Skip to main content

Optical and Optoacoustic Imaging

  • Chapter
  • First Online:
Molecular Imaging in Oncology

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 216))

Abstract

The present chapter summarizes progress with optical methods that go beyond human vision. The focus is on two particular technologies: fluorescence molecular imaging and optoacoustic (photoacoustic) imaging. The rationale for the selection of these two methods is that in contrast to optical microscopy techniques, both fluorescence and optoacoustic imaging can achieve large fields of view, i.e., spanning several centimeters in two or three dimensions. Such fields of views relate better to human vision and can visualize large parts of tissue, a necessary premise for clinical detection. Conversely, optical microscopy methods only scan millimeter-sized dimensions or smaller. With such operational capacity, optical microscopy methods need to be guided by another visualization technique in order to scan a very specific area in tissue and typically only provide superficial measurements, i.e., information from depths that are of the order of 0.05–1 mm. This practice has generally limited their clinical applicability to some niche applications, such as optical coherence tomography of the retina. On the other hand, fluorescence molecular imaging and optoacoustic imaging emerge as more global optical imaging methods with wide applications in surgery, endoscopy, and non-invasive clinical imaging, as summarized in the following. The current progress in this field is based on a volume of recent review and other literature that highlights key advances achieved in technology and biomedical applications. Context and figures from references from the authors of this chapter have been used here, as it reflects our general view of the current status of the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Galloro G (2012) High technology imaging in digestive endoscopy. World J Gastrointest Endosc 4:22–27

    PubMed  PubMed Central  Google Scholar 

  2. Freschi C et al (2013) Technical review of the da Vinci surgical telemanipulator. Int J Med Robot 9:396–406

    CAS  PubMed  Google Scholar 

  3. Roberts DW, Hartov A, Kennedy FE, Miga MI, Paulsen KD (1998) Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases. Neurosurgery 43:749–758

    Google Scholar 

  4. Labadie RF, Davis BM, Fitzpatrick JM (2005) Image-guided surgery: what is the accuracy? Curr Opin Otolaryngol Head Neck Surg 13:27–31

    PubMed  Google Scholar 

  5. Moore GE, Hunter SW, Hubbard TB (1949) Clinical and experimental studies of fluorescein dyes with special reference to their use for the diagnosis of central nervous system tumors. Ann Surg 130:637–642

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Novotny HR, Alvis D (1960) A method of photographing fluorescence in circulating blood of the human eye. Tech Doc Rep SAMTDR USAF Sch Aerosp Med 60–82:1–4

    PubMed  Google Scholar 

  7. Koch M, Ntziachristos V (2016) Advancing surgical vision with fluorescence imaging. Annu Rev Med 67:153–164

    CAS  PubMed  Google Scholar 

  8. Zhang RR et al (2017) Beyond the margins: real-time detection of cancer using targeted fluorophores. Nat Rev Clin Oncol 14:347–364

    CAS  PubMed  PubMed Central  Google Scholar 

  9. van Dam GM et al (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nat Med 17:1315–1319

    Google Scholar 

  10. Tummers QRJG et al (2016) Intraoperative imaging of folate receptor alpha positive ovarian and breast cancer using the tumor specific agent EC17. Oncotarget 7:32144–32155

    PubMed  PubMed Central  Google Scholar 

  11. Rosenthal EL et al (2015) Safety and tumor specificity of cetuximab-IRDye800 for surgical navigation in head and neck cancer. Clin Cancer Res 21:3658–3666

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Whitley MJ et al (2016) A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer. Sci Transl Med 8:320ra324

    Google Scholar 

  13. Hsiung PL et al (2008) Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nat Med 14:454–458

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Atreya R et al (2014) In vivo imaging using fluorescent antibodies to tumor necrosis factor predicts therapeutic response in Crohn’s disease. Nat Med 20:313–318

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Glatz J, Symvoulidis P, Garcia-Allende PB, Ntziachristos V (2014) Robust overlay schemes for the fusion of fluorescence and color channels in biological imaging. J Biomed Opt 19:040501

    PubMed  Google Scholar 

  16. Glatz J et al (2013) Concurrent video-rate color and near-infrared fluorescence laparoscopy. J Biomed Opt 18:101302

    PubMed  Google Scholar 

  17. Starosolski Z et al (2017) Indocyanine green fluorescence in second near-infrared (NIR-II) window. PLoS ONE 12:e0187563

    PubMed  PubMed Central  Google Scholar 

  18. Koch M, Symvoulidis P, Ntziachristos V (2018) Tackling standardization in fluorescence molecular imaging. Nat Photonics 12:505–515

    CAS  Google Scholar 

  19. Hong G et al (2014) Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat Photonics 8:723–730

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Leevy CM (1967) Indocyanine green clearance as a test for hepatic function. JAMA 200:236–240

    CAS  PubMed  Google Scholar 

  21. Rowell LB, Marx HJ, Bruce RA, Conn RD, Kusumi F (1966) Reductions in cardiac output, central blood volume, and stroke volume with thermal stress in normal men during exercise. J Clin Invest 45:1801–1816

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Craandijk A, Van Beek CA (1976) Indocyanine green fluorescence angiography of the choroid. Br J Ophthalmol 60:377–385

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sekijima M et al (2004) An intraoperative fluorescent imaging system in organ transplantation. Transplant Proc 36:2188–2190

    CAS  PubMed  Google Scholar 

  24. Jonsson K et al (1991) Tissue oxygenation, anemia, and perfusion in relation to wound healing in surgical patients. Ann Surg 214:605–613

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Azuma R et al (2008) Detection of skin perforators by indocyanine green fluorescence nearly infrared angiography. Plast Reconstr Surg 122:1062–1067

    CAS  PubMed  Google Scholar 

  26. Liu DZ, Mathes DW, Zenn MR, Neligan PC (2011) The application of indocyanine green fluorescence angiography in plastic surgery. J Reconstr Microsurg 27:355–364

    CAS  Google Scholar 

  27. Holm C et al (2002) Intraoperative evaluation of skin-flap viability using laser-induced fluorescence of indocyanine green. Br J Plast Surg 55:635–644

    CAS  PubMed  Google Scholar 

  28. Detter C et al (2002) Near-infrared fluorescence coronary angiography: a new noninvasive technology for intraoperative graft patency control. Heart Surg Forum 5:364–369

    PubMed  Google Scholar 

  29. Ferroli P, Nakaji P, Acerbi F, Albanese E, Broggi G (2011) Indocyanine green (ICG) temporary clipping test to assess collateral circulation before venous sacrifice. World Neurosurg 75:122–125

    PubMed  Google Scholar 

  30. Sherwinter DA (2012) Transanal near-infrared imaging of colorectal anastomotic perfusion. Surg Laparosc Endosc Percutan Tech 22:433–436

    PubMed  Google Scholar 

  31. Yamaguchi S et al (2004) The “perfusion map” of the unipedicled TRAM flap to reduce postoperative partial necrosis. Ann Plast Surg 53:205–209

    PubMed  Google Scholar 

  32. Lyman GH et al (2014) Sentinel lymph node biopsy for patients with early-stage breast cancer: American society of clinical oncology clinical practice guideline update. J Clin Oncol 32:1365–1383

    Google Scholar 

  33. Yared MA et al (2002) Recommendations for sentinel lymph node processing in breast cancer. Am J Surg Pathol 26:377–382

    CAS  PubMed  Google Scholar 

  34. Cox CE et al (1998) Guidelines for sentinel node biopsy and lymphatic mapping of patients with breast cancer. Ann Surg 227:645–651

    Google Scholar 

  35. Mieog JS et al (2011) Toward optimization of imaging system and lymphatic tracer for near-infrared fluorescent sentinel lymph node mapping in breast cancer. Ann Surg Oncol 18:2483–2491

    PubMed  PubMed Central  Google Scholar 

  36. Wishart GC, Loh SW, Jones L, Benson JR (2012) A feasibility study (ICG-10) of indocyanine green (ICG) fluorescence mapping for sentinel lymph node detection in early breast cancer. Eur J Surg Oncol 38:651–656

    CAS  PubMed  Google Scholar 

  37. Verbeek FP et al (2014) Near-infrared fluorescence sentinel lymph node mapping in breast cancer: a multicenter experience. Breast Cancer Res Treat 143:333–342

    PubMed  Google Scholar 

  38. Fujiwara M, Mizukami T, Suzuki A, Fukamizu H (2009) Sentinel lymph node detection in skin cancer patients using real-time fluorescence navigation with indocyanine green: preliminary experience. J Plast Reconstr Aes 62:e373–378

    Google Scholar 

  39. van den Berg NS et al (2012) Concomitant radio- and fluorescence-guided sentinel lymph node biopsy in squamous cell carcinoma of the oral cavity using ICG-(99 m)Tc-nanocolloid. Eur J Nucl Med Mol Imaging 39:1128–1136

    CAS  PubMed  Google Scholar 

  40. Crane LM et al (2011) Intraoperative near-infrared fluorescence imaging for sentinel lymph node detection in vulvar cancer: first clinical results. Gynecol Oncol 120:291–295

    CAS  PubMed  Google Scholar 

  41. Crane LM et al (2011) Intraoperative multispectral fluorescence imaging for the detection of the sentinel lymph node in cervical cancer: a novel concept. Mol Imaging Biol 13:1043–1049

    Google Scholar 

  42. Misiek M, Rzepka JK, Zalewski K, Kopczyński J, Gozdz S (2014) Fluorescence-guided lymph node mapping with indocyanine green for endometrial cancer: a feasiblity study. Clin J Oncol (Meet Abstr) 32:e16549

    Google Scholar 

  43. Yamashita S et al (2012) Sentinel node navigation surgery by thoracoscopic fluorescence imaging system and molecular examination in non-small cell lung cancer. Ann Surg Oncol 19:728–733

    PubMed  Google Scholar 

  44. Abu-Rustum NR (2014) Sentinel lymph node mapping for endometrial cancer: a modern approach to surgical staging. J Natl Compr Cancer Netw 12:288–297

    Google Scholar 

  45. Rasmussen JC, Tan IC, Marshall MV, Fife CE, Sevick-Muraca EM (2009) Lymphatic imaging in humans with near-infrared fluorescence. Curr Opin Biotechnol 20:74–82

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Takami T, Yamagata T, Naito K, Arima H, Ohata K (2013) Intraoperative assessment of spinal vascular flow in the surgery of spinal intramedullary tumors using indocyanine green videoangiography. Surg Neurol Int 4:135

    PubMed  PubMed Central  Google Scholar 

  47. Wang T, Hu YJ, He Y, Sun PS, Guo ZC (2019) A retrospective validation study of sentinel lymph node mapping for high-risk endometrial cancer. Arch Gynecol Obstet 299:1429–1435

    PubMed  PubMed Central  Google Scholar 

  48. Scheuer W, van Dam GM, Dobosz M, Schwaiger M, Ntziachristos V (2012) Drug-based optical agents: infiltrating clinics at lower risk. Sci Transl Med 4:134ps111

    Google Scholar 

  49. Harada K et al (2013) Detection of lymph node metastases in human colorectal cancer by using 5-aminolevulinic acid-induced protoporphyrin IX fluorescence with spectral unmixing. Int J Mol Sci 14:23140–23152

    PubMed  PubMed Central  Google Scholar 

  50. Kamp MA et al (2012) 5-aminolevulinic acid (5-ALA)-induced fluorescence in intracerebral metastases: a retrospective study. Acta Neurochir 154:223–228

    PubMed  Google Scholar 

  51. Kishi K et al (2012) Staging laparoscopy using ALA-mediated photodynamic diagnosis improves the detection of peritoneal metastases in advanced gastric cancer. J Surg Oncol 106:294–298

    CAS  PubMed  Google Scholar 

  52. Stummer W et al (2000) Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 93:1003–1013

    CAS  Google Scholar 

  53. Stummer W et al (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401

    CAS  Google Scholar 

  54. DSouza AV, Lin H, Henderson ER, Samkoe KS, Pogue BW (2016) Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging. J Biomed Opt 21:80901

    Google Scholar 

  55. Marshall MV et al (2010) Near-infrared fluorescence imaging in humans with indocyanine green: a review and update. Open Surg Oncol J 2:12–25

    PubMed  PubMed Central  Google Scholar 

  56. Hong GS et al (2012) Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat Med 18:1841

    Google Scholar 

  57. Ghosh D et al (2014) Deep, noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes. Proc Natl Acad Sci USA 111:13948–13953

    CAS  PubMed  Google Scholar 

  58. Carr JA et al (2018) Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc Natl Acad Sci USA 115:4465–4470

    CAS  PubMed  Google Scholar 

  59. Medicine, U. N. L. o (2012) VEGF-targeted fluorescent tracer imaging in breast cancer. https://clinicaltrials.gov/ct2/show/NCT01508572

  60. Bradley RS, Thorniley MS (2006) A review of attenuation correction techniques for tissue fluorescence. J R Soc Interface 3:1–13

    CAS  PubMed  Google Scholar 

  61. Themelis G, Yoo JS, Soh KS, Schulz R, Ntziachristos V (2009) Real-time intraoperative fluorescence imaging system using light-absorption correction. J Biomed Opt 14:064012

    PubMed  Google Scholar 

  62. Moriyama EH, Kim A, Bogaards A, Lilge L, Wilson BC (2008) A ratiometric fluorescence imaging system for surgical guidance. Adv Opt Technol 2008:1–10

    Google Scholar 

  63. Barbash GI, Glied SA (2010) New technology and health care costs—the case of robot-assisted surgery. N Engl J Med 363:701–704

    CAS  PubMed  Google Scholar 

  64. Gorpas D, Koch M, Anastasopoulou M, Klemm U, Ntziachristos V (2017) Benchmarking of fluorescence cameras through the use of a composite phantom. J Biomed Opt 22:16009

    PubMed  Google Scholar 

  65. Niedre MJ et al (2008) Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo. Proc Natl Acad Sci USA 105:19126–19131

    CAS  PubMed  Google Scholar 

  66. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775

    CAS  PubMed  Google Scholar 

  67. Gao X et al (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16:63–72

    CAS  PubMed  Google Scholar 

  68. Alivisatos AP, Gu W, Larabell C (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7:55–76

    CAS  PubMed  Google Scholar 

  69. Zhu B, Tan IC, Rasmussen JC, Sevick-Muraca EM (2012) Validating the sensitivity and performance of near-infrared fluorescence imaging and tomography devices using a novel solid phantom and measurement approach. Technol Cancer Res Treat 11:95–104

    CAS  PubMed  Google Scholar 

  70. Roy M, Kim A, Dadani F, Wilson BC (2011) Homogenized tissue phantoms for quantitative evaluation of subsurface fluorescence contrast. J Biomed Opt 16:016013

    PubMed  Google Scholar 

  71. Zhu B, Rasmussen JC, Sevick-Muraca EM (2014) A matter of collection and detection for intraoperative and noninvasive near-infrared fluorescence molecular imaging: to see or not to see? Med Phys 41:022105

    PubMed  PubMed Central  Google Scholar 

  72. Moffitt T, Chen YC, Prahl SA (2006) Preparation and characterization of polyurethane optical phantoms. J Biomed Opt 11:041103

    PubMed  Google Scholar 

  73. Anastasopoulou M et al (2016) Comprehensive phantom for interventional fluorescence molecular imaging. J Biomed Opt 21:091309

    PubMed  Google Scholar 

  74. Ntziachristos V et al (2005) Planar fluorescence imaging using normalized data. J Biomed Opt 10:064007

    PubMed  Google Scholar 

  75. Valdes PA et al (2012) Quantitative, spectrally-resolved intraoperative fluorescence imaging. Sci Rep 2:798

    PubMed  PubMed Central  Google Scholar 

  76. Zhu B, Rasmussen JC, Sevick-Muraca EM (2014) Non-invasive fluorescence imaging under ambient light conditions using a modulated ICCD and laser diode. Biomed Opt Express 5:562–572

    PubMed  PubMed Central  Google Scholar 

  77. Sexton K et al (2013) Pulsed-light imaging for fluorescence guided surgery under normal room lighting. Opt Lett 38:3249–3252

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Zonios G, Dimou A (2006) Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties. Opt Express 14:8661–8674

    PubMed  Google Scholar 

  79. Garcia-Allende PB et al (2016) Uniqueness in multispectral constant-wave epi-illumination imaging. Opt Lett 41:3098–3101

    CAS  PubMed  Google Scholar 

  80. Saager RB, Cuccia DJ, Saggese S, Kelly KM, Durkin AJ (2011) Quantitative fluorescence imaging of protoporphyrin IX through determination of tissue optical properties in the spatial frequency domain. J Biomed Opt 16:126013

    PubMed  PubMed Central  Google Scholar 

  81. Yang B, Tunnell JW (2014) Real-time absorption reduced surface fluorescence imaging. J Biomed Opt 19:90505

    PubMed  Google Scholar 

  82. Bogaards A, Sterenborg HJ, Wilson BC (2007) In vivo quantification of fluorescent molecular markers in real-time: a review to evaluate the performance of five existing methods. Photodiagnosis Photodyn Ther 4:170–178

    CAS  PubMed  Google Scholar 

  83. Haller J et al (2008) Visualization of pulmonary inflammation using noninvasive fluorescence molecular imaging. J Appl Physiol 104:795–802

    CAS  PubMed  Google Scholar 

  84. Tichauer KM et al (2014) Microscopic lymph node tumor burden quantified by macroscopic dual-tracer molecular imaging. Nat Med 20:1348–1353

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Rosencwaig A (1973) Photoacoustic spectroscopy of biological materials. Science 181:657–658

    CAS  PubMed  Google Scholar 

  86. Bowen T (1982) Radiation-induced thermoacoustic soft-tissue imaging. IEEE Trans Sonics Ultrasonics 29:187

    Google Scholar 

  87. Oraevsky A, Steven J, Esenaliev R, Tittel F (1994) Laser-based optoacoustic imaging in biological tissues. Proc SPIE 2134:122

    Google Scholar 

  88. Razansky D, Vinegoni C, Ntziachristos V (2007) Multispectral photoacoustic imaging of fluorochromes in small animals. Opt Lett 32:2891–2893

    CAS  PubMed  Google Scholar 

  89. Rosenthal A, Razansky D, Ntziachristos V (2009) Quantitative optoacoustic signal extraction using sparse signal representation. IEEE Trans Med Imaging 28:1997–2006

    PubMed  Google Scholar 

  90. Rosenthal A, Razansky D, Ntziachristos V (2010) Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography. IEEE Trans Med Imaging 29:1275–1285

    PubMed  Google Scholar 

  91. Ntziachristos V, Razansky D (2010) Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem Rev 110:2783–2794

    CAS  PubMed  Google Scholar 

  92. Dean-Ben XL, Gottschalk S, Mc Larney B, Shoham S, Razansky D (2017) Advanced optoacoustic methods for multiscale imaging of in vivo dynamics. Chem Soc Rev 46:2158–2198

    Google Scholar 

  93. Wang LV, Hu S (2012) Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335:1458–1462

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Tzoumas S et al (2016) Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues. Nat Commun 7:12121

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Laufer J et al (2012) In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy. J Biomed Opt 17:056016

    PubMed  Google Scholar 

  96. Omar M, Schwarz M, Soliman D, Symvoulidis P, Ntziachristos V (2015) Pushing the optical imaging limits of cancer with multi-frequency-band raster-scan optoacoustic mesoscopy (RSOM). Neoplasia 17:208–214

    PubMed  PubMed Central  Google Scholar 

  97. Herzog E et al (2012) Optical imaging of cancer heterogeneity with multispectral optoacoustic tomography. Radiology 263:461–468

    PubMed  Google Scholar 

  98. Yao J, Maslov KI, Wang LV (2012) In vivo photoacoustic tomography of total blood flow and potential imaging of cancer angiogenesis and hypermetabolism. Technol Cancer Res Treat 11:301–307

    PubMed  PubMed Central  Google Scholar 

  99. Wang B et al (2010) Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging. Opt Express 18:4889–4897

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Jansen K, van der Steen AF, van Beusekom HM, Oosterhuis JW, van Soest G (2011) Intravascular photoacoustic imaging of human coronary atherosclerosis. Opt Lett 36:597–599

    PubMed  Google Scholar 

  101. Zhang HF, Maslov K, Stoica G, Wang LV (2006) Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotechnol 24:848–851

    CAS  PubMed  Google Scholar 

  102. Stoffels I et al (2015) Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging. Sci Transl Med 7:317ra199

    Google Scholar 

  103. Gottschalk S, Fehm TF, Dean-Ben XL, Razansky D (2015) Noninvasive real-time visualization of multiple cerebral hemodynamic parameters in whole mouse brains using five-dimensional optoacoustic tomography. J Cereb Blood Flow Metab 35:531–535

    PubMed  PubMed Central  Google Scholar 

  104. Hu S (2016) Listening to the brain with photoacoustics. IEEE J Sel Top Quant 22:6800610

    Google Scholar 

  105. Nasiriavanaki M et al (2014) High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain. Proc Natl Acad Sci USA 111:21–26

    CAS  PubMed  Google Scholar 

  106. Jacques SL, Glickman RD, Schwartz JA (1996) Internal absorption coefficient and threshold for pulsed laser disruption of melanosomes isolated from retinal pigment epithelium. In: Proceedings of the SPIE 2681, Laser-Tissue Interaction VII

    Google Scholar 

  107. Hale GM, Querry MR (1973) Optical constants of water in the 200-nm to 200-µm wavelength region. Appl Opt 12:555–563

    CAS  PubMed  Google Scholar 

  108. van Veen RLP et al (2005) Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy. J Biomed Opt 10:054004

    PubMed  Google Scholar 

  109. Tsai C-L, Chen J-C, Wang W-J (2001) Near-infrared absorption property of biological soft tissue constituents. J Med Biol Eng 21:7–14

    Google Scholar 

  110. Smith AM, Mancini MC, Nie S (2009) Bioimaging: second window for in vivo imaging. Nat Nanotechnol 4:710–711

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Dean-Ben XL, Razansky D, Ntziachristos V (2011) The effects of acoustic attenuation in optoacoustic signals. Phys Med Biol 56:6129–6148

    PubMed  Google Scholar 

  112. Ku G, Wang LV (2005) Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent. Opt Lett 30:507–509

    PubMed  Google Scholar 

  113. Dean-Ben XL, Fehm TF, Gostic M, Razansky D (2016) Volumetric hand-held optoacoustic angiography as a tool for real-time screening of dense breast. J Biophotonics 9:253–259

    PubMed  Google Scholar 

  114. Cox B, Laufer JG, Arridge SR, Beard PC (2012) Quantitative spectroscopic photoacoustic imaging: a review. J Biomed Opt 17:061202

    PubMed  Google Scholar 

  115. Jacques SL (2013) Optical properties of biological tissues: a review. Phys Med Biol 58:R37–61

    Google Scholar 

  116. Krumholz A, Shcherbakova DM, Xia J, Wang LV, Verkhusha VV (2014) Multicontrast photoacoustic in vivo imaging using near-infrared fluorescent proteins. Sci Rep 4:3939

    PubMed  PubMed Central  Google Scholar 

  117. Stiel AC et al (2015) High-contrast imaging of reversibly switchable fluorescent proteins via temporally unmixed multispectral optoacoustic tomography. Opt Lett 40:367–370

    CAS  PubMed  Google Scholar 

  118. Tzoumas S, Deliolanis N, Morscher S, Ntziachristos V (2014) Unmixing molecular agents from absorbing tissue in multispectral optoacoustic tomography. IEEE Trans Med Imaging 33:48–60

    PubMed  Google Scholar 

  119. Ng KK et al (2014) Stimuli-responsive photoacoustic nanoswitch for in vivo sensing applications. ACS Nano 8:8363–8373

    CAS  PubMed  Google Scholar 

  120. Gurka MK et al (2016) Identification of pancreatic tumors in vivo with ligand-targeted, pH responsive mesoporous silica nanoparticles by multispectral optoacoustic tomography. J Control Release 231:60–67

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Pu K et al (2014) Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat Nanotechnol 9:233–239

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Levi J et al (2013) Molecular photoacoustic imaging of follicular thyroid carcinoma. Clin Cancer Res 19:1494–1502

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Dima A, Ntziachristos V (2012) Non-invasive carotid imaging using optoacoustic tomography. Opt Express 20:25044–25057

    PubMed  Google Scholar 

  124. Buehler A, Dean-Ben XL, Claussen J, Ntziachristos V, Razansky D (2012) Three-dimensional optoacoustic tomography at video rate. Opt Express 20:22712–22719

    CAS  PubMed  Google Scholar 

  125. Dean-Ben XL, Razansky D (2013) Functional optoacoustic human angiography with handheld video rate three dimensional scanner. Photoacoustics 1:68–73

    PubMed  PubMed Central  Google Scholar 

  126. Fehm TF, Dean-Ben XL, Razansky D (2014) Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe. Appl Phys Lett 105:173505

    Google Scholar 

  127. Taruttis A et al (2016) Optoacoustic imaging of human vasculature: feasibility by using a handheld probe. Radiology 281:256–263

    PubMed  Google Scholar 

  128. Diot G et al (2017) Multispectral optoacoustic tomography (MSOT) of human breast cancer. Clin Cancer Res 23:6912–6922

    CAS  PubMed  Google Scholar 

  129. Kruger RA, Lam RB, Reinecke DR, Del Rio SP, Doyle RP (2010) Photoacoustic angiography of the breast. Med Phys 37:6096–6100

    PubMed  PubMed Central  Google Scholar 

  130. Manohar S, Kharine A, van Hespen JC, Steenbergen W, van Leeuwen TG (2004) Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms. J Biomed Opt 9:1172–1181

    PubMed  Google Scholar 

  131. Ermilov SA et al (2009) Laser optoacoustic imaging system for detection of breast cancer. J Biomed Opt 14:024007

    PubMed  Google Scholar 

  132. Valluru KS, Wilson KE, Willmann JK (2016) Photoacoustic imaging in oncology: translational preclinical and early clinical experience. Radiology 280:332–349

    PubMed  PubMed Central  Google Scholar 

  133. Heijblom M et al (2015) Photoacoustic image patterns of breast carcinoma and comparisons with magnetic resonance imaging and vascular stained histopathology. Sci Rep 5:11778

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Ford SJ et al (2016) Structural and functional analysis of intact hair follicles and pilosebaceous units by volumetric multispectral optoacoustic tomography. J Invest Dermatol 136:753–761

    CAS  PubMed  Google Scholar 

  135. Aguirre J et al (2017) Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy. Nat Biomed Eng 1:0068

    Google Scholar 

  136. Jaffer FA et al (2011) Two-dimensional intravascular near-infrared fluorescence molecular imaging of inflammation in atherosclerosis and stent-induced vascular injury. J Am Coll Cardiol 57:2516–2526

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work of DR is supported by the European Research Council Grant ERC-2015-CoG-682379, National Institute of Health grant UF1-NS107680, Human Frontier Science Program (HFSP) Grant RGY0070/2016 and the German research Foundation Grant RA1848/5-1. The work of VN is supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement 687866 (INNODERM) and from the German Research Foundation (Gottfried Wilhelm Leibnitz Prize 2013; NT 3/10-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasilis Ntziachristos .

Editor information

Editors and Affiliations

Ethics declarations

VN and DR have equity in iThera Medical GmBH. VN also serves as a consultant to SurgVision BV.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Razansky, D., Ntziachristos, V. (2020). Optical and Optoacoustic Imaging. In: Schober, O., Kiessling, F., Debus, J. (eds) Molecular Imaging in Oncology. Recent Results in Cancer Research, vol 216. Springer, Cham. https://doi.org/10.1007/978-3-030-42618-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42618-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42617-0

  • Online ISBN: 978-3-030-42618-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics