka C, Haberkorn U, Babich J (2017) Glu-ureido–based inhibitors of prostate-specific membrane antigen: lessons learned during the development of a novel class of low-molecular-weight theranostic radiotracers. J Nucl Med 58(Supplement 2):17S–26S

    CAS  Google Scholar 

  100. Kratochwil C, Bruchertseifer F, Giesel FL, Weis M, Verburg FA, Mottaghy F, Kopka K, Apostolidis C, Haberkorn U, Morgenstern A (2016) 225Ac-PSMA-617 for PSMA-targeted α-radiation therapy of metastatic castration-resistant prostate cancer. J Nucl Med 57(12):1941–1944

    CAS  Google Scholar 

  101. Krohn KA, Mankoff DA, Eary JF (2001) Imaging cellular proliferation as a measure of response to therapy. J Clin Pharmacol 41(S7):96S–103S

    Google Scholar 

  102. Kryza D, Tadino V, Filannino MA, Villeret G, Lemoucheux L (2008) Fully automated [18F]fluorocholine synthesis in the TracerLab MX FDG coincidence synthesizer. Nucl Med Biol 35(2):255–260

    CAS  PubMed  Google Scholar 

  103. Kuik W-J, Kema IP, Brouwers AH, Zijlma R, Neumann KD, Dierckx RAJO, DiMagno SG, Elsinga PH (2015) In vivo biodistribution of no-carrier-added 6-18F-fluoro-3,4-dihydroxy-l-phenylalanine (18F-DOPA), produced by a new nucleophilic substitution approach, compared with carrier-added 18F-DOPA, prepared by conventional electrophilic substitution. J Nucl Med 56(1):106–112

    CAS  PubMed  Google Scholar 

  104. Kumakura Y, Danielsen EH, Gjedde A, Vernaleken I, Buchholz H-G, Heinz A, Gründer G, Bartenstein P, Cumming P (2010) Elevated [18F]FDOPA utilization in the periaqueductal gray and medial nucleus accumbens of patients with early Parkinson’s disease. NeuroImage 49(4):2933–2939

    CAS  PubMed  Google Scholar 

  105. Kumar P, Mercer J, Doerkson C, Tonkin K, McEwan AJ (2007) Clinical production, stability studies and PET imaging with 16-α-[18F]fluoroestradiol ([18F]FES) in ER positive breast cancer patients. J Pharm Pharm Sci 10(2):256s–265s

    CAS  Google Scholar 

  106. Kämäräinen E-L, Kyllönen T, Nihtilä O, Björk H, Solin O (2004) Preparation of fluorine-18-labelled fluoromisonidazole using two different synthesis methods. J Label Compd Rad 47(1):37–45

    Google Scholar 

  107. Lee H, Kim SK, Kim YI, Kim TS, Kang SH, Park WS, Yun T, Eom HS (2014) Early determination of prognosis by interim 3′-deoxy-3′-18F-fluorothymidine PET in patients with non-Hodgkin lymphoma. J Nucl Med 55(2):216–222

    CAS  PubMed  Google Scholar 

  108. Lee N, Nehmeh S, Schoder H, Fury M, Chan K, Ling CC, Humm J (2009) Prospective trial incorporating pre-/mid-treatment [18F]-misonidazole positron emission tomography for head-and-neck cancer patients undergoing concurrent chemoradiotherapy. Int J Radiat Oncol Biol Phys 75(1):101–108

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Lemaire C, Gillet S, Guillouet S, Plenevaux A, Aerts J, Luxen A (2004) Highly enantioselective synthesis of no-carrier-added 6-[18F]fluoro-L-dopa by chiral phase-transfer alkylation. Eur J Org Chem 2004(13):2899–2904

    Google Scholar 

  110. Libert LC, Franci X, Plenevaux AR, Ooi T, Maruoka K, Luxen AJ, Lemaire CF (2013) Production at the curie level of no-carrier-added 6-18F-fluoro-l-dopa. J Nucl Med 54(7):1154–1161

    CAS  Google Scholar 

  111. Lim J-L, Berridge MS (1993) An efficient radiosynthesis of [18F]fluoromisonidazole. Appl Radiat Isot 44(8):1085–1091

    CAS  PubMed  Google Scholar 

  112. Linden HM, Peterson LM, Fowler AM (2018) Clinical potential of estrogen and progesterone receptor imaging. PET Clin 13(3):415–422

    PubMed  PubMed Central  Google Scholar 

  113. Loane C, Politis M (2011) Positron emission tomography neuroimaging in Parkinson’s disease. Am J Transl Res 3(4):323–341

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Luxen A, Guillaume M, Melega W, Pike VW, Solin O, Wagner R (1992) Production of 6-[18F] fluoro-L-dopa and its metabolism in vivo—a critical review. Int J Rad Appl Instrum B 19(2):149–158

    CAS  PubMed  Google Scholar 

  115. Löck S, Perrin R, Seidlitz A, Bandurska-Luque A, Zschaeck S, Zöphel K, Krause M, Steinbach J, Kotzerke J, Zips D, Troost EGC, Baumann M (2017) Residual tumour hypoxia in head-and-neck cancer patients undergoing primary radiochemotherapy, final results of a prospective trial on repeat FMISO-PET imaging. Radiother Oncol 124(3):533–540

    PubMed  Google Scholar 

  116. Machulla H-J, Blocher A, Kuntzsch M, Piert M, Wei R, Grierson JR (2000) Simplified Labeling Approach for Synthesizing 3′-Deoxy-3′-[18F]fluorothymidine ([18F]FLT). J Radioanal Nucl Chem 243(3):843–846

    CAS  Google Scholar 

  117. Mamede M, Higashi T, Kitaichi M, Ishizu K, Ishimori T, Nakamoto Y, Yanagihara K, Li M, Tanaka F, Wada H, Manabe T, Saga T (2005) [18F]FDG uptake and PCNA, Glut-1, and Hexokinase-II expressions in cancers and inflammatory lesions of the lung. Neoplasia 7(4):369–379

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Mangner TJ, Klecker RW, Anderson L, Shields AF (2003) Synthesis of 2′-deoxy-2′-[18F]fluoro-beta-D-arabinofuranosyl nucleosides, [18F]FAU, [18F]FMAU, [18F]FBAU and [18F]FIAU, as potential PET agents for imaging cellular proliferation. synthesis of [18F]labelled FAU, FMAU, FBAU, FIAU. Nucl Med Biol 30(3):215–224

    Google Scholar 

  119. Mankoff DA, Tewson TJ, Eary JF (1997) Analysis of blood clearance and labeled metabolites for the estrogen receptor tracer [F-18]-16 alpha-fluoroestradiol (FES). Nucl Med Biol 24(4):341–348

    CAS  PubMed  Google Scholar 

  120. Marchand P, Ouadi A, Pellicioli M, Schuler J, Laquerriere P, Boisson F, Brasse D (2016) Automated and efficient radiosynthesis of [18F]FLT using a low amount of precursor. Nucl Med Biol 43(8):520–527

    CAS  Google Scholar 

  121. Martin R, Baumgart D, Hübner S, Juttler S, Saul S, Clausnitzer A, Mollitor J, Smits R, Höpping A, Müller M (2013) Automated nucleophilic one-pot synthesis of 18F-L-DOPA with high specific activity using the GE TRACERlab MXFDG. J Label Compd Rad 56(S1):S126

    Google Scholar 

  122. McConathy J, Voll RJ, Yu W, Crowe RJ, Goodman MM (2003) Improved synthesis of anti-[18F]FACBC: improved preparation of labeling precursor and automated radiosynthesis. Appl Radiat Isot 58(6):657–666

    CAS  PubMed  Google Scholar 

  123. Melega WP, Hoffman JM, Luxen A, Nissenson CH, Phelps ME, Barrio JR (1990) The effects of carbidopa on the metabolism of 6-[18F]fluoro-L-dopa in rats, monkeys and humans. Life Sci 47(2):149–157

    CAS  PubMed  Google Scholar 

  124. Metran-Nascente C, Yeung I, Vines DC, Metser U, Dhani NC, Green D, Milosevic M, Jaffray D, Hedley DW (2016) Measurement of tumor hypoxia in patients with advanced pancreatic cancer based on 18F-fluoroazomyin arabinoside uptake. J Nucl Med 57(3):361–366

    CAS  PubMed  Google Scholar 

  125. Meyer JP, Probst KC, Westwell AD (2014) Radiochemical synthesis of 2′-[18F]-labelled and 3′-[18F]-labelled nucleosides for positron emission tomography imaging. J Label Compd Rad 57(5):333–337

    CAS  Google Scholar 

  126. Mittra E, Quon A (2009) Positron emission tomography/computed tomography: the current technology and applications. Radiol Clin N Am 47(1):147–160

    PubMed  Google Scholar 

  127. Morana G, Puntoni M, Garre ML, Massollo M, Lopci E, Naseri M, Severino M, Tortora D, Rossi A, Piccardo A (2016) Ability of 18F-DOPA PET/CT and fused 18F-DOPA PET/MRI to assess striatal involvement in paediatric glioma. Eur J Nucl Med Mol Imaging 43(9):1664–1672

    CAS  PubMed  Google Scholar 

  128. Moreau A, Giraudet AL, Kryza D, Borson-Chazot F, Bournaud C, Mognetti T, Lifante J-C, Combemale P, Giammarile F, Houzard C (2017) Quantitative analysis of normal and pathologic adrenal glands with 18F-FDOPA PET/CT: focus on pheochromocytomas. Nucl Med Commu 38(9):771–779

    Google Scholar 

  129. Mori T, Kasamatsu S, Mosdzianowski C, Welch MJ, Yonekura Y, Fujibayashi Y (2006) Automatic synthesis of 16α-[18F]fluoro-17β-estradiol using a cassette-type [18F]fluorodeoxyglucose synthesizer. Nuc Med Biol 33(2):281–286

    CAS  Google Scholar 

  130. Mossine AV, Brooks AF, Makaravage KJ, Miller JM, Ichiishi N, Sanford MS, Scott PJH (2015) Synthesis of [18F]arenes via the copper-mediated [18F]fluorination of boronic acids. Org Let 17(23):5780–5783

    CAS  Google Scholar 

  131. Moulder JE, Rockwell S (1987) Tumor hypoxia: its impact on cancer therapy. Cancer Metastasis Rev 5(4):313–341

    CAS  PubMed  Google Scholar 

  132. Muijs CT, Beukema JC, Widder J, van den Bergh AC, Havenga K, Pruim J, Langendijk JA (2011) 18F-FLT-PET for detection of rectal cancer. Radiother Oncol 98(3):357–359

    PubMed  Google Scholar 

  133. Muz B, de la Puente P, Azab F, Azab AK (2015) The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl) 3:83–92

    Google Scholar 

  134. Müller D, Klette I, Kalb F, Baum RP (2011) Synthesis of O-(2-[18F]fluoroethyl)-L-tyrosine based on a cartridge purification method. Nucl Med Biol 38(5):653–658

    Google Scholar 

  135. Namavari M, Bishop A, Satyamurthy N, Bida G, Barrio JR (1992) Regioselective radiofluorodestannylation with [18F]F2, and [18F]CH3COOF: a high yield synthesis of 6-[18F]fluoro-L-dopa. Appl Radiat Isot 43(8):989–996

    CAS  Google Scholar 

  136. Nanni C, Zanoni L, Pultrone C, Schiavina R, Brunocilla E, Lodi F, Malizia C, Ferrari M, Rigatti P, Fonti C, Martorana G, Fanti S (2016) 18F-FACBC (anti1-amino-3-18F-fluorocyclobutane-1-carboxylic acid) versus 11C-choline PET/CT in prostate cancer relapse: results of a prospective trial. Eur J Nucl Med Mol Imaging 43(9):1601–1610

    CAS  PubMed  Google Scholar 

  137. Odewole OA, Tade FI, Nieh PT, Savir-Baruch B, Jani AB, Master VA, Rossi PJ, Halkar RK, Osunkoya AO, Akin-Akintayo O, Zhang C, Chen Z, Goodman MM, Schuster DM (2016) Recurrent prostate cancer detection with anti-3-[18F]FACBC PET/CT: comparison with CT. Eur J Nucl Med Mol Imaging 43(10):1773–1783

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Oh SJ, Chi DY, Mosdzianowski C, Kil HS, Ryu JS, Moon DH (2007) The automatic production of 16α-[18F]fluoroestradiol using a conventional [18F]FDG module with a disposable cassette system. Appl Radiat Isot 65(6):676–681

    CAS  Google Scholar 

  139. Oh SJ, Chi DY, Mosdzianowski C, Kim JY, Gil HS, Kang SH, Ryu JS, Moon DH (2005) Fully automated synthesis of [18F]fluoromisonidazole using a conventional [18F]FDG module. Nucl Med Biol 32(8):899–905

    CAS  PubMed  Google Scholar 

  140. Oh SJ, Mosdzianowski C, Chi DY, Kim JY, Kang SH, Ryu JS, Yeo JS, Moon DH (2004) Fully automated synthesis system of 3′-deoxy-3′-[18F]fluorothymidine. Nucl Med Biol 31(6):803–809

    CAS  PubMed  Google Scholar 

  141. Oka S, Okudaira H, Ono M, Schuster DM, Goodman MM, Kawai K, Shirakami Y (2014) Differences in transport mechanisms of trans-1-amino-3-[18F]fluorocyclobutanecarboxylic acid in inflammation, prostate cancer, and glioma cells: comparison with l-[Methyl-11C]methionine and 2-deoxy-2-[18F]fluoro-d-glucose. Mol Imaging Biol 16(3):322–329

    PubMed  Google Scholar 

  142. Oka S, Okudaira H, Yoshida Y, Schuster DM, Goodman MM, Shirakami Y (2012) Transport mechanisms of trans-1-amino-3-fluoro[1-14C]cyclobutanecarboxylic acid in prostate cancer cells. Nucl Med Biol 39(1):109–119

    CAS  PubMed  Google Scholar 

  143. Okudaira H, Shikano N, Nishii R, Miyagi T, Yoshimoto M, Kobayashi M, Ohe K, Nakanishi T, Tamai I, Namiki M, Kawai K (2011) Putative transport mechanism and intracellular fate of trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid in human prostate cancer. J Nucl Med 52(5):822–829

    CAS  Google Scholar 

  144. Ono M, Oka S, Okudaira H, Schuster DM, Goodman MM, Kawai K, Shirakami Y (2013) Comparative evaluation of transport mechanisms of trans-1-amino-3-[18F] fluorocyclobutanecarboxylic acid and L-[methyl-11C] methionine in human glioma cell lines. Brain Res 1535:24–37

    CAS  PubMed  Google Scholar 

  145. Paolillo V, Riese S, Gelovani JG, Alauddin MM (2009) A fully automated synthesis of [18F]-FEAU and [18F]-FMAU using a novel dual reactor radiosynthesis module. J Label Compd Radiopharm 52(13):553–558

    CAS  Google Scholar 

  146. Pascali G, D’Antonio L, Bovone P, Gerundini P, August T (2009) Optimization of automated large-scale production of [18F]fluoroethylcholine for PET prostate cancer imaging. Nucl Med Biol 36(5):569–574

    CAS  PubMed  Google Scholar 

  147. Patel NH, Vyas NS, Puri BK, Nijran KS, Al-Nahhas A (2010) Positron emission tomography in schizophrenia: a new perspective. J Nucl Med 51(4):511–520

    CAS  PubMed  Google Scholar 

  148. Patrick GL (2013) An introduction to medicinal chemistry. Oxford University Press, Oxford

    Google Scholar 

  149. Peterson LM, Kurland BF, Link JM, Schubert EK, Stekhova S, Linden HM, Mankoff DA (2011) Factors influencing the uptake of 18F-fluoroestradiol in patients with estrogen receptor positive breast cancer. Nucl Med Biol 38(7):969–978

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Peterson LM, Mankoff DA, Lawton T, Yagle K, Schubert EK, Stekhova S, Gown A, Link JM, Tewson T, Krohn KA (2008) Quantitative imaging of estrogen receptor expression in breast cancer with PET and 18F-fluoroestradiol. J Nucl Med 49(3):367–374

    Google Scholar 

  151. Piel M, Bauman A, Baum RP, Hohnemann S, Klette I, Wortmann R, Rösch F (2007) Improved automated synthesis of [18F]fluoroethylcholine as a radiotracer for cancer imaging. Bioorg Med Chem 15(9):3171–3175

    CAS  PubMed  Google Scholar 

  152. Piert M, Machulla HJ, Picchio M, Reischl G, Ziegler S, Kumar P, Wester HJ, Beck R, McEwan AJ, Wiebe LI, Schwaiger M (2005) Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J Nucl Med 46(1):106–113

    Google Scholar 

  153. Podo F (1999) Tumour phospholipid metabolism. NMR Biomed 12(7):413–439

    CAS  PubMed  Google Scholar 

  154. Poeppel TD, Krause BJ, Heusner TA, Boy C, Bockisch A, Antoch G (2009) PET/CT for the staging and follow-up of patients with malignancies. Eur J Radiol 70(3):382–392

    CAS  PubMed  Google Scholar 

  155. Postema EJ, McEwan AJ, Riauka TA, Kumar P, Richmond DA, Abrams DN, Wiebe LI (2009) Initial results of hypoxia imaging using 1-alpha-D: -(5-deoxy-5-[18F]-fluoroarabinofuranosyl)-2-nitroimidazole (18F-FAZA). Eur J Nucl Med Mol Imaging 36(10):1565–1573

    CAS  PubMed  Google Scholar 

  156. Preshlock S, Calderwood S, Verhoog S, Tredwell M, Huiban M, Hienzsch A, Gruber S, Wilson TC, Taylor NJ, Cailly T, Schedler M, Collier TL, Passchier J, Smits R, Mollitor J, Hoepping A, Mueller M, Genicot C, Mercier J, Gouverneur V (2016) Enhanced copper-mediated 18F-fluorination of aryl boronic esters provides eight radiotracers for PET applications. Chem Commun (Camb) 52(54):8361–8364

    CAS  Google Scholar 

  157. Preshlock S, Tredwell M, Gouverneur V (2016) 18F-labeling of arenes and heteroarenes for applications in positron emission tomography. Chem Rev 116(2):719–766

    CAS  Google Scholar 

  158. Pretze M, Franck D, Kunkel F, Foßhag E, Wängler C, Wängler B (2017) Evaluation of two nucleophilic syntheses routes for the automated synthesis of 6-[18F]fluoro-l-DOPA. Nucl Med Biol 45:35–42

    CAS  PubMed  Google Scholar 

  159. Pretze M, Wängler C, Wängler B (2014) 6-[18F]fluoro-L-DOPA: a well-established neurotracer with expanding application spectrum and strongly improved radiosyntheses. Biomed Res Int 2014:674063

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Puri T, Greenhalgh TA, Wilson JM, Franklin J, Wang LM, Strauss V, Cunningham C, Partridge M, Maughan T (2017) [18F]fluoromisonidazole PET in rectal cancer. EJNMMI Res 7(1):78

    PubMed  PubMed Central  Google Scholar 

  161. Rahbar K, Afshar-Oromieh A, Seifert R, Wagner S, Schäfers M, Bögemann M, Weckesser M (2018) Diagnostic performance of 18F-PSMA-1007 PET/CT in patients with biochemical recurrent prostate cancer. Eur J Nucl Med Mol Imaging 45(12):2055–2061

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Rajasekaran SA, Anilkumar G, Oshima E, Bowie JU, Liu H, Heston W, Bander NH, Rajasekaran AK (2003) A novel cytoplasmic tail MXXXL motif mediates the internalization of prostate-specific membrane antigen. Mol Biol Cell 14(12):4835–4845

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Rasey JS, Grierson JR, Wiens LW, Kolb PD, Schwartz JL (2002) Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 43(9):1210–1217

    CAS  PubMed  Google Scholar 

  164. Rasey JS, Grunbaum Z, Magee S, Nelson NJ, Olive PL, Durand RE, Krohn KA (1987) Characterization of radiolabeled fluoromisonidazole as a probe for hypoxic cells. Radiat Res 111(2):292–304

    CAS  PubMed  Google Scholar 

  165. Ravert HT, Holt DP, Chen Y, Mease RC, Fan H, Pomper MG, Dannals RF (2016) An improved synthesis of the radiolabeled prostate-specific membrane antigen inhibitor, [18F]DCFPyL. J Label Compd Rad 59(11):439–450

    CAS  Google Scholar 

  166. Reischl G, Ehrlichmann W, Bieg C, Solbach C, Kumar P, Wiebe LI, Machulla HJ (2005) Preparation of the hypoxia imaging PET tracer [18F]FAZA: reaction parameters and automation. Appl Radiat Isot 62(6):897–901

    CAS  Google Scholar 

  167. Reivich M, Kuhl D, Wolf A, Greenberg J, Ma Phelps, Ido T, Casella V, Fowler J, Hoffman E, Alavi A (1979) The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44(1):127–137

    CAS  Google Scholar 

  168. Roels S, Slagmolen P, Nuyts J, Lee JA, Loeckx D, Maes F, Stroobants S, Penninckx F, Haustermans K (2008) Biological image-guided radiotherapy in rectal cancer: is there a role for FMISO or FLT, next to FDG? Acta Oncol 47(7):1237–1248

    CAS  PubMed  Google Scholar 

  169. Roivainen A, Forsback S, Gronroos T, Lehikoinen P, Kahkonen M, Sutinen E, Minn H (2000) Blood metabolism of [methyl-11C]choline; implications for in vivo imaging with positron emission tomography. Eur J Nucl Med 27(1):25–32

    CAS  PubMed  Google Scholar 

  170. Rose C, Andersen K, Mouridsen H, Thorpe S, Pedersen B, Blichert-Toft M, Rasmussen B (1985) Beneficial effect of adjuvan tamoxifen therapy in primay breast cancer patients with high oestrogen receptor values. Lancet 325(8419):16–19

    Google Scholar 

  171. Rowe SP, Macura KJ, Mena E, Blackford AL, Nadal R, Antonarakis ES, Eisenberger M, Carducci M, Fan H, Dannals RF (2016) PSMA-based [18F]DCFPyL PET/CT is superior to conventional imaging for lesion detection in patients with metastatic prostate cancer. Mol Imaging Biol 18(3):411–419

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Rubens RD, Mundy GR (2000) Cancer and the skeleton

    Google Scholar 

  173. Römer J, Füchtner F, Steinbach J, Johannsen B (1999) Automated production of 16α-[18F]fluoroestradiol for breast cancer imaging. Nucl Med Biol 26(4):473–479

    PubMed  Google Scholar 

  174. Saga T, Inubushi M, Koizumi M, Yoshikawa K, Zhang MR, Obata T, Tanimoto K, Harada R, Uno T, Fujibayashi Y (2016) Prognostic value of PET/CT with 18F-fluoroazomycin arabinoside for patients with head and neck squamous cell carcinomas receiving chemoradiotherapy. Ann Nucl Med 30(3):217–224

    CAS  PubMed  Google Scholar 

  175. Sasajima T, Ono T, Shimada N, Doi Y, Oka S, Kanagawa M, Baden A, Mizoi K (2013) Trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid (anti-18F-FACBC) is a feasible alternative to 11C-methyl-L-methionine and magnetic resonance imaging for monitoring treatment response in gliomas. Nucl Med Biol 40(6):808–815

    Google Scholar 

  176. Savi A, Incerti E, Fallanca F, Bettinardi V, Rossetti F, Monterisi C, Compierchio A, Negri G, Zannini P, Gianolli L, Picchio M (2017) First evaluation of PET-based human biodistribution and dosimetry of 18F-FAZA, a tracer for imaging tumor hypoxia. J Nucl Med 58(8):1224–1229

    CAS  PubMed  Google Scholar 

  177. Schelhaas S, Wachsmuth L, Viel T, Honess DJ, Heinzmann K, Smith DM, Hermann S, Wagner S, Kuhlmann MT, Müller-Tidow C, Kopka K, Schober O, Schäfers M, Schneider R, Aboagye EO, Griffiths J, Faber C, Jacobs AH (2014) Variability of proliferation and diffusion in different lung cancer models as measured by 3′-Deoxy-3′-18F-fluorothymidine PET and diffusion-weighted MR imaging. J Nucl Med 55(6):983–988

    CAS  PubMed  Google Scholar 

  178. Schiesser M, Veit-Haibach P, Muller M, Weber M, Bauerfeind P, Hany T, Clavien PA (2010) Value of combined 6-[18F]fluorodihydroxyphenylalanine PET/CT for imaging of neuroendocrine tumours. Br J Surg 97(5):691–697

    CAS  PubMed  Google Scholar 

  179. Schirrmeister H, Guhlmann A, Kotzerke J, Santjohanser C, Kuhn T, Kreienberg R, Messer P, Nussle K, Elsner K, Glatting G (1999) Early detection and accurate description of extent of metastatic bone disease in breast cancer with fluoride ion and positron emission tomography. J Clin Oncol 17(8):2381–2389

    CAS  Google Scholar 

  180. Schober O, Heindel W (2008) PET-CT. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  181. Schuster DM, Taleghani PA, Nieh PT, Master VA, Amzat R, Savir-Baruch B, Halkar RK, Fox T, Osunkoya AO, Moreno CS (2013) Characterization of primary prostate carcinoma by anti-1-amino-2-[18F]-fluorocyclobutane-1-carboxylic acid (anti-3-[18F]FACBC) uptake. Am J Nucl Med Mol Imaging 3(1):85

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Servagi-Vernat S, Differding S, Hanin FX, Labar D, Bol A, Lee JA, Gregoire V (2014) A prospective clinical study of 18F-FAZA PET-CT hypoxia imaging in head and neck squamous cell carcinoma before and during radiation therapy. Eur J Nucl Med Mol Imaging 41(8):1544–1552

    CAS  PubMed  Google Scholar 

  183. Shao X, Hoareau R, Hockley BG, Tluczek LJM, Henderson BD, Padgett HC, Scott PJH (2011) Highlighting the versatility of the tracerlab synthesis modules. Part 1: fully automated production of [18F]labelled radiopharmaceuticals using a Tracerlab FXFN. J Label Compd Rad 54(6):292–307

    Google Scholar 

  184. Shields AF (2003) PET imaging with 18F-FLT and thymidine analogs: promise and pitfalls. J Nucl Med 44(9):1432–1434

    CAS  PubMed  Google Scholar 

  185. Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, Obradovich JE, Muzik O, Mangner TJ (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4(11):1334–1336

    CAS  Google Scholar 

  186. Shoup TM, Olson J, Hoffman JM, Votaw J, Eshima D, Eshima L, Camp VM, Stabin M, Votaw D, Goodman MM (1999) Synthesis and evaluation of [18F]1-amino-3-fluorocyclobutane-1-carboxylic acid to image brain tumors. J Nucl Med 40(2):331–338

    CAS  Google Scholar 

  187. da Silva NA, Lohmann P, Fairney J, Magill AW, Oros Peusquens AM, Choi CH, Stirnberg R, Stoffels G, Galldiks N, Golay X, Langen KJ, Jon Shah N (2018) Hybrid MR-PET of brain tumours using amino acid PET and chemical exchange saturation transfer MRI. Eur J Nucl Med Mol Imaging 45(6):1031–1040

    PubMed  Google Scholar 

  188. Silver DA, Pellicer I, Fair WR, Heston W, Cordon-Cardo C (1997) Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res 3(1):81–85

    CAS  Google Scholar 

  189. Smith TA (2000) Mammalian hexokinases and their abnormal expression in cancer. Br J Biomed Sci 57(2):170–178

    CAS  PubMed  Google Scholar 

  190. Southworth R, Dearling JL, Medina RA, Flynn AA, Pedley RB, Garlick PB (2002) Dissociation of glucose tracer uptake and glucose transporter distribution in the regionally ischaemic isolated rat heart: application of a new autoradiographic technique. Eur J Nucl Med Mol Imaging 29(10):1334–1341

    CAS  PubMed  Google Scholar 

  191. Sun H, Sloan A, Mangner TJ, Vaishampayan U, Muzik O, Collins JM, Douglas K, Shields AF (2005) Imaging DNA synthesis with [18F]FMAU and positron emission tomography in patients with cancer. Eur J Nucl Med Mol Imaging 32(1):15–22

    CAS  PubMed  Google Scholar 

  192. Sun Y, Yang Z, Zhang Y, Xue J, Wang M, Shi W, Zhu B, Hu S, Yao Z, Pan H, Zhang Y (2015) The preliminary study of 16α-[18F]fluoroestradiol PET/CT in assisting the individualized treatment decisions of breast cancer patients. PLoS ONE 10(1):e0116341

    PubMed  PubMed Central  Google Scholar 

  193. Svadberg A, Wickstrøm T, Hjelstuen OK (2012) Degradation of acetonitrile in eluent solutions for [18F]fluoride PET chemistry: impact on radiosynthesis of [18F]FACBC and [18F]FDG. J Label Compd Rad 55(3):97–102

    CAS  Google Scholar 

  194. Swanson KR, Chakraborty G, Wang CH, Rockne R, Harpold HL, Muzi M, Adamsen TC, Krohn KA, Spence AM (2009) Complementary but distinct roles for MRI and 18F-fluoromisonidazole PET in the assessment of human glioblastomas. J Nucl Med 50(1):36–44

    PubMed  Google Scholar 

  195. Szabo Z, Mena E, Rowe SP, Plyku D, Nidal R, Eisenberger MA, Antonarakis ES, Fan H, Dannals RF, Chen Y (2015) Initial evaluation of [18F]DCFPyL for prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer. Mol Imaging Biol 17(4):565–574

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Tang G, Tang X, Wen F, Wang M, Li B (2010) A facile and rapid automated synthesis of 3′-deoxy-3′-[18F]fluorothymidine. Appl Radiat Isot 68(9):1734–1739

    CAS  PubMed  Google Scholar 

  197. Tehrani OS, Muzik O, Heilbrun LK, Douglas KA, Lawhorn-Crews JM, Sun H, Mangner TJ, Shields AF (2007) Tumor imaging using 1-(2′-deoxy-2′-18F-fluoro-beta-D-arabinofuranosyl)thymine and PET. J Nucl Med 48(9):1436–1441

    CAS  PubMed  Google Scholar 

  198. Tewson TJ, Mankoff DA, Peterson LM, Woo I, Petra P (1999) Interactions of 16α-[18F]-fluoroestradiol (FES) with sex steroid binding protein (SBP). Nucl Med Biol 26(8):905–913

    CAS  PubMed  Google Scholar 

  199. Thiele F, Ehmer J, Piroth MD, Eble MJ, Coenen HH, Kaiser HJ, Schaefer WM, Buell U, Boy C (2009) The quantification of dynamic FET PET imaging and correlation with the clinical outcome in patients with glioblastoma. Phys Med Biol 54(18):5525–5539

    PubMed  Google Scholar 

  200. Tredwell M, Preshlock SM, Taylor NJ, Gruber S, Huiban M, Passchier J, Mercier J, Genicot C, Gouverneur V (2014) A general copper-mediated nucleophilic 18F fluorination of arenes. Angew Chem Int Ed Engl 53(30):7751–7755

    CAS  Google Scholar 

  201. Tsujikawa T, Yoshida Y, Mori T, Kurokawa T, Fujibayashi Y, Kotsuji F, Okazawa H (2008) Uterine tumors: pathophysiologic imaging with 16α-[18F]fluoro-17β-estradiol and 18F fluorodeoxyglucose PET—Initial experience. Radiology 248(2):599–605

    PubMed  Google Scholar 

  202. Tsuyuguchi N, Terakawa Y, Uda T, Nakajo K, Kanemura Y (2017) Diagnosis of brain tumors using amino acid transport PET imaging with 18F-fluciclovine: a comparative study with L-methyl-11C-methionine PET imaging. Asia Ocean J Nucl Med Biol 5(2):85–94

    PubMed  PubMed Central  Google Scholar 

  203. Turkman N, Gelovani JG, Alauddin MM (2010) A novel method for stereospecific fluorination at the 2′-arabino-position of pyrimidine nucleoside: synthesis of [18F]-FMAU. J Label Compd Rad 53(13):782–786

    CAS  Google Scholar 

  204. Vera P, Thureau S, Chaumet-Riffaud P, Modzelewski R, Bohn P, Vermandel M, Hapdey S, Pallardy A, Mahe MA, Lacombe M, Boisselier P, Guillemard S, Olivier P, Beckendorf V, Salem N, Charrier N, Chajon E, Devillers A, Aide N, Danhier S, Denis F, Muratet JP, Martin E, Riedinger AB, Kolesnikov-Gauthier H, Dansin E, Massabeau C, Courbon F, Farcy Jacquet MP, Kotzki PO, Houzard C, Mornex F, Vervueren L, Paumier A, Fernandez P, Salaun M, Dubray B (2017) Phase II study of a radiotherapy total dose increase in hypoxic lesions identified by 18F-misonidazole PET/CT in patients with non-small cell lung carcinoma (RTEP5 Study). J Nucl Med 58(7):1045–1053

    CAS  PubMed  Google Scholar 

  205. Wakabayashi T, Iuchi T, Tsuyuguchi N, Nishikawa R, Arakawa Y, Sasayama T, Miyake K, Nariai T, Narita Y, Hashimoto N, Okuda O, Matsuda H, Kubota K, Ito K, Nakazato Y, Kubomura K (2017) Diagnostic performance and safety of positron emission tomography using 18F-fluciclovine in patients with clinically suspected high- or low-grade gliomas: a multicenter phase IIb trial. Asia Ocean J Nucl Med Biol 5(1):10–21

    PubMed  PubMed Central  Google Scholar 

  206. Warburg O, Posener K, Negelein E (1924) VIII. The metabolism of cancer cells. Biochem Zeitschr 152:129–169

    Google Scholar 

  207. Weckesser M, Langen KJ, Rickert CH, Kloska S, Straeter R, Hamacher K, Kurlemann G, Wassmann H, Coenen HH, Schober O (2005) O-(2-[18F]fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours. Eur J Nucl Med Mol Imaging 32(4):422–429

    CAS  PubMed  Google Scholar 

  208. Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219(2):316–333

    CAS  Google Scholar 

  209. Welch MJ, Redvanly CS (2003) Handbook of radiopharmaceuticals: radiochemistry and applications. Wiley, London

    Google Scholar 

  210. Wester HJ, Herz M, Weber W, Heiss P, Senekowitsch-Schmidtke R, Schwaiger M, Stocklin G (1999) Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med 40(1):205–212

    CAS  Google Scholar 

  211. Van de Wiele C, De Vos F, Slegers G, Van Belle S, Dierckx RA (2000) Radiolabeled estradiol derivatives to predict response to hormonal treatment in breast cancer: a review. Eur J Nucl Med 27(9):1421–1433

    PubMed  Google Scholar 

  212. Yamamoto Y, Kameyama R, Izuishi K, Takebayashi R, Hagiike M, Asakura M, Haba R, Nishiyama Y (2009) Detection of colorectal cancer using 18F-FLT PET: comparison with 18F-FDG PET. Nucl Med Commun 30(11):841–845

    PubMed  Google Scholar 

  213. Yamamoto M, Tsujikawa T, Yamada S, Kurokawa T, Shinagawa A, Chino Y, Mori T, Kiyono Y, Okazawa H, Yoshida Y (2017) 18F-FDG/18F-FES standardized uptake value ratio determined using PET predicts prognosis in uterine sarcoma. Oncotarget 8(14):22581–22589

    PubMed  PubMed Central  Google Scholar 

  214. Yoshida Y, Kurokawa T, Tsujikawa T, Okazawa H, Kotsuji F (2009) Positron emission tomography in ovarian cancer: 18F-deoxy-glucose and 16α-18F-fluoro-17β-estradiol PET. J Ovarian Res 2(1):7

    PubMed  PubMed Central  Google Scholar 

  215. Yu W, Williams L, Camp VM, Olson JJ, Goodman MM (2010) Synthesis and biological evaluation of anti-1-amino-2-[18F] fluoro-cyclobutyl-1-carboxylic acid (anti-2-[18F] FACBC) in rat 9L gliosarcoma. Bioorg Med Chem Let 20(7):2140–2143

    CAS  Google Scholar 

  216. Yun M, Oh SJ, Ha HJ, Ryu JS, Moon DH (2003) High radiochemical yield synthesis of 3′-deoxy-3′-[18F]fluorothymidine using (5′-O-dimethoxytrityl-2′-deoxy-3′-O-nosyl-beta-D-threo pentofuranosyl)thymine and its 3-N-BOC-protected analogue as a labeling precursor. Nucl Med Biol 30(2):151–157

    CAS  PubMed  Google Scholar 

  217. Zischler J, Kolks N, Modemann D, Neumaier B, Zlatopolskiy BD (2017) Alcohol-enhanced Cu-mediated radiofluorination. Chem Eur J 23(14):3251–3256

    CAS  Google Scholar 

  218. Zuhayra M, Alfteimi A, Forstner CV, Lutzen U, Meller B, Henze E (2009) New approach for the synthesis of [18F]fluoroethyltyrosine for cancer imaging: simple, fast, and high yielding automated synthesis. Bioorg Med Chem 17(21):7441–7448

    CAS  Google Scholar 

  219. Zuhayra M, Alfteimi A, Papp L, Lutzen U, Lutzen A, Von Forstner C, Meller B, Henze E (2008) Simplified fast and high yielding automated synthesis of [18F]fluoroethylcholine for prostate cancer imaging. Bioorg Med Chem 16(20):9121–9126

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Waldmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Waldmann, C.M., Kopka, K., Wagner, S. (2020). 18F-Labeled Small-Molecule and Low-Molecular-Weight PET Tracers for the Noninvasive Detection of Cancer. In: Schober, O., Kiessling, F., Debus, J. (eds) Molecular Imaging in Oncology. Recent Results in Cancer Research, vol 216. Springer, Cham. https://doi.org/10.1007/978-3-030-42618-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42618-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42617-0

  • Online ISBN: 978-3-030-42618-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics