Skip to main content

Single Photon Emission Computed Tomography Tracer

  • Chapter
  • First Online:
Molecular Imaging in Oncology

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 216))

Abstract

Single photon emission computed tomography (SPECT) is the state-of-the-art imaging modality in nuclear medicine despite the fact that only a few new SPECT tracers have become available in the past 20 years. Critical for the future success of SPECT is the design of new and specific tracers for the detection, localization, and staging of a disease and for monitoring therapy. The utility of SPECT imaging to address oncologic questions is dependent on radiotracers that ideally exhibit excellent tissue penetration, high affinity to the tumor-associated target structure, specific uptake and retention in the malignant lesions, and rapid clearance from non-targeted tissues and organs. In general, a target-specific SPECT radiopharmaceutical can be divided into two main parts: a targeting biomolecule (e.g., peptide, antibody fragment) and a γ-radiation-emitting radionuclide (e.g., 99mTc, 123I). If radiometals are used as the radiation source, a bifunctional chelator is needed to link the radioisotope to the targeting entity. In a rational SPECT tracer design, these single components have to be critically evaluated in order to achieve a balance among the demands for adequate target binding, and a rapid clearance of the radiotracer. The focus of this chapter is to depict recent developments of tumor-targeted SPECT radiotracers for imaging of cancer diseases. Possibilities for optimization of tracer design and potential causes for design failure are discussed and highlighted with selected examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abrams MJ, Juweid M et al (1990) Technetium-99m-human polyclonal IgG radiolabeled via the hydrazino nicotinamide derivative for imaging focal sites of infection in rats. J Nucl Med 31:2022–2028

    CAS  PubMed  Google Scholar 

  2. Afshar-Oromieh A, Babich JW et al (2016) The rise of PSMA ligands for diagnosis and therapy of prostate cancer. J Nucl Med 57(S3):79S–89S

    CAS  PubMed  Google Scholar 

  3. Afshar-Oromieh A, Haberkorn U et al (2017) Repeated PSMA-targeting radioligand therapy of metastatic prostate cancer with 131I-MIP-1095. Eur J Nucl Med Mol Imaging 44:950–959

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Afshar-Oromieh A, Hetzheim H et al (2015) The theranostic PSMA Ligand PSMA-617 in the diagnosis of prostate cancer by PET/CT: biodistribution in humans, radiation dosimetry, and first evaluation of tumor lesions. J Nucl Med 56:1697–1705

    CAS  PubMed  Google Scholar 

  5. Afshar-Oromieh A, Holland-Letz T et al (2017) Diagnostic performance of 68Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: evaluation in 1007 patients. Eur J Nucl Med Mol Imaging 44:1258–1268

    PubMed  PubMed Central  Google Scholar 

  6. Alberto R, Ortner K et al (2001) Synthesis and properties of boranocarbonate: a convenient in situ CO source for the aqueous preparation of [99mTc(OH2)3(CO)3]+. J Am Chem Soc 123:3135–3136

    CAS  PubMed  Google Scholar 

  7. Alberto R, Schibli R et al (1998) A novel organometallic aqua complex of technetium for the labeling of biomolecules: synthesis of [99mTc(OH2)3(CO)3]+ from [99mTcO4]- in aqueous solution and its reaction with a bifunctional ligand. J Am Chem Soc 120:7987–7988

    CAS  Google Scholar 

  8. Alberto R, Schibli R et al (1999) First application of fac-[99mTc(OH2)3(CO)3]+ in bioorganometallic chemistry: design, structure, and in vitro affinity of a 5-HT1A receptor ligand labeled with 99mTc. J Am Chem Soc 121:6076–6077

    CAS  Google Scholar 

  9. Alberto R, Schibli R et al (1999) Basic aqueous chemistry of [M(OH2)3(CO)3]+ (M = Re, Tc) directed towards radiopharmaceutical application. Coord Chem Rev 192:901–919

    Google Scholar 

  10. Alford R, Ogawa M et al (2009) Molecular probes for the in vivo imaging of cancer. Mol BioSyst 5:1279–1291

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Alshoukr F, Rosant C et al (2009) Novel neurotensin analogues for radioisotope targeting to neurotensin receptor-positive tumors. Bioconjug Chem 20:1602–1610

    CAS  PubMed  Google Scholar 

  12. Alves S, Correia JD et al (2006) Pyrazolyl conjugates of bombesin: a new tridentate ligand framework for the stabilization of fac-[M(CO)3]+ moiety. Nucl Med Biol 33:625–634

    CAS  PubMed  Google Scholar 

  13. Antony AC (1996) Folate receptors. Ann Rev Nutr 16:501–521

    CAS  Google Scholar 

  14. Aranda-Lara L, Ferro-Flores G et al (2016) Synthesis and evaluation of Lys1(α, γ-Folate)Lys3(177Lu-DOTA)-Bombesin(1–14) as a potential theranostic radiopharmaceutical for breast cancer. Appl Radiat Isot 107:214–219

    CAS  PubMed  Google Scholar 

  15. Artiko V, Afgan A et al (2016) Evaluation of neuroendocrine tumors with 99mTc-EDDA/HYNIC TOC. Nucl Med Rev 19:99–103

    Google Scholar 

  16. Assaraf YG, Leamon CP et al (2014) The folate receptor as a rational therapeutic target for personalized cancer treatment. Drug Resist Updates 17:89–95

    Google Scholar 

  17. Awang ZH, Essler M et al (2018) Radioligand therapy of metastatic castration-resistant prostate cancer: current approaches. Radiat Oncol 13:98

    PubMed  PubMed Central  Google Scholar 

  18. Axworthy DB, Reno JM et al (2000) Cure of human carcinoma xenografts by a single dose of pretargeted yttrium-90 with negligible toxicity. Proc Natl Acad Sci USA 97:1802–1807

    CAS  PubMed  Google Scholar 

  19. Azad AK, Rajaram MVS et al (2015) Tilmanocept, a new radiopharmaceutical tracer for cancer sentinel lymph nodes, binds to the mannose receptor (CD206). J Immunol 195:2019–2029

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Baidoo KE, Lin KS et al (1998) Design, synthesis, and initial evaluation of high-affinity technetium bombesin analogues. Bioconjug Chem 9:218–225

    CAS  PubMed  Google Scholar 

  21. Baker JL, Pu M et al (2015) Comparison of [99mTc]Tilmanocept and filtered [99mTc]Sulfur colloid for identification of SLNs in breast cancer patients. Ann Surg Oncol 22:40–45

    Google Scholar 

  22. Baranski AC, Schäfer M et al (2017) Improving the imaging contrast of 68Ga-PSMA-11 by targeted linker design: charged spacer moieties enhance the pharmacokinetic properties. Bioconjugate Chem 28:2485–2492

    CAS  Google Scholar 

  23. Barrett JA, Coleman RE et al (2013) First-in-man evaluation of 2 high-affinity PSMA-avid small molecules for imaging prostate cancer. J Nucl Med 54:380–387

    CAS  Google Scholar 

  24. Bartholoma MD, Louie AS et al (2010) Technetium and gallium derived radiopharmaceuticals: comparing and contrasting the chemistry of two important radiometals for the molecular imaging era. Chem Rev 110:2903–2920

    CAS  PubMed  Google Scholar 

  25. Bauer JA, Morrison BH et al (2002) Effects of interferon beta on transcobalamin II-receptor expression and antitumor activity of nitrosylcobalamin. J Natl Cancer Inst 94:1010–1019

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bayly SR, Fisher CL et al (2004) Carbohydrate conjugates for molecular imaging and radiotherapy: 99mTc(I) and 186Re(I) tricarbonyl complexes of N-(2′-hydroxybenzyl)-2-amino-2-deoxy-d-glucose. B. Bioconjug Chem 15:923–926

    CAS  Google Scholar 

  27. Begent RH, Verhaar MJ et al (1996) Clinical evidence of efficient tumor targeting based on single-chain Fv antibody selected from a combinatorial library. Nat Med 2:979–984

    CAS  PubMed  Google Scholar 

  28. Behr TM, Becker WS et al (1996) Reduction of renal uptake of monoclonal antibody fragments by amino acid infusion. J Nucl Med 37:829–833

    CAS  PubMed  Google Scholar 

  29. Behr TM, Gotthardt M et al (2001) Imaging tumors with peptide-based radioligands. Q J Nucl Med 45:189–200

    CAS  PubMed  Google Scholar 

  30. Behr TM, Sharkey RM et al (1995) Reduction of the renal uptake of radiolabeled monoclonal antibody fragments by cationic amino acids and their derivatives. Cancer Res 55:3825–3834

    CAS  PubMed  Google Scholar 

  31. Bernard BF, Krenning EP et al (1997) d-lysine reduction of indium-111 octreotide and yttrium-90 octreotide renal uptake. J Nucl Med 38:1929–1933

    CAS  PubMed  Google Scholar 

  32. Birchler MT, Thuerl C et al (2007) Immunoscintigraphy of patients with head and neck carcinomas, with an anti-angiogenetic antibody fragment. Otolaryngol Head Neck Surg 136:543–548

    PubMed  Google Scholar 

  33. Blomquist L, Flodh H et al (1969) Uptake of labelled vitamin B12 and 4-iodophenylalanine in some tumors of mice. Experientia 25:294–296

    CAS  PubMed  Google Scholar 

  34. Boeggeman E, Ramakrishnan B et al (2009) Site specific conjugation of fluoroprobes to the remodeled Fc N-glycans of monoclonal antibodies using mutant glycosyltransferases: application for cell surface antigen detection. Bioconjug Chem 20:1228–1236

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Boerman OC, van Schaijk FG et al (2003) Pretargeted radioimmunotherapy of cancer: progress step by step. J Nucl Med 44:400–411

    PubMed  Google Scholar 

  36. Brack SS, Dinkelborg LM et al (2004) Molecular targeting of angiogenesis for imaging and therapy. Eur J Nucl Med Mol Imaging 31:1327–1341

    PubMed  Google Scholar 

  37. Breeman WA, de Jong M et al (2002) Preclinical comparison of 111In-labeled DTPA- or DOTA-bombesin analogs for receptor-targeted scintigraphy and radionuclide therapy. J Nucl Med 43:1650–1656

    CAS  PubMed  Google Scholar 

  38. Brekken RA, Huang X et al (1998) Vascular endothelial growth factor as a marker of tumor endothelium. Cancer Res 58:1952–1959

    CAS  PubMed  Google Scholar 

  39. Bruehlmeier M, Garayoa EG et al (2002) Stabilization of neurotensin analogues: effect on peptide catabolism, biodistribution and tumor binding. Nucl Med Biol 29:321–327

    CAS  PubMed  Google Scholar 

  40. Buchmann I, Vogg AT et al (2003) [18F]5-fluoro-2-deoxyuridine-PET for imaging of malignant tumors and for measuring tissue proliferation. Cancer Biother Radiopharm 18:327–337

    CAS  PubMed  Google Scholar 

  41. Buchsbaum DJ (1995) Experimental approaches to increase radiolabeled antibody localization in tumors. Cancer Res 55:5729s–5732s

    CAS  PubMed  Google Scholar 

  42. Buchsbaum DJ (1997) Experimental tumor targeting with radiolabeled ligands. Cancer 80:2371–2377

    CAS  PubMed  Google Scholar 

  43. Carnemolla B, Neri D et al (1996) Phage antibodies with pan-species recognition of the oncofoetal angiogenesis marker fibronectin ED-B domain. Int J Cancer 68:397–405

    CAS  PubMed  Google Scholar 

  44. Carrasquillo JA, Pandit-Taskar N et al (2016) I-131-metaiodobenzylguanidine therapy of pheochromocytoma and paraganglioma. Semin Nucl Med 46:203–214

    Google Scholar 

  45. Carrasquillo JA, Pandit-Taskar et al (2012) Radionuclide therapy of adrenal tumors. J Surg Oncol 06:632–642

    Google Scholar 

  46. Celen S, de Groot T et al (2007) Synthesis and evaluation of a 99mTc-MAMA-propyl-thymidine complex as a potential probe for in vivo visualization of tumor cell proliferation with SPECT. Nucl Med Biol 34:283–291

    CAS  PubMed  Google Scholar 

  47. Cescato R, Erchegyi J et al (2008) Design and in vitro characterization of highly sst2-selective somatostatin antagonists suitable for radiotargeting. J Med Chem 51:4030–4037

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Cescato R, Schulz S et al (2006) Internalization of sst2, sst3, and sst5 receptors: effects of somatostatin agonists and antagonists. J Nucl Med 47:502–511

    CAS  PubMed  Google Scholar 

  49. Chen Q, Ma Q et al (2015) An exploratory study on 99mTc-RGDBBN peptide scintimammography in the assessment of breast malignant lesions compared to 99mTc-3P4-RGD2. PLoS ONE 10:e0123401

    PubMed  PubMed Central  Google Scholar 

  50. Chopra A (2009) 123I-Labeled (S)-2-(3-((S)-1-carboxy-5-(4-iodobenzylamino)-pentyl)ureido)-pentanedoic acid. In: Molecular imaging and contrast agent database (MICAD) [Internet]. bethesda (MD): national center for biotechnology information (US); 2004–2013

    Google Scholar 

  51. Christ E, Wild D et al (2009) Glucagon-like peptide-1 receptor imaging for localization of insulinomas. J Clin Endocrinol Metab 94:4398–4405

    CAS  Google Scholar 

  52. Cistaro A, Quartuccio N et al (2015) 124I-MIBG: a new promising positron-emitting radiopharmaceutical for the evaluation of neuroblastoma. Nucl Med Rev 18:102–106

    Google Scholar 

  53. Collins DA, Hogenkamp HP (1997) Transcobalamin II receptor imaging via radiolabeled diethylene-triaminepentaacetate cobalamin analogs. J Nucl Med 38:717–723

    CAS  PubMed  Google Scholar 

  54. Collins DA, Hogenkamp HP et al (1999) Tumor imaging via indium-111-labeled DTPA-adenosylcobalamin. Mayo Clin Proc 74:687–691

    CAS  PubMed  Google Scholar 

  55. Collins DA, Hogenkamp HP et al (2000) Biodistribution of radiolabeled adenosylcobalamin in patients diagnosed with various malignancies. Mayo Clin Proc 75:568–580

    CAS  PubMed  Google Scholar 

  56. Dapueto R, Castelli R et al (2011) Biological evaluation of glucose and deoxyglucose derivatives radiolabeled with [99mTc(CO)3(H2O)3]+ core as potential melanoma imaging agents. Bioorg Med Chem Lett 21:7102–7106

    CAS  PubMed  Google Scholar 

  57. Dapueto R, Aguiar RB et al (2015) Technetium glucose complexes as potential cancer imaging agents. Bioorg Med Chem Lett 25:4254–4259

    CAS  PubMed  Google Scholar 

  58. de Barros ALB, Cardoso VN et al (2010) Synthesis and biodistribution studies of carbohydrate derivatives radiolabeled with technetium-99m. Bioorg Med Chem Lett 20:315–317

    PubMed  Google Scholar 

  59. de Barros ALB, das Gracas Mota L et al (2012) Kit formulation for 99mTc-labeling of HYNIC-βAla-Bombesin(7–14). Appl Radiat Isot 70:2440–2445

    Google Scholar 

  60. de Jong M, Bakker WH et al (1999) Preclinical and initial clinical evaluation of 111In-labeled nonsulfated CCK8 analog: a peptide for CCK-B receptor-targeted scintigraphy and radionuclide therapy. J Nucl Med 40:2081–2087

    PubMed  Google Scholar 

  61. de Jong M, Rolleman EJ et al (1996) Inhibition of renal uptake of indium-111-DTPA-octreotide in vivo. J Nucl Med 37:1388–1392

    PubMed  Google Scholar 

  62. de Visser M, Bernard HF et al (2007) Novel 111In-labelled bombesin analogues for molecular imaging of prostate tumours. Eur J Nucl Med Mol Imaging 34:1228–1238

    PubMed  Google Scholar 

  63. de Visser M, Janssen PJ et al (2003) Stabilised 111In-labelled DTPA- and DOTA-conjugated neurotensin analogues for imaging and therapy of exocrine pancreatic cancer. Eur J Nucl Med Mol Imaging 30:1134–1139

    PubMed  Google Scholar 

  64. Decristoforo C, Mather SJ (2002) The influence of chelator on the pharmacokinetics of 99mTc-labelled peptides. Q J Nucl Med 46:195–205

    CAS  PubMed  Google Scholar 

  65. Decristoforo C, Mather SJ et al (2000) 99mTc-EDDA/HYNIC-TOC: a new 99mTc-labelled radiopharmaceutical for imaging somatostatin receptor-positive tumours; first clinical results and intra-patient comparison with 111In-labelled octreotide derivatives. Eur J Nucl Med 27:1318–1325

    CAS  PubMed  Google Scholar 

  66. Decristoforo C, Melendez-Alafort L et al (2000) 99mTc-HYNIC-[Tyr3]-octreotide for imaging somatostatin-receptor-positive tumors: preclinical evaluation and comparison with 111In-octreotide. J Nucl Med 41:1114–1119

    CAS  PubMed  Google Scholar 

  67. Delgado R, da Silva JJ (1982) Metal complexes of cyclic tetra-azatetra-acetic acids. Talanta 29:815–822

    CAS  PubMed  Google Scholar 

  68. Demartis S, Tarli L et al (2001) Selective targeting of tumour neovasculature by a radiohalogenated human antibody fragment specific for the ED-B domain of fibronectin. Eur J Nucl Med 28:534–539

    CAS  PubMed  Google Scholar 

  69. Desbouis D, Struthers H et al (2008) Synthesis, in vitro, and in silico evaluation of organometallic technetium and rhenium thymidine complexes with retained substrate activity toward human thymidine kinase type 1. J Med Chem 51:6689–6698

    CAS  PubMed  Google Scholar 

  70. Dong C, Yang S et al (2016) SPECT/NIRF dual modality imaging for detection of intraperitoneal colon tumor with an avidin/biotin pretargeting system. Sci Rep 6:18905

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Dumas C, Schibli R et al (2003) Versatile routes to C-2- and C-6-functionalized glucose derivatives of iminodiacetic acid. J Org Chem 68:512–518

    CAS  PubMed  Google Scholar 

  72. Dupertuis YM, Vazquez M et al (2001) Fluorodeoxyuridine improves imaging of human glioblastoma xenografts with radiolabeled iododeoxyuridine. Cancer Res 61:7971–7977

    CAS  PubMed  Google Scholar 

  73. Dupertuis YM, Xiao WH et al (2002) Unlabelled iododeoxyuridine increases the rate of uptake of [125I]iododeoxyuridine in human xenografted glioblastomas. Eur J Nucl Med Mol Imaging 29:499–505

    CAS  PubMed  Google Scholar 

  74. Edwards DS, Liu S et al (1997) New and versatile ternary ligand system for technetium radiopharmaceuticals: water soluble phosphines and tricine as coligands in labeling a hydrazinonicotinamide-modified cyclic glycoprotein IIb/IIIa receptor antagonist with 99mTc. Bioconjug Chem 8:146–154

    CAS  PubMed  Google Scholar 

  75. Egli A, Alberto R et al (1999) Organometallic 99mTc-aquation labels peptide to an unprecedented high specific activity. J Nucl Med 40:1913–1917

    CAS  PubMed  Google Scholar 

  76. Egli A, Hegetschweiler K et al (1997) Hydrolysis of the organometallic aqua ion fac-triaquatricarbonylrhenium(I). Mechanism, pKa, and formation constants of the polynuclear hydrolysis products. Organometallics 16:1833–1840

    CAS  Google Scholar 

  77. Fan G, Wan R et al (2018) The distribution and imaging of 99mTc-nGO-PEG-FA in human Patu8988 tumor-bearing nude mice. Cancer Biother Radiopharm 33:445–459

    CAS  PubMed  Google Scholar 

  78. Farkas R, Siwowska et al (2016) 64Cu- and 68Ga-based PET imaging of folate receptor-positive tumors: development and evaluation of an albumin-binding. Mol Pharm 13:1979–1987

    Google Scholar 

  79. Fernández M, Javaid F, Chudasama (2018) Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem Sci 9:790–810

    Google Scholar 

  80. Ferreira CL, Bayly SR et al (2006) Carbohydrate-appended 3-hydroxy-4-pyridinone complexes of the [M(CO)3]+ core (M = Re, 99mTc, 186Re). Bioconjug Chem 17:1321–1329

    CAS  PubMed  Google Scholar 

  81. Ferreira CL, Ewart CB et al (2006) Glucosamine conjugates of tricarbonylcyclopentadienyl rhenium(I) and technetium(I) cores. Inorg Chem 45:6979–6987

    CAS  PubMed  Google Scholar 

  82. Ferreira CL, Marques FL et al (2010) Cationic technetium and rhenium complexes with pendant carbohydrates. Appl Radiat Isot 68:1087–1093

    CAS  PubMed  Google Scholar 

  83. Ferro-Flores G, Arteaga de Murphy C et al (2006) Preparation and evaluation of 99mTc-EDDA/HYNIC-[Lys3]-bombesin for imaging gastrin-releasing peptide receptor-positive tumours. Nucl Med Commun 27:371–376

    CAS  PubMed  Google Scholar 

  84. Ferro-Flores G, Luna-Gutiérrez M et al (2017) Clinical translation of a PSMA inhibitor for 99mTc-based SPECT. Nucl Med Biol 48:36–44

    CAS  PubMed  Google Scholar 

  85. Ferro-Flores G, Rivero IA et al (2010) Click chemistry for [99mTc(CO)3] labeling of Lys3-bombesin. Appl Radiat Isot 68:2274–2278

    CAS  PubMed  Google Scholar 

  86. Fischer CA, Vomstein S, Mindt TL (2014) A bombesin-shepherdin radioconjugate designed for combined extra- and intracellular targeting. Pharmaceuticals 7:662–675

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Fisher RE, Siegel BA et al (2008) Exploratory study of 99mTc-EC20 imaging for identifying patients with folate receptor-positive solid tumors. J Nucl Med 49:899–906

    PubMed  Google Scholar 

  88. Flodh H (1968) Autoradiographic studies on distribution of radiocobalt chloride in pregnant mice. Acta Radiol Ther Phys Biol 7:121–128

    CAS  PubMed  Google Scholar 

  89. Flodh H, Ullberg S (1968) Accumulation of labelled vitamin B12 in some transplanted tumours. Int J Cancer 3:694–699

    CAS  PubMed  Google Scholar 

  90. Garai I, Barna S et al (2016) Limitations and pitfalls of 99mTc-EDDA/HYNIC-TOC (Tektrotyd) scintigraphy. Nucl Med Rev 19:93–98

    Google Scholar 

  91. Garcia Garayoa E, Ruegg D et al (2007) Chemical and biological characterization of new Re(CO)3/[99mTc](CO)3 bombesin analogues. Nucl Med Biol 34:17–28

    CAS  PubMed  Google Scholar 

  92. Garcia Garayoa E, Schweinsberg C et al (2007) New [99mTc]bombesin analogues with improved biodistribution for targeting gastrin releasing-peptide receptor-positive tumors. Q J Nucl Med Mol Imaging 51:42–50

    CAS  PubMed  Google Scholar 

  93. Garcia Garayoa E, Schweinsberg C et al (2008) Influence of the molecular charge on the biodistribution of bombesin analogues labeled with the [99mTc(CO)3]-core. Bioconjug Chem 19:2409–2416

    CAS  PubMed  Google Scholar 

  94. Garcia-Garayoa E, Blauenstein P et al (2009) A stable neurotensin-based radiopharmaceutical for targeted imaging and therapy of neurotensin receptor-positive tumours. Eur J Nucl Med Mol Imaging 36:37–47

    CAS  PubMed  Google Scholar 

  95. Garcia-Garayoa E, Maes V et al (2006) Double-stabilized neurotensin analogues as potential radiopharmaceuticals for NTR-positive tumors. Nucl Med Biol 33:495–503

    CAS  PubMed  Google Scholar 

  96. Gardelle O, Roelcke U et al (2001) [76Br]Bromodeoxyuridine PET in tumor-bearing animals. Nucl Med Biol 28:51–57

    CAS  PubMed  Google Scholar 

  97. Gati WP, Misra HK et al (1984) Structural modifications at the 2′- and 3′-positions of some pyrimidine nucleosides as determinants of their interaction with the mouse erythrocyte nucleoside transporter. Biochem Pharmacol 33:3325–3331

    CAS  PubMed  Google Scholar 

  98. Giblin MF, Veerendra B et al (2005) Radiometallation of receptor-specific peptides for diagnosis and treatment of human cancer. Vivo 19:9–29

    CAS  Google Scholar 

  99. Giesel FL, Will L et al (2018) Biochemical recurrence of prostate cancer: initial results with [18F]PSMA-1007 PET/CT. J Nucl Med 59(4):632–635

    CAS  PubMed  Google Scholar 

  100. Ginj M, Zhang H et al (2006) Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci USA 103:16436–16441

    CAS  PubMed  Google Scholar 

  101. Goffin KE, Joniau S et al (2017) Phase 2 Study of 99mTc-Trofolastat SPECT/CT to identify and localize prostate cancer in intermediate- and high-risk patients undergoing radical prostatectomy and extended pelvic LN dissection. J Nucl Med 58:1408–1413

    CAS  Google Scholar 

  102. Goldenberg DM, Rossi EA et al (2008) Multifunctional antibodies by the dock-and-lock method for improved cancer imaging and therapy by pretargeting. J Nucl Med 49:158–163

    CAS  PubMed  Google Scholar 

  103. Good S, Walter MA et al (2008) Macrocyclic chelator-coupled gastrin-based radiopharmaceuticals for targeting of gastrin receptor-expressing tumours. Eur J Nucl Med Mol Imaging 35:1868–1877

    CAS  PubMed  Google Scholar 

  104. Gotthardt M, van Eerd-Vismale J et al (2007) Indication for different mechanisms of kidney uptake of radiolabeled peptides. J Nucl Med 48:596–601

    CAS  PubMed  Google Scholar 

  105. Grünwald F, Ezziddin S (2010) 131I-metaiodobenzylguanidine therapy of neuroblastoma and other neuroendocrine tumors. Semin Nucl Med 40:153–163

    Google Scholar 

  106. Gugger M, Reubi JC (1999) Gastrin-releasing peptide receptors in non-neoplastic and neoplastic human breast. Am J Pathol 155:2067–2076

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Guo W, Hinkle GH et al (1999) 99mTc-HYNIC-folate: a novel receptor-based targeted radiopharmaceutical for tumor imaging. J Nucl Med 40:1563–1569

    CAS  PubMed  Google Scholar 

  108. Guo Z, Zhang P et al (2014) Synthesis and preliminary evaluation of novel 99mTc-labeled folate derivative via click reaction for SPECT imaging. Appl Radiat Isot 91:24–30

    CAS  PubMed  Google Scholar 

  109. Guo Z, You L et al (2017) Development of a new FR-targeting Agent 99mTc-HYNFA with improved imaging contrast and comparison of multimerization and/or PEGylation strategies for radio-folate modification. Mol Pharm 14:3780–3788

    CAS  PubMed  Google Scholar 

  110. Hamblett KJ, Press OW et al (2005) Role of biotin-binding affinity in streptavidin-based pretargeted radioimmunotherapy of lymphoma. Bioconjug Chem 16:131–138

    CAS  PubMed  Google Scholar 

  111. Hammond PJ, Wade AF et al (1993) Amino acid infusion blocks renal tubular uptake of an indium-labelled somatostatin analogue. Br J Cancer 67:1437–1439

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Hankus J, Tomaszewska R (2016) Neuroendocrine neoplasms and somatostatin receptor subtypes expression. Nucl Med Rev 19:111–117

    Google Scholar 

  113. Hekman MCH, Boerman OC et al (2017) Improved intraoperative detection of ovarian cancer by folate receptor alpha targeted dual-modality imaging. Mol Pharm 14:3457–3463

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Heppeler A, Froidevaux S et al (1999) Radiometal-labelled macrocyclic chelator-derivatised somatostatin analogue with superb tumour-targeting properties and potential for receptor-mediated internal radiotherapy. Chem-Eur J 5:1974–1981

    CAS  Google Scholar 

  115. Hillier SM, Kern AM et al (2011) 123I-MIP-1072, a small-molecule inhibitor of prostate-specific membrane antigen, is effective at monitoring tumor response to taxane therapy. J Nucl Med 52:1087–1093

    CAS  PubMed  Google Scholar 

  116. Hillier SM, Maresca KP et al (2009) Preclinical evaluation of novel glutamate-urea-lysine analogues that target prostate-specific membrane antigen as molecular imaging pharmaceuticals for prostate cancer. Can Res 69:6932–6940

    CAS  Google Scholar 

  117. Hillier SM, Maresca KP et al (2013) 99mTc-labeled small-molecule inhibitors of prostate-specific membrane antigen for molecular imaging of prostate cancer. J Nucl Med 54:1369–1376

    CAS  Google Scholar 

  118. Hnatowich DJ, Virzi F (1987) Investigations of avidin and biotin for imaging applications. J Nucl Med 28:1294–1302

    CAS  PubMed  Google Scholar 

  119. Ho C-L, Liu I-H et al (2011) Molecular imaging, pharmacokinetics, and dosimetry of 111In-AMBA in human prostate tumor-bearing mice. J Biomed Biotechnol 2011:Article ID 101497. https://doi.org/10.1155/2011/101497

  120. Hoefnagel CA, den Hartog Jager FC et al (1987) The role of 131I-MIBG in the diagnosis and therapy of carcinoids. Eur J Nucl Med 13:187–191

    CAS  PubMed  Google Scholar 

  121. Hoffman TJ, Gali H et al (2003) Novel series of 111In-labeled bombesin analogs as potential radiopharmaceuticals for specific targeting of gastrin-releasing peptide receptors expressed on human prostate cancer cells. J Nucl Med 44:823–831

    CAS  PubMed  Google Scholar 

  122. Hofman MS, Violet J et al (2018) [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol 19:825–833

    CAS  PubMed  Google Scholar 

  123. Hong H, Sun J et al (2008) Radionuclide-based cancer imaging targeting the carcinoembryonic antigen. Biomark Insights 3:435–451

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Jeong JM, Kinuya S et al (1994) Application of high affinity binding concept to radiolabel avidin with Tc-99m labeled biotin and the effect of pI on biodistribution. Nucl Med Biol 21:935–940

    CAS  PubMed  Google Scholar 

  125. Ji T, Sun Y et al (2015) The diagnostic role of 99mTc-dual receptor targeted probe and targeted peptide bombesin (RGD-BBN) SPET/CT in the detection of malignant and benign breast tumors and axillary lymph nodes compared to ultrasound. Hell J Nucl Med 18:108–113

    PubMed  Google Scholar 

  126. Ji T, Gao S (2016) 99mTc-Glu-c(RGDyK)-bombesin SPECT can reduce unnecessary biopsy of masses that are BI-RADS category 4 on ultrasonography. J Nucl Med 57:1196–1200

    CAS  PubMed  Google Scholar 

  127. Johnson CV, Shelton T et al (2006) Evaluation of combined 177Lu-DOTA-8-AOC-BBN (7-14)NH2 GRP receptor-targeted radiotherapy and chemotherapy in PC-3 human prostate tumor cell xenografted SCID mice. Cancer Biother Radiopharm 21:155–166

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Josten A, Haalck L et al (2000) Use of microbial transglutaminase for the enzymatic biotinylation of antibodies. J Immunol Methods 240:47–54

    CAS  PubMed  Google Scholar 

  129. Kastner ME, Lindsay MJ et al (1982) Synthesis and structure of trans-[O2(en)2Tcv]+. Inorg Chem 21:2037–2040

    CAS  Google Scholar 

  130. Ke CY, Mathias CJ et al (2003) The folate receptor as a molecular target for tumor-selective radionuclide delivery. Nucl Med Biol 30:811–817

    CAS  PubMed  Google Scholar 

  131. Ke CY, Mathias CJ et al (2004) Folate-receptor-targeted radionuclide imaging agents. Adv Drug Deliv Rev 56:1143–1160

    CAS  PubMed  Google Scholar 

  132. Khan IU, Shahid A et al (2016) Development and bioevaluation of 99mTc(CO)3-labeled (1-azido-1-deoxy-β-D-glucopyranoside) complex as a potential tumor-seeking agent. Pak J Pharm Sci 29:213–219

    PubMed  Google Scholar 

  133. Khan MU, Morse M et al (2008) Radioiodinated metaiodobenzylguanidine in the diagnosis and therapy of carcinoid tumors. Q J Nucl Med Mol Imaging 52:441–454

    CAS  PubMed  Google Scholar 

  134. King DJ, Turner A et al (1994) Improved tumor targeting with chemically cross-linked recombinant antibody fragments. Cancer Res 54:6176–6185

    CAS  PubMed  Google Scholar 

  135. Kobayashi H, Sakahara H et al (1994) Improved clearance of radiolabeled biotinylated monoclonal antibody following the infusion of avidin as a “chase” without decreased accumulation in the target tumor. J Nucl Med 35:1677–1684

    CAS  PubMed  Google Scholar 

  136. Koch P, Mäcke HR (1992) 99mTc Labeled Biotin Conjugate in a Tumor “Pretargeting” Approach with Monoclonal Antibodies. Angew Chem Int Ed 31:1507–1509

    Google Scholar 

  137. Kopka K, Benešová M et al (2017) Glu-ureido-based inhibitors of prostate-specific membrane antigen: lessons learned during the development of a novel class of low-molecular-weight theranostic radiotracers. J Nucl Med 58(Suppl 2):17S–26S

    CAS  Google Scholar 

  138. Körner M, Stockli M et al (2007) GLP-1 receptor expression in human tumors and human normal tissues: potential for in vivo targeting. J Nucl Med 48:736–743

    Google Scholar 

  139. Knight JC, Cornelissen B (2014) Bioorthogonal chemistry: implications for pretargeted nuclear (PET/SPECT) imaging and therapy. Am J Nucl Med Mol Imaging 4:96–113

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Knox SJ, Goris ML et al (2000) Phase II trial of yttrium-90-DOTA-biotin pretargeted by NR-LU-10 antibody/streptavidin in patients with metastatic colon cancer. Clin Cancer Res 6:406–414

    CAS  PubMed  Google Scholar 

  141. Kratochwil C, Bruchertseifer F et al (2016) 225Ac-PSMA-617 for PSMA-targeted α-radiation therapy of metastatic castration-resistant prostate cancer. J Nucl Med 57(12):1941–1944

    CAS  Google Scholar 

  142. Kulkarni HR, Singh A et al (2018) Theranostics of prostate cancer: from molecular imaging to precision molecular radiotherapy targeting the prostate specific membrane antigen. Brit J Radiol 91:20180308

    PubMed  Google Scholar 

  143. Kunikowska J1, Lewington V et al (2017) Optimizing somatostatin receptor imaging in patients with neuroendocrine tumors: the impact of 99mTc-HYNICTOC SPECT/SPECT/CT versus 68Ga-DOTATATE PET/CT upon clinical management. Clin Nucl Med 42(12):905–911

    Google Scholar 

  144. Kwekkeboom D, Krenning EP et al (2000) Peptide receptor imaging and therapy. J Nucl Med 41:1704–1713

    CAS  PubMed  Google Scholar 

  145. La Bella R, Garcia-Garayoa E et al (2002) A 99mTc(I)-postlabeled high affinity bombesin analogue as a potential tumor imaging agent. Bioconjug Chem 13:599–604

    PubMed  Google Scholar 

  146. Lantry LE, Cappelletti E et al (2006) 177Lu-AMBA: synthesis and characterization of a selective 177Lu-labeled GRP-R agonist for systemic radiotherapy of prostate cancer. J Nucl Med 47:1144–1152

    CAS  PubMed  Google Scholar 

  147. Lawal IO, Ankrah AO et al (2017) Diagnostic sensitivity of Tc-99m HYNIC PSMA SPECT/CT in prostate carcinoma: a comparative analysis with Ga-68 PSMA PET/CT. Prostate 77:1205–1212

    CAS  PubMed  Google Scholar 

  148. Lazarova L, Causey PW et al (2011) The synthesis, magnetic purification and evaluation of 99mTc-labeled microbubbles. Nucl Med Biol 38:1111–1118

    CAS  PubMed  Google Scholar 

  149. Leamon CP, Parker MA et al (2002) Synthesis and biological evaluation of EC20: a new folate- derived, 99mTc-based radiopharmaceutical. Bioconjug Chem 13:1200–1210

    CAS  PubMed  Google Scholar 

  150. Lei K, Rusckowski M et al (1996) Technetium-99m antibodies labeled with MAG3 and SHNH: an in vitro and animal in vivo comparison. Nucl Med Biol 23:917–922

    CAS  PubMed  Google Scholar 

  151. Leonidova A, Foerster C et al (2015) In vivo demonstration of an active tumor pretargeting approach with peptide nucleic acid bioconjugates as complementary system. Chem Sci 6:5601–5616

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Leyton JV, Olafsen T et al (2008) Humanized radioiodinated minibody for imaging of prostate stem cell antigen-expressing tumors. Clin Cancer Res 14:7488–7496

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Li M, Meares CF et al (1995) Prelabeling of chimeric monoclonal antibody L6 with 90yttrium- and 111indium-1,4,7,10-tetraazacyclododecane-N, N′, N″, N″′-tetraacetic acid (DOTA) chelates for radioimmunodiagnosis and therapy. Cancer Res 55:5726s–5728s

    CAS  PubMed  Google Scholar 

  154. Lin X, Jin Z et al (2012) Synthesis and biodistribution of a New 99mTc-oxo complex with deoxyglucose dithiocarbamate for tumor imaging. Chem Biol Drug Des 79:239–245

    CAS  PubMed  Google Scholar 

  155. Lindegren S, Frost SH (2011) Pretargeted radioimmunotherapy with α-particle emitting radionuclides. Curr Radiopharm 4:248–260

    CAS  PubMed  Google Scholar 

  156. Liu G (2018) A revisit to the pretargeting concept–A target conversion. Front Pharmacol 9:1476

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Liu S (2008) Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides. Adv Drug Deliv Rev 60:1347–1370

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Liu S (2009) Radiolabeled cyclic RGD peptides as integrin alpha(v)beta(3)-targeted radiotracers: maximizing binding affinity via bivalency. Bioconjug Chem 20:2199–2213

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Liu S, Edwards DS (1999) 99mTc-Labeled small peptides as diagnostic radiopharmaceuticals. Chem Rev 99:2235–2268

    CAS  PubMed  Google Scholar 

  160. Liu S, Edwards DS et al (1998) A novel ternary ligand system for 99mTc-labeling of hydrazino nicotinamide-modified biologically active molecules using imine-N-containing heterocycles as coligands. Bioconjug Chem 9:583–595

    CAS  PubMed  Google Scholar 

  161. Liu S, Kim YS et al (2008) Coligand effects on the solution stability, biodistribution and metabolism of the 99mTc-labeled cyclic RGDfK tetramer. Nucl Med Biol 35:111–121

    CAS  PubMed  Google Scholar 

  162. Liu Z, Li ZB et al (2009) Small-animal PET of tumors with 64Cu-labeled RGD-bombesin heterodimer. J Nucl Med 50:1168–1177

    CAS  PubMed  Google Scholar 

  163. Liu Z, Niu G et al (2009) 68Ga-labeled NOTA-RGD-BBN peptide for dual integrin and GRPR-targeted tumor imaging. Eur J Nucl Med Mol Imaging 36:1483–1494

    CAS  PubMed  Google Scholar 

  164. Liu Z, Huang J et al (2012) 99mTc-labeled RGD-BBN peptide for small-animal SPECT/CT of lung carcinoma. Mol Pharm 9:1409–1417

    CAS  PubMed  Google Scholar 

  165. Low PS, Henne WA et al (2008) Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res 41:120–129

    CAS  PubMed  Google Scholar 

  166. Lu G, Maresca KP et al (2013) Synthesis and SAR of 99mTc/Re-labeled small molecule prostate specific membrane antigen inhibitors with novel polar chelates. Bioorg Med Chem Lett 23:1557–1563

    CAS  Google Scholar 

  167. Lu J, Pang Y et al (2011) Synthesis and in vitro/in vivo evaluation of 99mTc-labeled folate conjugates for folate receptor imaging. Nucl Med Biol 38:557–565

    CAS  PubMed  Google Scholar 

  168. Maddalena ME, Fox J et al (2009) 177Lu-AMBA biodistribution, radiotherapeutic efficacy, imaging, and autoradiography in prostate cancer models with low GRP-R expression. J Nucl Med 50:2017–2024

    Google Scholar 

  169. Maes V, Garcia-Garayoa E et al (2006) Novel 99mTc-labeled neurotensin analogues with optimized biodistribution properties. J Med Chem 49:1833–1836

    CAS  PubMed  Google Scholar 

  170. Maina T, Nikolopoulou A et al (2007) [99mTc]Demotensin 5 and 6 in the NTS1-R-targeted imaging of tumours: synthesis and preclinical results. Eur J Nucl Med Mol Imaging 34:1804–1814

    CAS  PubMed  Google Scholar 

  171. Maina T, Nock B et al (2002) [99mTc]Demotate, a new 99mTc-based [Tyr3]octreotate analogue for the detection of somatostatin receptor-positive tumours: synthesis and preclinical results. Eur J Nucl Med Mol Imaging 29:742–753

    CAS  Google Scholar 

  172. Mansi R, Wang X et al (2009) Evaluation of a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-conjugated bombesin-based radioantagonist for the labeling with single-photon emission computed tomography, positron emission tomography, and therapeutic radionuclides. Clin Cancer Res 15:5240–5249

    CAS  PubMed  Google Scholar 

  173. Mardirossian G, Wu C et al (1993) The stability in liver homogenates of indium-111 and yttrium-90 attached to antibody via two popular chelators. Nucl Med Biol 20:65–74

    CAS  PubMed  Google Scholar 

  174. Maresca KP, Hillier SM et al (2009) Comprehensive radiolabeling, stability, and tissue distribution studies of technetium-99m single amino acid chelates (SAAC). Bioconjug Chem 20:1625–1633

    CAS  PubMed  Google Scholar 

  175. Maresca KP, Hillier SM et al (2012) Small molecule inhibitors of PSMA incorporating technetium-99m for imaging prostate cancer: effects of chelate design on pharmacokinetics. Inorg Chim Acta 389:168–175

    CAS  Google Scholar 

  176. Maresca KP1, Hillier SM et al (2009) A series of halogenated heterodimeric inhibitors of prostate specific membrane antigen (PSMA) as radiolabeled probes for targeting prostate cancer. J Med Chem 52(2):347–357

    Google Scholar 

  177. Markwalder R, Reubi JC (1999) Gastrin-releasing peptide receptors in the human prostate: relation to neoplastic transformation. Cancer Res 59:1152–1159

    CAS  PubMed  Google Scholar 

  178. Mather SJ, Nock BA et al (2014) GRP receptor imaging of prostate cancer using [(99m)Tc]Demobesin 4: a first-in-man study. Mol Imaging Biol 16:888–895

    Google Scholar 

  179. Mathias CJ, Wang S et al (1998) Indium-111-DTPA-folate as a potential folate-receptor-targeted radiopharmaceutical. J Nucl Med 39:1579–1585

    CAS  PubMed  Google Scholar 

  180. Matteson EL, Lowe VJ et al (2009) Assessment of disease activity in rheumatoid arthritis using a novel folate targeted radiopharmaceutical folatescan. Clin Exp Rheumatol 27:253–259

    Google Scholar 

  181. Maurer AH, Elsinga P et al (2014) Imaging the folate receptor on cancer cells with 99mTc-etarfolatide: properties, clinical use, and future potential of folate receptor imaging. J Nucl Med 55:701–704

    CAS  PubMed  Google Scholar 

  182. Mercer JR, Xu LH et al (1989) Synthesis and tumor uptake of 5-82Br- and 5-131I-labeled 5-halo-1-(2-fluoro-2-deoxy-beta-D-ribofuranosyl)uracils. J Med Chem 32:1289–1294

    CAS  PubMed  Google Scholar 

  183. Meredith RF, Buchsbaum DJ (2006) Pretargeted radioimmunotherapy. Int J Radiat Oncol Biol Phys 66:S57–S59

    CAS  PubMed  Google Scholar 

  184. Mikołajczak R, Maecke HR (2016) Radiopharmaceuticals for somatostatin receptor imaging. Nucl Med Rev 19(2):126–132

    Google Scholar 

  185. Mindt TL, Jungi V et al (2008) Modification of different IgG1 antibodies via glutamine and lysine using bacterial and human tissue transglutaminase. Bioconjug Chem 19:271–278

    CAS  PubMed  Google Scholar 

  186. Minko T, Paranjpe PV et al (2002) Enhancing the anticancer efficacy of camptothecin using biotinylated poly (ethylene glycol) conjugates in sensitive and multidrug-resistant human ovarian carcinoma cells. Cancer Chemother Pharmacol 50:143–150

    CAS  PubMed  Google Scholar 

  187. Moody TW, Russell EK et al (1983) Bombesin-like peptides in small cell lung cancer: biochemical characterization and secretion from a cell line. Life Sci 32:487–493

    CAS  PubMed  Google Scholar 

  188. Moreno P, Ramos-Álvarez I et al (2016) Bombesin related peptides/receptors and their promising therapeutic roles in cancer imaging, targeting and treatment. Expert Opin Ther Targets 20:1055–1073

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Morris RT, Joyrich RN et al (2014) Phase II study of treatment of advanced ovarian cancer with folate-receptor-targeted therapeutic (vintafolide) and companion SPECT-based imaging agent (99mTc-etarfolatide). Ann Oncol 25:852–858

    CAS  PubMed  Google Scholar 

  190. Müller C, Brühlmeier M et al (2006) Effects of antifolate drugs on the cellular uptake of radiofolates in vitro and in vivo. J Nucl Med 47:2057–2064

    PubMed  Google Scholar 

  191. Müller C, Mindt TL et al (2009) Evaluation of a novel radiofolate in tumour-bearing mice: promising prospects for folate-based radionuclide therapy. Eur J Nucl Med Mol Imaging 36:938–946

    PubMed  Google Scholar 

  192. Müller C, Reddy JA et al (2010) Effects of the antifolates pemetrexed and CB3717 on the tissue distribution of 99mTc-EC20 in xenografted and syngeneic tumor-bearing mice. Mol Pharm 7:597–604

    PubMed  Google Scholar 

  193. Müller C, Schibli R et al (2008) Pemetrexed improves tumor selectivity of 111In-DTPA-folate in mice with folate receptor-positive ovarian cancer. J Nucl Med 49:623–629

    PubMed  Google Scholar 

  194. Müller C, Schubiger PA et al (2006) Synthesis and in vitro/in vivo evaluation of novel 99mTc(CO)3-folates. Bioconjug Chem 17:797–806

    PubMed  Google Scholar 

  195. Müller C, Schubiger PA et al (2007) Isostructural folate conjugates radiolabeled with the matched pair 99mTc/188Re: a potential strategy for diagnosis and therapy of folate receptor-positive tumors. Nucl Med Biol 34:595–601

    PubMed  Google Scholar 

  196. Müller C, Schibli R (2013) Prospects in folate receptor-targeted radionuclide therapy. Front Oncol 3:249

    PubMed  PubMed Central  Google Scholar 

  197. Müller C, Struthers H et al (2013) DOTA conjugate with an albumin-binding entity enables the first folic acid-targeted 177Lu-radionuclide tumor therapy in mice. J Nucl Med 54:124–131

    PubMed  Google Scholar 

  198. Müller C (2013) Folate-based radiotracers for PET imaging-update and perspectives. Molecules 18:5005–5031

    PubMed  PubMed Central  Google Scholar 

  199. Müller C, Bunka M et al (2014) Promising prospects for 44Sc-/47Sc-based theragnostics: application of 47Sc for radionuclide tumor therapy in mice. J Nucl Med 55:1658–1664

    PubMed  Google Scholar 

  200. Müller C, Reber J et al (2014) Direct in vitro and in vivo comparison of 161Tb and 177Lu using a tumour-targeting folate conjugate. Eur J Nucl Med Mol Imaging 41:476–485

    PubMed  Google Scholar 

  201. Müller C, Reber J et al (2014) Folate receptor targeted alpha-therapy using terbium-149. Pharmaceuticals 7:353–365

    PubMed  PubMed Central  Google Scholar 

  202. Munch-Petersen B, Cloos L et al (1995) Human thymidine kinase 1. regulation in normal and malignant cells. Adv Enzyme Regul 35:69–89

    CAS  PubMed  Google Scholar 

  203. Narmani A, Yavari K et al (2017) Imaging, biodistribution and in vitro study of smart 99mTc-PAMAM G4 dendrimer as novel nano-complex. Coll Surf B 159:232–240

    CAS  Google Scholar 

  204. Neri D, Carnemolla B et al (1997) Targeting by affinity-matured recombinant antibody fragments of an angiogenesis associated fibronectin isoform. Nat Biotechnol 15:1271–1275

    CAS  PubMed  Google Scholar 

  205. Nock B, Nikolopoulou A et al (2003) [99mTc]Demobesin 1, a novel potent bombesin analogue for GRP receptor-targeted tumour imaging. Eur J Nucl Med Mol Imaging 30:247–258

    CAS  PubMed  Google Scholar 

  206. Nock BA, Nikolopoulou A et al (2005) Potent bombesin-like peptides for GRP-receptor targeting of tumors with 99mTc: a preclinical study. J Med Chem 48:100–110

    CAS  Google Scholar 

  207. Nock BA, Nikolopoulou A et al (2006) Toward stable N4-modified neurotensins for NTS1-receptor-targeted tumor imaging with 99mTc. J Med Chem 49:4767–4776

    CAS  PubMed  Google Scholar 

  208. Núñez EG, Faintuch BL et al (2009) Influence of colloid particle profile on sentinel lymph node uptake. Nucl Med Biol 36:741–747

    Google Scholar 

  209. Oh P, Li Y et al (2004) Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 429:629–635

    CAS  PubMed  Google Scholar 

  210. Ozker K, Collier BD et al (1999) Biodistribution of 99mTc-labelled 5-thio-d-glucose. Nucl Med Commun 20:1055–1058

    CAS  PubMed  Google Scholar 

  211. Papagiannopoulou D (2017) Technetium-99m radiochemistry for pharmaceutical applications. J Label Comp Radiopharm 60:502–520

    CAS  Google Scholar 

  212. Parker N, Turk MJ et al (2005) Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 338:284–293

    CAS  Google Scholar 

  213. Patra M, Zarschler K et al (2016) New insights into the pretargeting approach to image and treat tumours. Chem Soc Rev 45:6415–6431

    CAS  PubMed  Google Scholar 

  214. Petrig J, Schibli R et al (2001) Derivatization of glucose and 2-deoxyglucose for transition metal complexation: substitution reactions with organometallic 99mTc and Re precursors and fundamental NMR investigations. Chemistry 7:1868–1873

    CAS  PubMed  Google Scholar 

  215. Pini A, Viti F et al (1998) Design and use of a phage display library. human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J Biol Chem 273:21769–21776

    CAS  PubMed  Google Scholar 

  216. Piramoon M, Hosseinimehr SJ (2016) The past, current studies and future of organometallic 99mTc(CO)3 labeled peptides and proteines. Curr Pharm Des 22:4854–4867

    CAS  Google Scholar 

  217. Posey JA, Khazaeli MB et al (2001) A pilot trial of vitaxin, a humanized anti-vitronectin receptor (anti alpha v beta 3) antibody in patients with metastatic cancer. Cancer Biother Radiopharm 16:125–132

    CAS  PubMed  Google Scholar 

  218. Pretze M, Wuest F et al (2010) The traceless Staudinger ligation with fluorine-18: a novel and versatile labeling technique for the synthesis of PET-radiotracers. Tetrahedron Lett 51:6410–6414

    CAS  Google Scholar 

  219. Purohit A, Liu S et al (2003) Phosphine-containing HYNIC derivatives as potential bifunctional chelators for 99mTc-labeling of small biomolecules. Bioconjug Chem 14:720–727

    CAS  PubMed  Google Scholar 

  220. Rahbar K, Afshar-Oromieh A et al (2018) PSMA theranostics: current status and future directions. Mol Imaging 17:1536012118776068

    PubMed  PubMed Central  Google Scholar 

  221. Rahbar K, Ahmadzadehfar H et al (2017) German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients. J Nucl Med 58:85–90

    CAS  Google Scholar 

  222. Reber J, Struthers H et al (2012) Radioiodinated folic acid conjugates: evaluation of a valuable concept to improve tumor-to-background contrast. Mol Pharm 9:1213–1221

    CAS  PubMed  Google Scholar 

  223. Reddy JA, Xu LC et al (2004) Preclinical evaluation of 99mTc-EC20 for imaging folate receptor-positive tumors. J Nucl Med 45:857–866

    CAS  PubMed  Google Scholar 

  224. Reubi JC, Waser B et al (1998) Neurotensin receptors: a new marker for human ductal pancreatic adenocarcinoma. Gut 42:546–550

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Rezazadeh F, Sadeghzadeh N (2018) Tumor targeting with 99mTc radiolabeled peptides: clinical application and recent development. Chem Biol Drug Design. https://doi.org/10.1111/cbdd.13413

    Article  Google Scholar 

  226. Retzloff L, Heinzke L et al (2010) Evaluation of [99mTc-(CO)3-X-Y-Bombesin(7-14)NH2] conjugates for targeting gastrin-releasing peptide receptors overexpressed on breast carcinoma. Anticancer Res 30:19–30

    CAS  PubMed  Google Scholar 

  227. Risch VR, Honda T et al (1977) Distribution of 99mTc-1-thioglucose in rats: effect of administration route on pancreatic specificity. Radiology 124:837–838

    CAS  PubMed  Google Scholar 

  228. Robu S, Schottelius M et al (2017) Preclinical evaluation and first patient application of 99mTc-PSMA-I&S for SPECT imaging and radioguided surgery in prostate cancer. J Nucl Med 58(2):235–242

    CAS  Google Scholar 

  229. Rolleman EJ, Valkema R et al (2003) Safe and effective inhibition of renal uptake of radiolabelled octreotide by a combination of lysine and arginine. Eur J Nucl Med Mol Imaging 30:9–15

    CAS  Google Scholar 

  230. Römhild K, Fischer CA, Mindt TL (2017) Glycated 99mTc-tricarbonyl-labeled peptide conjugates for tumor targeting by “Click-to-Chelate”. ChemMedChem 12:66–74

    PubMed  Google Scholar 

  231. Rosebrough SF (1993) Pharmacokinetics and biodistribution of radiolabeled avidin, streptavidin and biotin. Nucl Med Biol 20:663–668

    CAS  PubMed  Google Scholar 

  232. Rowland DJ, Cherry SR (2008) Small-animal preclinical nuclear medicine instrumentation and methodology. Semin Nucl Med 38:209–222

    PubMed  Google Scholar 

  233. Russell-Jones G, McTavish K et al (2004) Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumours. J Inorg Biochem 98:1625–1633

    CAS  PubMed  Google Scholar 

  234. Salmaso S, Pappalardo JS et al (2009) Targeting glioma cells in vitro with ascorbate-conjugated pharmaceutical nanocarriers. Bioconjug Chem 20:2348–2355

    CAS  PubMed  Google Scholar 

  235. Salouti M, Rajabi H et al (2008) Breast tumor targeting with 99mTc-HYNIC-PR81 complex as a new biologic radiopharmaceutical. Nucl Med Biol 35:763–768

    CAS  PubMed  Google Scholar 

  236. Santimaria M, Moscatelli G et al (2003) Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin Cancer Res 9:571–579

    CAS  Google Scholar 

  237. Santos-Cuevas CL, Ferro-Flores G et al (2011) 99mTc-N2S2-Tat(49-57)-bombesin internalized in nuclei of prostate and breast cancer cells: kinetics, dosimetry and effect on cellular proliferation. Nucl Med Commun 32:303–313

    CAS  PubMed  Google Scholar 

  238. Santos-Cuevas C, Davanzo J et al (2017) 99mTc-labeled PSMA inhibitor: biokinetics and radiation dosimetry in healthy subjects and imaging of prostate cancer tumors in patients. Nucl Med Biol 52:1–6

    CAS  PubMed  Google Scholar 

  239. Schibli R, Dumas C et al (2005) Synthesis and in vitro characterization of organometallic rhenium and technetium glucose complexes against Glut 1 and hexokinase. Bioconjug Chem 16:105–112

    CAS  PubMed  Google Scholar 

  240. Schibli R, La Bella R et al (2000) Influence of the denticity of ligand systems on the in vitro and in vivo behavior of 99mTc(I)-tricarbonyl complexes: a hint for the future functionalization of biomolecules. Bioconjug Chem 11:345–351

    CAS  PubMed  Google Scholar 

  241. Schibli R, Schubiger PA (2002) Current use and future potential of organometallic radiopharmaceuticals. Eur J Nucl Med Mol Imaging 29:1529–1542

    CAS  Google Scholar 

  242. Schibli R, Schwarzbach R et al (2002) Steps toward high specific activity labeling of biomolecules for therapeutic application: preparation of precursor [188Re(H2O)3(CO)3]+ and synthesis of tailor-made bifunctional ligand systems. Bioconjug Chem 13:750–756

    CAS  PubMed  Google Scholar 

  243. Schmid M, Neumaier B et al (2006) Synthesis and evaluation of a radiometal-labeled macrocyclic chelator-derivatised thymidine analog. Nucl Med Biol 33:359–366

    CAS  PubMed  Google Scholar 

  244. Schmidkonz C, Cordes M et al (2018) SPECT/CT with the PSMA ligand 99mTc-MIP-1404 for whole-body primary staging of patients with prostate cancer. Clin Nucl Med 43:225–231

    Google Scholar 

  245. Schmidkonz C, Hollweg C et al (2018) 99mTc-MIP-1404-SPECT/CT for the detection of PSMA-positive lesions in 225 patients with biochemical recurrence of prostate cancer. Prostate 78:54–63

    CAS  PubMed  Google Scholar 

  246. Schottelius M, Laufer B et al (2009) Ligands for mapping alphavbeta3-integrin expression in vivo. Acc Chem Res 42:969–980

    CAS  PubMed  Google Scholar 

  247. Schottelius M, Wester HJ (2009) Molecular imaging targeting peptide receptors. Methods 48:161–177

    CAS  Google Scholar 

  248. Schottelius M, Wester HJ et al (2002) Improvement of pharmacokinetics of radioiodinated Tyr3-octreotide by conjugation with carbohydrates. Bioconjug Chem 13:1021–1030

    CAS  PubMed  Google Scholar 

  249. Schubert M, Foerster C et al (2017) A novel tumor pretargeting system based on complementary L-configured oligonucleotides. Biocon Chem 28:1176–1188

    CAS  Google Scholar 

  250. Schwartz DA, Abrams MJ et al (1991) Preparation of hydrazino-modified proteins and their use for the synthesis of 99mTc-protein conjugates. Bioconjug Chem 2:333–336

    CAS  PubMed  Google Scholar 

  251. Schweinsberg C, Maes V et al (2008) Novel glycated [99mTc(CO)3]-labeled bombesin analogues for improved targeting of gastrin-releasing peptide receptor-positive tumors. Bioconjug Chem 19:2432–2439

    CAS  PubMed  Google Scholar 

  252. Seetharam B (1999) Receptor-mediated endocytosis of cobalamin (vitamin B12). Annu Rev Nutr 19:173–195

    CAS  PubMed  Google Scholar 

  253. Seetharam B, Li N (2000) Transcobalamin II and its cell surface receptor. Vitam Horm 59:337–366

    CAS  PubMed  Google Scholar 

  254. Seetharam B, Yammani RR (2003) Cobalamin transport proteins and their cell-surface receptors. Expert Rev Mol Med 5:1–18

    PubMed  Google Scholar 

  255. Semnani ES, Wang K et al (2005) 5-[123I/125I]iodo-2′-deoxyuridine in metastatic lung cancer: radiopharmaceutical formulation affects targeting. J Nucl Med 46:800–806

    CAS  PubMed  Google Scholar 

  256. Shariati F, Aryana K et al (2014) Diagnostic value of 99mTc-bombesin scintigraphy for differentiation of malignant from benign breast lesions. Nucl Med Commun 35:620–625

    CAS  Google Scholar 

  257. Sharkey RM, Karacay H et al (2005) Improving the delivery of radionuclides for imaging and therapy of cancer using pretargeting methods. Clin Cancer Res 11:7109s

    CAS  PubMed  Google Scholar 

  258. Sharp SE, Trout AT et al (2016) MIBG in neuroblastoma diagnostic imaging and therapy. RadioGraphics 36:258–278

    PubMed  Google Scholar 

  259. Shi J, Kim YS et al (2009) Improving tumor uptake and pharmacokinetics of 64Cu-labeled cyclic RGD peptide dimers with Gly(3) and PEG(4) linkers. Bioconjug Chem 20:750–759

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Shi J, Wang L et al (2008) Improving tumor uptake and excretion kinetics of 99mTc-labeled cyclic arginine-glycine-aspartic (RGD) dimers with triglycine linkers. J Med Chem 51:7980–7990

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Siegel BA, Dehdashti F et al (2003) Evaluation of 111In-DTPA-folate as a receptor-targeted diagnostic agent for ovarian cancer: initial clinical results. J Nucl Med 44:700–707

    CAS  PubMed  Google Scholar 

  262. Silver DA, Pellicer I et al (1997) Prostatespecific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res 3:81–85

    CAS  Google Scholar 

  263. Silvestri C, Christopher A et al (2019) Consecutive case series of melanoma sentinel node biopsy for lymphoseek compared to sulfur colloids. J Surg Res 233:149–153

    PubMed  Google Scholar 

  264. Siwowska K, Müller C (2015) Preclinical development of small-molecular-weight folate-based radioconjugates: a pharmacological perspective. Quart J Nucl Med Mol Imaging 59:269–286

    CAS  Google Scholar 

  265. Smith CJ, Gali H et al (2003) Radiochemical investigations of 177Lu-DOTA-8-Aoc-BBN[7-14]NH2: an in vitro/in vivo assessment of the targeting ability of this new radiopharmaceutical for PC-3 human prostate cancer cells. Nucl Med Biol 30:101–109

    CAS  PubMed  Google Scholar 

  266. Smith CJ, Sieckman GL et al (2003) Radiochemical investigations of gastrin-releasing peptide receptor-specific [99mTc(X)(CO)3-Dpr-Ser-Ser–Ser-Gln-Trp-Ala-Val-Gly-His-Leu-Met-(NH2)] in PC-3, tumor-bearing, rodent models: syntheses, radiolabeling, and in vitro/in vivo studies where Dpr = 2,3-diaminopropionic acid and X = H2O or P(CH2OH)3. Ca Cancer Res 63:4082–4088

    CAS  PubMed  Google Scholar 

  267. Smith CJ, Sieckman GL et al (2003) Radiochemical investigations of [188Re(H2O)(CO)3-diaminopropionic acid-SSS-bombesin(7-14)NH2]: syntheses, radiolabeling and in vitro/in vivo GRP receptor targeting studies. Anticancer Res 23:63–70

    CAS  PubMed  Google Scholar 

  268. Smith CJ, Volkert WA et al (2003) Gastrin releasing peptide (GRP) receptor targeted radiopharmaceuticals: a concise update. Nucl Med Biol 30:861–868

    CAS  PubMed  Google Scholar 

  269. Smith CJ, Volkert WA et al (2005) Radiolabeled peptide conjugates for targeting of the bombesin receptor superfamily subtypes. Nucl Med Biol 32:733–740

    CAS  PubMed  Google Scholar 

  270. Smith TAD (2001) The rate-limiting step for tumor [18F]fluoro-2-deoxy-D-glucose (FDG) incorporation. Nucl Med Biol 28:1–4

    CAS  PubMed  Google Scholar 

  271. Sosabowski JK, Matzow T et al (2009) Targeting of CCK-2 receptor-expressing tumors using a radiolabeled divalent gastrin peptide. J Nucl Med 50:2082–2089

    CAS  PubMed  Google Scholar 

  272. Spanoudaki VC, Ziegler SI (2008) PET and SPECT instrumentation. Handb Exp Pharmacol 185:53–74

    CAS  Google Scholar 

  273. Steen EJL, Edem PE et al (2018) Pretargeting in nuclear imaging and radionuclide therapy: improvingefficacy of theranostics and nanomedicines. Biomaterials 179:209–245

    CAS  PubMed  Google Scholar 

  274. Steffens MG, Oosterwijk E et al (1999) In vivo and in vitro characterizations of three 99mTc-labeled monoclonal antibody G250 preparations. J Nucl Med 40:829–836

    CAS  PubMed  Google Scholar 

  275. Storr T, Fisher CL et al (2005) A glucosamine-dipicolylamine conjugate of 99mTc(I) and 186Re(I) for use in imaging and therapy. Dalton Trans 21(4):654–655

    Google Scholar 

  276. Struthers H, Hagenbach A et al (2009) Organometallic [Re(CO)3]+ and [Re(CO)2(NO)]2+ labeled substrates for human thymidine kinase 1. I. Inorg Chem 48:5154–5163

    CAS  PubMed  Google Scholar 

  277. Struthers H, Spingler B et al (2008) “Click-to-chelate”: design and incorporation of triazole-containing metal-chelating systems into biomolecules of diagnostic and therapeutic interest. Chemistry 14:6173–6183

    CAS  PubMed  Google Scholar 

  278. Surasi DS, O’Malley J et al (2015) 99mTc-Tilmanocept: a novel molecular agent for lymphatic mapping and sentinel lymph node localization. J Nucl Med Technol 43:87–91

    Google Scholar 

  279. Tang Y, Scollard D et al (2005) Imaging of HER2/neu expression in BT-474 human breast cancer xenografts in athymic mice using [99mTc]-HYNIC-trastuzumab (Herceptin) Fab fragments. Nucl Med Commun 26:427–432

    CAS  PubMed  Google Scholar 

  280. Tienken L, Drude N et al (2018) Evaluation of a pretargeting strategy for molecular imaging of the prostate stem cell antigen with a single chain antibody. Sci Rep 8:3755

    PubMed  PubMed Central  Google Scholar 

  281. Tolmachev V, Friedman M et al (2009) Affibody molecules for epidermal growth factor receptor targeting in vivo: aspects of dimerization and labeling chemistry. J Nucl Med 50:274–283

    PubMed  Google Scholar 

  282. Torizuka T, Tamaki N et al (1995) In vivo assessment of glucose metabolism in hepatocellular carcinoma with FDG-PET. J Nucl Med 36:1811–1817

    CAS  Google Scholar 

  283. Toyohara J, Hayashi A et al (2002) Rationale of 5-125I-iodo-4′-thio-2′-deoxyuridine as a potential iodinated proliferation marker. J Nucl Med 43:1218–1226

    CAS  PubMed  Google Scholar 

  284. Toyohara J, Hayashi A et al (2003) Development of radioiodinated nucleoside analogs for imaging tissue proliferation: comparisons of six 5-iodonucleosides. Nucl Med Biol 30:687–696

    CAS  PubMed  Google Scholar 

  285. Trogrlic M, Tezak S (2016) 99mTc-EDDA/HYNIC-TOC in management of patients with head and neck somatostatin receptor positive tumors. Nucl Med Rev 19:74–80

    Google Scholar 

  286. Unkart JT, Wallace AM (2017) Use of 99mTc-tilmanocept as a single agent for sentinel lymph node identification in breast cancer: a retrospective pilot study. J Nucl Med Technol 45:181–184

    PubMed  Google Scholar 

  287. Vallabhajosula S, Nikolopoulou A et al (2014) 99mTc-labeled small-molecule inhibitors of prostate-specific membrane antigen: pharmacokinetics and biodistribution studies in healthy subjects and patients with metastatic prostate cancer. J Nucl Med 55:1791–1798

    CAS  Google Scholar 

  288. Van de Wiele C, Dumont F et al (2000) Technetium-99m RP527, a GRP analogue for visualisation of GRP receptor-expressing malignancies: a feasibility study. Eur J Nucl Med 27:1694–1699

    Google Scholar 

  289. van der Kroon I, Joosten L et al (2016) Improved quantification of the beta cell mass after pancreas visualization with 99mTc-demobesin-4 and beta cell imaging with 111In-exendin-3 in rodents. Mol Pharm 13:3478–3483

    PubMed  Google Scholar 

  290. van der Poel HG, Buckle T et al (2011) Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer. Eur Urol 60:826–833

    Google Scholar 

  291. Varasteh Z, Hyafil F et al (2017) Targeting mannose receptor expression on macrophages in atherosclerotic plaques of apolipoprotein E-knockout mice using 111In-tilmanocept. EJNMMI Res 7:40

    PubMed  PubMed Central  Google Scholar 

  292. Vera DR, Wallace AM et al (2001) A synthetic macromolecule for sentinel node detection: 99mTc-DTPA-Mannosyl-dextran. J Nucl Med 42:951–959

    CAS  Google Scholar 

  293. Verhaar-Langereis MJ, Zonnenberg BA et al (2000) Radioimmunodiagnosis and therapy. Cancer Treat Rev 26:3–10

    CAS  PubMed  Google Scholar 

  294. Verwijnen SM, Krenning EP et al (2005) Oral versus intravenous administration of lysine: equal effectiveness in reduction of renal uptake of [111In-DTPA]octreotide. J Nucl Med 46:2057–2060

    CAS  PubMed  Google Scholar 

  295. Vidal-Sicart S, Vera DR et al (2018) Next generation of radiotracers for sentinel lymph node biopsy: What is still necessary to establish new imaging paradigms? Rev Esp Med Nucl Imagen Mol 37:373–379

    CAS  PubMed  Google Scholar 

  296. von Guggenberg E, Dietrich H et al (2007) 99mTc-labelled HYNIC-minigastrin with reduced kidney uptake for targeting of CCK-2 receptor-positive tumours. Eur J Nucl Med Mol Imaging 34:1209–1218

    Google Scholar 

  297. Vöö S, Bucerius J et al (2011) I-131-MIBG therapies. Methods 55(3):238–245

    Google Scholar 

  298. Waibel R, Treichler H et al (2008) New derivatives of vitamin B12 show preferential targeting of tumors. Cancer Res 68:2904–2911

    CAS  PubMed  Google Scholar 

  299. Wang L, Shi J et al (2009) Improving tumor-targeting capability and pharmacokinetics of 99mTc-labeled cyclic RGD dimers with PEG(4) linkers. Mol Pharm 6:231–245

    CAS  PubMed  PubMed Central  Google Scholar 

  300. Wang S, Luo J et al (1997) Design and synthesis of [111In]DTPA-folate for use as a tumor-targeted radiopharmaceutical. Bioconjug Chem 8:673–679

    CAS  PubMed  Google Scholar 

  301. Wang Y, Zhu J et al (2014) Synthesis and evaluation of 99mTc–2-[(3-carboxy-1-oxopropyl)amino]-2-deoxy-D-glucose as a potential tumor imaging agent. Bioorg Med Chem Lett 24:3882–3885

    CAS  PubMed  Google Scholar 

  302. Wängler C, Schirrmacher R et al (2009) Simple and convenient radiolabeling of proteins using a prelabeling-approach with thiol-DOTA. Bioorg Med Chem Lett 19:1926–1929

    PubMed  Google Scholar 

  303. Weineisen M, Šimeček J et al (2014) Synthesis and preclinical evaluation of DOTAGA-conjugated PSMA ligands for functional imaging and endoradiotherapy of prostate cancer. EJNMMI Res 4:63

    PubMed  PubMed Central  Google Scholar 

  304. Weitman SD, Lark RH et al (1992) Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 52:3396–3401

    CAS  Google Scholar 

  305. Wester HJ, Schottelius M et al (2002) Comparison of radioiodinated TOC, TOCA and Mtr-TOCA: the effect of carbohydration on the pharmacokinetics. Eur J Nucl Med Mol Imaging 29:28–38

    CAS  PubMed  Google Scholar 

  306. Wieland DM, Wu J et al (1980) Radiolabeled adrenergi neuron-blocking agents: adrenomedullary imaging with [131I]iodobenzylguanidine. J Nucl Med 21:349–353

    CAS  PubMed  Google Scholar 

  307. Wilbur DS, Hamlin DK et al (1996) Synthesis and nca-radioiodination of arylstannyl-cobalamin conjugates. evaluation of aryliodo-cobalamin conjugate binding to transcobalamin II and biodistribution in mice. Bioconjug Chem 7:461–474

    CAS  PubMed  Google Scholar 

  308. Wilbur DS, Hamlin DK et al (1998) Synthesis and evaluation of 99mTc/99Tc-MAG3-biotin conjugates for antibody pretargeting strategies. Nucl Med Biol 25:611–619

    Google Scholar 

  309. Xu N, Cai G et al (2009) Molecular imaging application of radioiodinated anti-EGFR human Fab to EGFR-overexpressing tumor xenografts. Anticancer Res 29:4005–4011

    CAS  PubMed  Google Scholar 

  310. Yamada Y, Nakatani H et al (2015) Phase I clinical trial of 99mTc-etarfolatide, an imaging agent for folate receptor in healthy Japanese adults. Ann Nucl Med 29:792–798

    CAS  PubMed  Google Scholar 

  311. Yang W, Cheng Y et al (2009) Targeting cancer cells with biotin-dendrimer conjugates. Eur J Med Chem 44:862–868

    CAS  PubMed  Google Scholar 

  312. Yim CB, Boerman OC et al (2009) Versatile conjugation of octreotide to dendrimers by cycloaddition (“click”) chemistry to yield high-affinity multivalent cyclic peptide dendrimers. Bioconjug Chem 20:1323–1331

    CAS  PubMed  Google Scholar 

  313. Yokota T, Milenic DE et al (1992) Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res 52:3402–3408

    CAS  PubMed  Google Scholar 

  314. Yokota T, Milenic DE et al (1993) Microautoradiographic analysis of the normal organ distribution of radioiodinated single-chain Fv and other immunoglobulin forms. Cancer Res 53:3776–3783

    CAS  PubMed  Google Scholar 

  315. Zardi L, Carnemolla B et al (1987) Transformed human cells produce a new fibronectin isoform by preferential alternative splicing of a previously unobserved exon. EMBO J 6:2337–2342

    CAS  PubMed  PubMed Central  Google Scholar 

  316. Zechmann CM, Afshar-Oromieh A et al (2014) Radiation dosimetry and first therapy results with a 124I/131I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy. Eur J Nucl Med Mol Imaging 41:1280–1292

    CAS  PubMed  PubMed Central  Google Scholar 

  317. Zelenka K, Lubor Borsig L, Alberto R (2011) Trifunctional 99mTc based radiopharmaceuticals: metal-mediated conjugation of a peptide with a nucleus targeting intercalator. Org Biomol Chem 9:1071–1078

    CAS  PubMed  Google Scholar 

  318. Zeltchan R, Medvedeva A et al (2016) Experimental study of radiopharmaceuticals based on technetium-99m labeled derivative of glucose for tumor diagnosis. IOP Conf Ser: Mater Sci Eng 135:012054

    Google Scholar 

  319. Zhang J, Ren J (2009) Synthesis and biological evaluation of a novel 99mTc nitrido radiopharmaceutical with deoxyglucose dithiocarbamate, showing tumor uptake. Bioorg Med Chem Lett 19:2752–2754

    CAS  PubMed  Google Scholar 

  320. Zhang H, Chen J et al (2004) Synthesis and evaluation of bombesin derivatives on the basis of pan-bombesin peptides labeled with indium-111, lutetium-177, and yttrium-90 for targeting bombesin receptor-expressing tumors. Cancer Res 64:6707–6715

    CAS  PubMed  Google Scholar 

  321. Zhang Y, Sun Y et al (2010) Radiosynthesis and micro-SPECT imaging of 99mTc-dendrimer poly(amido)-amine folic acid conjugate. Bioorg Med Chem Lett 20:927–931

    CAS  PubMed  Google Scholar 

  322. Zwanziger D, Khan IU et al (2008) Novel chemically modified analogues of neuropeptide Y for tumor targeting. Bioconjug Chem 19:1430–1438

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Jürgen Pietzsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pietzsch, HJ., Mamat, C., Müller, C., Schibli, R. (2020). Single Photon Emission Computed Tomography Tracer. In: Schober, O., Kiessling, F., Debus, J. (eds) Molecular Imaging in Oncology. Recent Results in Cancer Research, vol 216. Springer, Cham. https://doi.org/10.1007/978-3-030-42618-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42618-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42617-0

  • Online ISBN: 978-3-030-42618-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics