Skip to main content

Multifunctional Magnetic Resonance Imaging Probes

  • Chapter
  • First Online:
Molecular Imaging in Oncology

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 216))

Abstract

Magnetic resonance imaging is characterized by high spatial resolution and unsurpassed soft tissue discrimination. Development and characterization of both intrinsic and extrinsic magnetic resonance (MR) imaging probes in the last decade has further strengthened the pivotal role MR imaging holds in the assessment of cancer in preclinical and translational settings. Sophisticated chemical modifications of a variety of nanoparticulate probes hold the potential to deliver valuable multifunctional tools applicable in diagnostics and/or treatment in human oncology. MR imaging suffers from a lack of sensitivity achievable by, e.g., nuclear medicine imaging methods. Advantages of including additional functionality/functionalities in a probe suitable for MR imaging are thus numerous, comprising the addition of fundamentally different imaging information (diagnostics), drug delivery (therapy), or the combination of both (theranostics). In recent years, we have witnessed a plethora of preclinical multimodal or multifunctional imaging probes being published mainly as proof-of-principle studies, yet only a handful are readily applicable in clinical settings. This chapter summarizes recent innovations in the development of multifunctional MR imaging probes and discusses the suitability of these probes for clinical transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdesselem M et al (2014) Multifunctional rare-Earth vanadate nanoparticles: luminescent labels, oxidant sensors, and MRI contrast agents. ACS Nano 8(11):11126–11137

    CAS  PubMed  Google Scholar 

  2. An L et al (2018) Paclitaxel-induced ultrasmall gallic Acid-Fe@BSA Self-assembly with enhanced MRI performance and tumor accumulation for cancer theranostics. ACS Appl Mater Interfaces 10(34):28483–28493

    CAS  PubMed  Google Scholar 

  3. Asefa T, Tao Z (2012) Biocompatibility of mesoporous silica nanoparticles. Chem Res Toxicol 25(11):2265–2284

    CAS  PubMed  Google Scholar 

  4. Bae PK et al (2014) Highly enhanced optical properties of indocyanine green/perfluorocarbon nanoemulsions for efficient lymph node mapping using near-infrared and magnetic resonance imaging. Nano Converg 1(1):6

    PubMed  PubMed Central  Google Scholar 

  5. Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82(8):493

    CAS  Google Scholar 

  6. Biju S, Parac-Vogt T (2018) Recent advances in lanthanide based nano-architectures as probes for ultra high-field magnetic resonance imaging. Curr Med Chem 25:1–9

    Google Scholar 

  7. Cao Y et al (2018) Intelligent MnO2/Cu2–xS for multimode imaging diagnostic and advanced single-laser irradiated photothermal/photodynamic therapy. ACS Appl Mater Interfaces 10(21):17732–17741

    CAS  PubMed  Google Scholar 

  8. Chan KW et al (2013) MRI-detectable pH nanosensors incorporated into hydrogels for in vivo sensing of transplanted-cell viability. Nat Mater 12(3):268–275

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chan KW et al (2014) A diaCEST MRI approach for monitoring liposomal accumulation in tumors. J Control Release 180:51–59

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen C et al (2016) Current advances in lanthanide-doped upconversion nanostructures for detection and bioapplication. Adv Sci 3(10):1600029

    Google Scholar 

  11. Chen H et al (2016) Ultrahigh (19)F Loaded Cu1.75S nanoprobes for simultaneous (19)F magnetic resonance imaging and photothermal therapy. ACS Nano 10(1):1355–1362

    Google Scholar 

  12. Chen J et al (2013) Multifunctional Fe3O4@C@Ag hybrid nanoparticles as dual modal imaging probes and near-infrared light-responsive drug delivery platform. Biomaterials 34(2):571–581

    PubMed  Google Scholar 

  13. Chen Y et al (2015) Multifunctional envelope-type mesoporous silica nanoparticles for pH-responsive drug delivery and magnetic resonance imaging. Biomaterials 60:111–120

    CAS  PubMed  Google Scholar 

  14. Chen Y et al (2013) Encapsulation of particle ensembles in graphene nanosacks as a new route to multifunctional materials. ACS Nano 7(5):3744–3753

    CAS  PubMed  Google Scholar 

  15. Cheng K et al (2014) Hybrid nanotrimers for dual T1 and T2-weighted magnetic resonance imaging. ACS Nano 8(10):9884–9896

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cheng L et al (2017) Chelator-free labeling of metal oxide nanostructures with zirconium-89 for positron emission tomography imaging. ACS Nano 11(12):12193–12201

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Currie S et al (2013) Understanding MRI: basic MR physics for physicians. Postgrad Med J 89(1050):209–223

    Google Scholar 

  18. Ding X et al (2016) Polydopamine coated manganese oxide nanoparticles with ultrahigh relaxivity as nanotheranostic agents for magnetic resonance imaging guided synergetic chemo-/photothermal therapy. Chem Sci 7(11):6695–6700

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Dong K et al (2014) Ultrasmall biomolecule-anchored hybrid GdVO4 nanophosphors as a metabolizable multimodal bioimaging contrast agent. Nanoscale 6(20):12042–12049

    CAS  PubMed  Google Scholar 

  20. Du Q et al (2015) Facile preparation and bifunctional imaging of Eu-doped GdPO4 nanorods with MRI and cellular luminescence. Dalton Trans 44(9):3934–3940

    CAS  PubMed  Google Scholar 

  21. Dykman LA, Khlebtsov NG (2016) Multifunctional gold-based nanocomposites for theranostics. Biomaterials 108:13–34

    CAS  PubMed  Google Scholar 

  22. Edelman RR (2014) The history of MR imaging as seen through the pages of radiology. Radiology 273(2 Suppl):S181–S200

    PubMed  Google Scholar 

  23. EMA (2017) European Medicines Agency, EMA/625317/2017. https://www.ema.europa.eu/en/medicines/human/referrals/gadolinium-containing-contrast-agents. Accessed 2 April 2020.

  24. Estelrich J et al (2015) Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int J Nanomedicine 10:1727–1741

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fan Q et al (2014) Transferring biomarker into molecular probe: melanin nanoparticle as a naturally active platform for multimodality imaging. J Am Chem Soc 136(43):15185–15194

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Garcia-Hevia L et al (2019) Recent progress on manganese-based nanostructures as responsive MRI contrast agents. Chem Eur J 25(2):431–441

    CAS  PubMed  Google Scholar 

  27. Geraldes CF, Laurent S (2009) Classification and basic properties of contrast agents for magnetic resonance imaging. Contrast Media Mol Imaging 4(1):1–23

    CAS  PubMed  Google Scholar 

  28. Gong H et al (2013) Carbon nanotubes for biomedical imaging: the recent advances. Adv Drug Deliv Rev 65(15):1951–1963

    CAS  PubMed  Google Scholar 

  29. Guo C et al (2017) Multifunctional nanoprobes for both fluorescence and 19F magnetic resonance imaging. Nanoscale 9(21):7163–7168

    CAS  PubMed  Google Scholar 

  30. Gutte H et al (2015) Simultaneous hyperpolarized 13C-Pyruvate MRI and 18F-FDG PET (HyperPET) in 10 dogs with cancer. J Nucl Med 56(11):1786–1792

    CAS  PubMed  Google Scholar 

  31. Hu H et al (2014) General protocol for the synthesis of functionalized magnetic nanoparticles for magnetic resonance imaging from protected metal-organic precursors. Chem Eur J 20(23):7160–7167

    CAS  PubMed  Google Scholar 

  32. Hundshammer C et al (2018) Simultaneous characterization of tumor cellularity and the Warburg effect with PET, MRI and hyperpolarized (13)C-MRSI. Theranostics 8(17):4765–4780

    CAS  PubMed  PubMed Central  Google Scholar 

  33. IMV (2019) https://imvinfo.com/?sec=mri&sub=dis&itemid=200085. Accessed 24 Jan 2019

  34. Jiang W et al (2014) “Green” functionalization of magnetic nanoparticles via tea polyphenol for magnetic resonance/fluorescent dual-imaging. Nanoscale 6(3):1305–1310

    CAS  PubMed  Google Scholar 

  35. Jiang Y et al (2017) Magnetic mesoporous nanospheres anchored with LyP-1 as an efficient pancreatic cancer probe. Biomaterials 115:9–18

    CAS  PubMed  Google Scholar 

  36. Jin X et al (2015) An ultrasmall and metabolizable PEGylated NaGdF4: Dy nanoprobe for high-performance T(1)/T(2)-weighted MR and CT multimodal imaging. Nanoscale 7(38):15680–15688

    CAS  PubMed  Google Scholar 

  37. Joshi R et al (2013) Multifunctional silica nanoparticles for optical and magnetic resonance imaging. Biol Chem 394(1):125–135

    CAS  PubMed  Google Scholar 

  38. Kang X et al (2013) Poly(acrylic acid) modified lanthanide-doped GdVO4 hollow spheres for up-conversion cell imaging, MRI and pH-dependent drug release. Nanoscale 5(1):253–261

    CAS  PubMed  Google Scholar 

  39. Kim D et al (2018) Recent development of inorganic nanoparticles for biomedical imaging. ACS Cent Sci 4(3):324–336

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim IY et al (2015) Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine 11(6):1407–1416

    CAS  PubMed  Google Scholar 

  41. Kim J et al (2009) Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem Soc Rev 38(2):372–390

    CAS  PubMed  Google Scholar 

  42. Knopp T et al (2017) Magnetic particle imaging: from proof of principle to preclinical applications. Phys Med Biol 62(14):R124–R178

    CAS  PubMed  Google Scholar 

  43. Kurhanewicz J et al (2008) Current and potential applications of clinical 13C MR spectroscopy. J Nucl Med 49(3):341–344

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lacerda L et al (2008) Carbon-nanotube shape and individualization critical for renal excretion. Small 4(8):1130–1132

    CAS  PubMed  Google Scholar 

  45. Laguna M et al (2016) Multifunctional Eu-doped NaGd(MoO4)2 nanoparticles functionalized with poly(l-lysine) for optical and MRI imaging. Dalton Trans 45(41):16354–16365

    CAS  PubMed  Google Scholar 

  46. Lakshmanan A et al (2017) Preparation of biogenic gas vesicle nanostructures for use as contrast agents for ultrasound and MRI. Nat Protoc 12(10):2050–2080

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lanza GM et al (2005) 1H/19F magnetic resonance molecular imaging with perfluorocarbon nanoparticles. Curr Top Dev Biol 70:57–76

    CAS  PubMed  Google Scholar 

  48. Le DHT et al (2017) Chemical addressability of potato virus X for its applications in bio/nanotechnology. J Struct Biol 200(3):360–368

    CAS  PubMed  Google Scholar 

  49. Lee N et al (2015) Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem Rev 115(19):10637–10689

    CAS  PubMed  Google Scholar 

  50. Li E et al (2018) Multifunctional magnetic mesoporous silica nanoagents for in vivo enzyme-responsive drug delivery and mr imaging. Nanotheranostics 2(3):233–242

    PubMed  PubMed Central  Google Scholar 

  51. Li J et al (2014) Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging. Biomaterials 35(11):3666–3677

    CAS  PubMed  Google Scholar 

  52. Li J et al (2013) Multifunctional uniform core-shell Fe3O4@mSiO2 mesoporous nanoparticles for bimodal imaging and photothermal therapy. Chem Asian J 8(2):385–391

    CAS  PubMed  Google Scholar 

  53. Li J et al (2014) Gadolinium oxide nanoparticles and aptamer-functionalized silver nanoclusters-based multimodal molecular imaging nanoprobe for optical/magnetic resonance cancer cell imaging. Anal Chem 86(22):11306–11311

    CAS  PubMed  Google Scholar 

  54. Li Y et al (2016) Core-Shell-Shell NaYbF4:Tm@CaF2@NaDyF4 Nanocomposites for Upconversion/T2-Weighted MRI/Computed Tomography Lymphatic Imaging. ACS Appl Mater Interfaces 8(30):19208–19216

    CAS  PubMed  Google Scholar 

  55. Lipton ML (2008) Totally accessible MRI. Springer, New York

    Google Scholar 

  56. Liu D et al (2018) Target-specific delivery of oxaliplatin to HER2-positive gastric cancer cells in vivo using oxaliplatin-au-fe3o4-herceptin nanoparticles. Oncol Lett 15(5):8079–8087

    PubMed  PubMed Central  Google Scholar 

  57. Liu H-M et al (2008) Mesoporous silica nanoparticles improve magnetic labeling efficiency in human stem cells. Small 4(5):619–626

    CAS  PubMed  Google Scholar 

  58. Liu JN et al (2015) Silica coated upconversion nanoparticles: a versatile platform for the development of efficient theranostics. Acc Chem Res 48(7):1797–1805

    CAS  PubMed  Google Scholar 

  59. Liu Y et al (2013) Quintuple-modality (SERS-MRI-CT-TPL-PTT) plasmonic nanoprobe for theranostics. Nanoscale 5(24):12126–12131

    CAS  PubMed  Google Scholar 

  60. Liu Z et al (2008) Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci USA 105(5):1410–1415

    CAS  PubMed  Google Scholar 

  61. Ma ZY et al (2015) Folic acid-targeted magnetic Tb-doped CeF3 fluorescent nanoparticles as bimodal probes for cellular fluorescence and magnetic resonance imaging. Dalton Trans 44(37):16304–16312

    CAS  PubMed  Google Scholar 

  62. Mao X et al (2016) Functional nanoparticles for magnetic resonance imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8(6):814–841

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Matsushita H et al (2014) Multifunctional core-shell silica nanoparticles for highly sensitive (19)F magnetic resonance imaging. Angew Chem Int Ed 53(4):1008–1011

    CAS  Google Scholar 

  64. McMahon MT, Chan KW (2014) Developing MR probes for molecular imaging. Adv Cancer Res 124:297–327

    CAS  PubMed  Google Scholar 

  65. Menzel MI et al (2013) Multimodal assessment of in vivo metabolism with hyperpolarized [1-13C]MR spectroscopy and 18F-FDG PET imaging in hepatocellular carcinoma tumor-bearing rats. J Nucl Med 54(7):1113–1119

    CAS  PubMed  Google Scholar 

  66. Miloushev VZ et al (2016) Hyperpolarization MRI: preclinical models and potential applications in neuroradiology. Top Magn Reson Imaging 25(1):31–37

    PubMed  PubMed Central  Google Scholar 

  67. Nejadnik H et al (2018) Ferumoxytol can be used for quantitative magnetic particle imaging of transplanted stem cells. Mol Imaging Biol

    Google Scholar 

  68. Nunez NO et al (2013) Surface modified Eu:GdVO4 nanocrystals for optical and MRI imaging. Dalton Trans 42(30):10725–10734

    CAS  PubMed  Google Scholar 

  69. Ortgies DH et al (2016) In vivo deep tissue fluorescence and magnetic imaging employing hybrid nanostructures. ACS Appl Mater Interfaces 8(2):1406–1414

    CAS  PubMed  Google Scholar 

  70. Pan D et al (2011) Manganese-based MRI contrast agents: past, present and future. Tetrahedron 67(44):8431–8444

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Panagiotopoulos N et al (2015) Magnetic particle imaging: current developments and future directions. Int J Nanomedicine 10:3097–3114

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Penet MF et al (2013) MR—eyes for cancer: looking within an impenetrable disease. NMR Biomed 26(7):745–755

    PubMed  PubMed Central  Google Scholar 

  73. Poehlmann M et al (2014) On the interplay of shell structure with low- and high-frequency mechanics of multifunctional magnetic microbubbles. Soft Matter 10(1):214–226

    CAS  PubMed  Google Scholar 

  74. Purushotham S et al (2009) Thermoresponsive core-shell magnetic nanoparticles for combined modalities of cancer therapy. Nanotechnology 20(30):305101

    CAS  PubMed  Google Scholar 

  75. Radbruch A et al (2015) Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology 275(3):783–791

    PubMed  Google Scholar 

  76. Ravoori MK et al (2017) in vivo assessment of ovarian tumor response to Tyrosine Kinase inhibitor pazopanib by using hyperpolarized 13C-Pyruvate MR spectroscopy and 18F-FDG PET/ct imaging in a mouse model. Radiology 285(3):830–838

    PubMed  PubMed Central  Google Scholar 

  77. Revia RA, Zhang M (2016) Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater Today 19(3):157–168

    CAS  Google Scholar 

  78. Richards DA et al (2017) Antibody fragments as nanoparticle targeting ligands: a step in the right direction. Chem Sci 8(1):63–77

    CAS  PubMed  Google Scholar 

  79. Rogosnitzky M, Branch S (2016) Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals 29(3):365–376

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Roos JE et al (2015) Hyperpolarized Gas MR imaging: technique and applications. Magn Reson Imaging Clin N Am 23(2):217–229

    PubMed  PubMed Central  Google Scholar 

  81. Saha A et al (2017) Surface-engineered multifunctional Eu:Gd2O3 nanoplates for targeted and pH-responsive drug delivery and imaging applications. ACS Appl Mater Interfaces 9(4):4126–4141

    CAS  PubMed  Google Scholar 

  82. Silva CO et al (2019) Current trends in cancer nanotheranostics: metallic, polymeric, and lipid-based systems. Pharmaceutics 11(1)

    Google Scholar 

  83. Smith AM et al (2009) Second window for in vivo imaging. Nat Nanotechnol 4:710

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Song J et al (2012) Self-assembled plasmonic vesicles of SERS-encoded amphiphilic gold nanoparticles for cancer cell targeting and traceable intracellular drug delivery. J Am Chem Soc 134(32):13458–13469

    CAS  PubMed  Google Scholar 

  85. Sosnovik DE, Weissleder R (2007) Emerging concepts in molecular MRI. Curr Opin Biotechnol 18(1):4–10

    CAS  PubMed  Google Scholar 

  86. Srikar R et al (2014) Polymeric nanoparticles for molecular imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6(3):245–267

    CAS  PubMed  Google Scholar 

  87. Sun SK et al (2013) Fabrication of multifunctional Gd2O3/Au hybrid nanoprobe via a one-step approach for near-infrared fluorescence and magnetic resonance multimodal imaging in vivo. Anal Chem 85(17):8436–8441

    CAS  PubMed  Google Scholar 

  88. Sun Y et al (2013) Core-shell lanthanide upconversion nanophosphors as four-modal probes for tumor angiogenesis imaging. ACS Nano 7(12):11290–11300

    CAS  PubMed  Google Scholar 

  89. Sutens B et al (2016) Tunability of size and magnetic moment of iron oxide nanoparticles synthesized by forced hydrolysis. Materials 9(7):E554

    PubMed  Google Scholar 

  90. Teston E et al (2015) Design, properties, and in vivo behavior of super-paramagnetic persistent luminescence nanohybrids. Small 11(22):2696–2704

    CAS  PubMed  Google Scholar 

  91. Thorarinsdottir AE, Harris TD (2019) Dramatic enhancement in pH sensitivity and signal intensity through ligand modification of a dicobalt PARACEST probe. Chem Commun (Camb) 55(6):794–797

    CAS  Google Scholar 

  92. Thorek DL et al (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34(1):23–38

    PubMed  Google Scholar 

  93. Tian Q et al (2013) Sub-10 nm Fe3O4@Cu(2-x)S core-shell nanoparticles for dual-modal imaging and photothermal therapy. J Am Chem Soc 135(23):8571–8577

    CAS  PubMed  Google Scholar 

  94. Tian Q et al (2014) Multifunctional polypyrrole@Fe(3)O(4) nanoparticles for dual-modal imaging and in vivo photothermal cancer therapy. Small 10(6):1063–1068

    CAS  PubMed  Google Scholar 

  95. Tiwari A et al (2018) Carbon coated core–shell multifunctional fluorescent SPIONs. Nanoscale 10(22):10389–10394

    CAS  PubMed  Google Scholar 

  96. Tran TD et al (2007) Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics. Int J Nanomed 2(4):515–526

    CAS  Google Scholar 

  97. Wahsner J et al (2019) Chemistry of MRI contrast agents: current challenges and new frontiers. Chem Rev 119(2):957–1057

    CAS  PubMed  Google Scholar 

  98. Walia S, Acharya A (2015) Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy. Beilstein J Nanotechnol 6:546–558

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Walia S et al (2016) A bimodal molecular imaging probe based on chitosan encapsulated magneto-fluorescent nanocomposite offers biocompatibility, visualization of specific cancer cells in vitro and lung tissues in vivo. Int J Pharm 498(1–2):110–118

    CAS  PubMed  Google Scholar 

  100. Wang H et al (2010) Synthesis of carbon-encapsulated superparamagnetic colloidal nanoparticles with magnetic-responsive photonic crystal property. Dalton Trans 39(40):9565–9569

    CAS  PubMed  Google Scholar 

  101. Wang H et al (2016) Preloading of hydrophobic anticancer drug into multifunctional nanocarrier for multimodal imaging, NIR-responsive drug release, and synergistic therapy. Small 12(46):6388–6397

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang J et al (2016) MR/SPECT imaging guided photothermal therapy of tumor-targeting Fe@Fe3O4 nanoparticles in vivo with low mononuclear phagocyte uptake. ACS Appl Mater Interfaces 8(31):19872–19882

    CAS  PubMed  Google Scholar 

  103. Wang X et al (2013) Multifunctional Fe3O4@P(St/MAA)@chitosan@Au core/shell nanoparticles for dual imaging and photothermal therapy. ACS Appl Mater Interfaces 5(11):4966–4971

    CAS  PubMed  Google Scholar 

  104. Wang Y-X et al (2013) Recent advances in superparamagnetic iron oxide nanoparticles for cellular imaging and targeted therapy research. Curr Pharm Des 19(37):6575–6593

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ward KM et al (2000) A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 143(1):79–87

    CAS  PubMed  Google Scholar 

  106. Wei Z et al (2016) Multifunctional nanoprobe for cancer cell targeting and simultaneous fluorescence/magnetic resonance imaging. Anal Chim Acta 938:156–164

    CAS  PubMed  Google Scholar 

  107. Weishaupt D et al (2006) How does MRI work?. Springer, Berlin Heidelberg

    Google Scholar 

  108. Wu B et al (2016) An overview of CEST MRI for non-MR physicists. EJNMMI Phys 3(1):19

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Wu LC et al (2019) A review of magnetic particle imaging and perspectives on neuroimaging. AJNR Am J Neuroradiol 40(2):206–212

    CAS  PubMed  Google Scholar 

  110. Wyss PP et al (2016) Nanoprobes for multimodal visualization of bone mineral phase in magnetic resonance and near-infrared optical imaging. ACS Omega 1(2):182–192

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Yang D et al (2014) Ultra-small BaGdF5-based upconversion nanoparticles as drug carriers and multimodal imaging probes. Biomaterials 35(6):2011–2023

    CAS  PubMed  Google Scholar 

  112. Yang H-M et al (2018) Cross-linked magnetic nanoparticles with a biocompatible amide bond for cancer-targeted dual optical/magnetic resonance imaging. Colloids Surf B Biointerfaces 161:183–191

    CAS  PubMed  Google Scholar 

  113. Yang L et al (2016) Multifunctional upconversion nanoparticles for targeted dual-modal imaging in rat glioma xenograft. J Biomater Appl 31(3):400–410

    CAS  PubMed  Google Scholar 

  114. Yi Z et al (2016) Hybrid lanthanide nanoparticles as a new class of binary contrast agents for in vivo T1/T2 dual-weighted MRI and synergistic tumor diagnosis. J Mater Chem B 4(15):2715–2722

    CAS  PubMed  Google Scholar 

  115. Yin C et al (2015) Fluorescent oligo(p-phenyleneethynylene) contained amphiphiles-encapsulated magnetic nanoparticles for targeted magnetic resonance and two-photon optical imaging in vitro and in vivo. Nanoscale 7(19):8907–8919

    CAS  PubMed  Google Scholar 

  116. Yu J et al (2014) Multifunctional Fe5 C2 nanoparticles: a targeted theranostic platform for magnetic resonance imaging and photoacoustic tomography-guided photothermal therapy. Adv Mater 26(24):4114–4120

    CAS  PubMed  Google Scholar 

  117. Yuzhakova DV et al (2017) In vivo multimodal tumor imaging and photodynamic therapy with novel theranostic agents based on the porphyrazine framework-chelated gadolinium (III) cation. Biochim Biophys Acta Gen Subj 1861(12):3120–3130

    Google Scholar 

  118. Zeng Q et al (2017) Mitochondria targeted and intracellular biothiol triggered hyperpolarized (129)Xe magnetofluorescent biosensor. Anal Chem 89(4):2288–2295

    CAS  PubMed  Google Scholar 

  119. Zhan Y et al (2018) Intrinsically zirconium-89-labeled manganese oxide nanoparticles for in vivo dual-modality positron emission tomography and magnetic resonance imaging. J Biomed Nanotechnol 14(5):900–909

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhang C et al (2017) Tri-needle coaxial electrospray engineering of magnetic polymer yolk-shell particles possessing dual-imaging modality, multiagent compartments, and trigger release potential. ACS Appl Mater Interfaces 9(25):21485–21495

    CAS  PubMed  Google Scholar 

  121. Zhang L et al (2016) Facile preparation of multifunctional uniform magnetic microspheres for T1-T2 dual modal magnetic resonance and optical imaging. Colloids Surf B Biointerfaces 144:344–354

    CAS  PubMed  Google Scholar 

  122. Zhang L et al (2013) High MRI performance fluorescent mesoporous silica-coated magnetic nanoparticles for tracking neural progenitor cells in an ischemic mouse model. Nanoscale 5(10):4506–4516

    CAS  PubMed  Google Scholar 

  123. Zhang Q et al (2018) Construction of multifunctional Fe3O4-MTX@HBc nanoparticles for MR imaging and photothermal therapy/chemotherapy. Nanotheranostics 2(1):87–95

    PubMed  PubMed Central  Google Scholar 

  124. Zheng B et al (2016) Quantitative magnetic particle imaging monitors the transplantation, biodistribution, and clearance of stem cells in vivo. Theranostics 6(3):291–301

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhu H et al (2013) Magnetic, fluorescent, and thermo-responsive Fe(3)O(4)/rare earth incorporated poly(St-NIPAM) core-shell colloidal nanoparticles in multimodal optical/magnetic resonance imaging probes. Biomaterials 34(9):2296–2306

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorde Komljenovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Biegger, P., Ladd, M.E., Komljenovic, D. (2020). Multifunctional Magnetic Resonance Imaging Probes. In: Schober, O., Kiessling, F., Debus, J. (eds) Molecular Imaging in Oncology. Recent Results in Cancer Research, vol 216. Springer, Cham. https://doi.org/10.1007/978-3-030-42618-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42618-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42617-0

  • Online ISBN: 978-3-030-42618-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics