Skip to main content

Molecular Ultrasound Imaging

  • Chapter
  • First Online:
Molecular Imaging in Oncology

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 216))

Abstract

Contrast-enhanced ultrasound (CEUS) imaging is a valuable tool for preclinical and clinical diagnostics. The most frequently used ultrasound contrast agents are microbubbles. Besides them, novel nano-sized materials are under investigation, which are briefly discussed in this chapter. For molecular CEUS, the ultrasound contrast agents are modified to actively target disease-associated molecular markers with a site-specific ligand. The most common markers for tumor imaging are related to neoangiogenesis, like the vascular endothelial growth factor receptor-2 (VEGFR2) and αvβ3 integrin. In this chapter, applications of molecular ultrasound to longitudinally monitor receptor expression during tumor growth, to detect neovascularization, and to evaluate therapy responses are described. Furthermore, we report on first clinical trials of molecular CEUS with VEGFR2-targeted phospholipid microbubbles showing promising results regarding patient safety and its ability to detect tumors of prostate, breast, and ovary. The chapter closes with an outlook on ultrasound theranostics, where (targeted) ultrasound contrast agents are used to increase the permeability of tumor tissues and to support drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abou-Elkacem L, Bachawal SV, Willmann JK (2015) Ultrasound molecular imaging: Moving toward clinical translation. Eur J Radiol 84(9):1685–1693. https://doi.org/10.1016/j.ejrad.2015.03.016

    Article  PubMed  PubMed Central  Google Scholar 

  2. Abou-Elkacem L, Wang H, Chowdhury SM, Kimura RH, Bachawal SV, Gambhir SS, Tian L, Willmann JK (2018) Thy1-targeted microbubbles for ultrasound molecular imaging of pancreatic ductal adenocarcinoma. Clin Cancer Res 24(7):1574–1585. https://doi.org/10.1158/1078-0432.CCR-17-2057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Abou-Elkacem L, Wilson KE, Johnson SM, Chowdhury SM, Bachawal S, Hackel BJ, Tian L, Willmann JK (2016) Ultrasound molecular imaging of the breast cancer neovasculature using engineered fibronectin scaffold ligands: a novel class of targeted contrast ultrasound agent. Theranostics 6(11):1740–1752. https://doi.org/10.7150/thno.15169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Adler DD, Carson PL, Rubin JM, Quinn-Reid D (1990) Doppler ultrasound color flow imaging in the study of breast cancer: preliminary findings. Ultrasound Med Biol 16(6):553–559

    Article  CAS  PubMed  Google Scholar 

  5. Anderson CR, Hu X, Zhang H, Tlaxca J, Decleves AE, Houghtaling R, Sharma K, Lawrence M, Ferrara KW, Rychak JJ (2011) Ultrasound molecular imaging of tumor angiogenesis with an integrin targeted microbubble contrast agent. Invest Radiol 46(4):215–224. https://doi.org/10.1097/RLI.0b013e3182034fed

    Article  PubMed  PubMed Central  Google Scholar 

  6. Anderson CR, Rychak JJ, Backer M, Backer J, Ley K, Klibanov AL (2010) scVEGF microbubble ultrasound contrast agents: a novel probe for ultrasound molecular imaging of tumor angiogenesis. Invest Radiol 45(10):579–585. https://doi.org/10.1097/RLI.0b013e3181efd581

    Article  CAS  PubMed  Google Scholar 

  7. Arditi M, Frinking PJ, Zhou X, Rognin NG (2006) A new formalism for the quantification of tissue perfusion by the destruction-replenishment method in contrast ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq Control 53(6):1118–1129

    Article  PubMed  Google Scholar 

  8. Bachawal SV, Jensen KC, Lutz AM, Gambhir SS, Tranquart F, Tian L, Willmann JK (2013) Earlier detection of breast cancer with ultrasound molecular imaging in a transgenic mouse model. Cancer Res 73(6):1689–1698. https://doi.org/10.1158/0008-5472.CAN-12-3391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bachawal SV, Jensen KC, Wilson KE, Tian L, Lutz AM, Willmann JK (2015) Breast cancer detection by B7-H3-Targeted ultrasound molecular imaging. Cancer Res 75(12):2501–2509. https://doi.org/10.1158/0008-5472.CAN-14-3361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baetke SC, Rix A, Tranquart F, Schneider R, Lammers T, Kiessling F, Lederle W (2016) Squamous cell carcinoma xenografts: use of VEGFR2-targeted microbubbles for combined functional and molecular US to monitor antiangiogenic therapy effects. Radiology 278(2):430–440. https://doi.org/10.1148/radiol.2015142899

    Article  PubMed  Google Scholar 

  11. Barua A, Yellapa A, Bahr JM, Machado SA, Bitterman P, Basu S, Sharma S, Abramowicz JS (2014) Enhancement of ovarian tumor detection with alphavbeta3 integrin-targeted ultrasound molecular imaging agent in laying hens: a preclinical model of spontaneous ovarian cancer. Int J Gynecol Cancer 24(1):19–28. https://doi.org/10.1097/IGC.0000000000000040

    Article  PubMed  Google Scholar 

  12. Buchanan KD, Huang S, Kim H, Macdonald RC, McPherson DD (2008) Echogenic liposome compositions for increased retention of ultrasound reflectivity at physiologic temperature. J Pharm Sci 97(6):2242–2249. https://doi.org/10.1002/jps.21173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bzyl J, Lederle W, Rix A, Grouls C, Tardy I, Pochon S, Siepmann M, Penzkofer T, Schneider M, Kiessling F, Palmowski M (2011) Molecular and functional ultrasound imaging in differently aggressive breast cancer xenografts using two novel ultrasound contrast agents (BR55 and BR38). Eur Radiol 21(9):1988–1995. https://doi.org/10.1007/s00330-011-2138-y

    Article  PubMed  Google Scholar 

  14. Cebe-Suarez S, Zehnder-Fjallman A, Ballmer-Hofer K (2006) The role of VEGF receptors in angiogenesis; complex partnerships. Cell Mol Life Sci 63(5):601–615. https://doi.org/10.1007/s00018-005-5426-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chang EL, Ting CY, Hsu PH, Lin YC, Liao EC, Huang CY, Chang YC, Chan HL, Chiang CS, Liu HL, Wei KC, Fan CH, Yeh CK (2017) Angiogenesis-targeting microbubbles combined with ultrasound-mediated gene therapy in brain tumors. J Control Release 255:164–175. https://doi.org/10.1016/j.jconrel.2017.04.010

    Article  CAS  PubMed  Google Scholar 

  16. Cosgrove D, Harvey C (2009) Clinical uses of microbubbles in diagnosis and treatment. Med Biol Eng Comput 47(8):813–826. https://doi.org/10.1007/s11517-009-0434-3

    Article  PubMed  Google Scholar 

  17. Cui W, Bei J, Wang S, Zhi G, Zhao Y, Zhou X, Zhang H, Xu Y (2005) Preparation and evaluation of poly(L-lactide-co-glycolide) (PLGA) microbubbles as a contrast agent for myocardial contrast echocardiography. J Biomed Mater Res B Appl Biomater 73(1):171–178. https://doi.org/10.1002/jbm.b.30189

    Article  CAS  PubMed  Google Scholar 

  18. Dayton PA, Rychak JJ (2007) Molecular ultrasound imaging using microbubble contrast agents. Front Biosci 12:5124–5142

    Article  CAS  PubMed  Google Scholar 

  19. Deshpande N, Needles A, Willmann JK (2010) Molecular ultrasound imaging: current status and future directions. Clin Radiol 65(7):567–581. https://doi.org/10.1016/j.crad.2010.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Deshpande N, Ren Y, Foygel K, Rosenberg J, Willmann JK (2011) Tumor angiogenic marker expression levels during tumor growth: longitudinal assessment with molecularly targeted microbubbles and US imaging. Radiology 258(3):804–811. https://doi.org/10.1148/radiol.10101079

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ellegala DB, Leong-Poi H, Carpenter JE, Klibanov AL, Kaul S, Shaffrey ME, Sklenar J, Lindner JR (2003) Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha(v)beta3. Circulation 108(3):336–341. https://doi.org/10.1161/01.CIR.0000080326.15367.0C

    Article  PubMed  Google Scholar 

  22. Eschbach RS, Clevert DA, Hirner-Eppeneder H, Ingrisch M, Moser M, Schuster J, Tadros D, Schneider M, Kazmierczak PM, Reiser M, Cyran CC (2017) Contrast-enhanced ultrasound with VEGFR2-targeted microbubbles for monitoring regorafenib therapy effects in experimental colorectal adenocarcinomas in rats with DCE-MRI and immunohistochemical validation. PLoS ONE 12(1):e0169323. https://doi.org/10.1371/journal.pone.0169323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ferrara K, Pollard R, Borden M (2007) Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng 9:415–447. https://doi.org/10.1146/annurev.bioeng.8.061505.095852

    Article  CAS  PubMed  Google Scholar 

  24. Ferrara KW, Borden MA, Zhang H (2009) Lipid-shelled vehicles: engineering for ultrasound molecular imaging and drug delivery. Acc Chem Res 42(7):881–892. https://doi.org/10.1021/ar8002442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fix SM, Novell A, Yun Y, Dayton PA, Arena CB (2017) An evaluation of the sonoporation potential of low-boiling point phase-change ultrasound contrast agents in vitro. J Ther Ultrasound 5:7. https://doi.org/10.1186/s40349-017-0085-z

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fokong S, Fragoso A, Rix A, Curaj A, Wu Z, Lederle W, Iranzo O, Gatjens J, Kiessling F, Palmowski M (2013) Ultrasound molecular imaging of E-selectin in tumor vessels using poly n-butyl cyanoacrylate microbubbles covalently coupled to a short targeting peptide. Invest Radiol 48(12):843–850. https://doi.org/10.1097/RLI.0b013e31829d03ec

    Article  CAS  PubMed  Google Scholar 

  27. Fokong S, Siepmann M, Liu Z, Schmitz G, Kiessling F, Gatjens J (2011) Advanced characterization and refinement of poly N-butyl cyanoacrylate microbubbles for ultrasound imaging. Ultrasound Med Biol 37(10):1622–1634. https://doi.org/10.1016/j.ultrasmedbio.2011.07.001

    Article  PubMed  Google Scholar 

  28. Fouad YA, Aanei C (2017) Revisiting the hallmarks of cancer. Am J Cancer Res 7(5):1016–1036

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gao Y, Hernandez C, Yuan HX, Lilly J, Kota P, Zhou H, Wu H, Exner AA (2017) Ultrasound molecular imaging of ovarian cancer with CA-125 targeted nanobubble contrast agents. Nanomedicine 13(7):2159–2168. https://doi.org/10.1016/j.nano.2017.06.001

    Article  CAS  PubMed  Google Scholar 

  30. Hamilton AJ, Huang SL, Warnick D, Rabbat M, Kane B, Nagaraj A, Klegerman M, McPherson DD (2004) Intravascular ultrasound molecular imaging of atheroma components in vivo. J Am Coll Cardiol 43(3):453–460. https://doi.org/10.1016/j.jacc.2003.07.048

    Article  PubMed  Google Scholar 

  31. Hitchcock KE, Caudell DN, Sutton JT, Klegerman ME, Vela D, Pyne-Geithman GJ, Abruzzo T, Cyr PE, Geng YJ, McPherson DD, Holland CK (2010) Ultrasound-enhanced delivery of targeted echogenic liposomes in a novel ex vivo mouse aorta model. J Control Release 144(3):288–295. https://doi.org/10.1016/j.jconrel.2010.02.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hu Z, Yang B, Li T, Li J (2018) Thyroid cancer detection by ultrasound molecular imaging with SHP2-targeted perfluorocarbon nanoparticles. Contrast Media Mol Imaging 2018:8710862. https://doi.org/10.1155/2018/8710862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang SL, MacDonald RC (2004) Acoustically active liposomes for drug encapsulation and ultrasound-triggered release. Biochim Biophys Acta 1665(1–2):134–141. https://doi.org/10.1016/j.bbamem.2004.07.003

    Article  CAS  PubMed  Google Scholar 

  34. Ignee A, Atkinson NS, Schuessler G, Dietrich CF (2016) Ultrasound contrast agents. Endosc Ultrasound 5(6):355–362. https://doi.org/10.4103/2303-9027.193594

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kiessling F, Fokong S, Bzyl J, Lederle W, Palmowski M, Lammers T (2014) Recent advances in molecular, multimodal and theranostic ultrasound imaging. Adv Drug Deliv Rev 72:15–27. https://doi.org/10.1016/j.addr.2013.11.013

    Article  CAS  PubMed  Google Scholar 

  36. Kiessling F, Fokong S, Koczera P, Lederle W, Lammers T (2012) Ultrasound microbubbles for molecular diagnosis, therapy, and theranostics. J Nucl Med 53(3):345–348. https://doi.org/10.2967/jnumed.111.099754

    Article  CAS  PubMed  Google Scholar 

  37. Kiessling F, Huppert J, Palmowski M (2009) Functional and molecular ultrasound imaging: concepts and contrast agents. Curr Med Chem 16(5):627–642

    Article  CAS  PubMed  Google Scholar 

  38. Korpanty G, Carbon JG, Grayburn PA, Fleming JB, Brekken RA (2007) Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature. Clin Cancer Res 13(1):323–330. https://doi.org/10.1158/1078-0432.CCR-06-1313

    Article  CAS  PubMed  Google Scholar 

  39. Lanza GM, Wickline SA (2003) Targeted ultrasonic contrast agents for molecular imaging and therapy. Curr Probl Cardiol 28(12):625–653. https://doi.org/10.1016/j.cpcardiol.2003.11.001

    Article  PubMed  Google Scholar 

  40. Lee J, Min HS, You DG, Kim K, Kwon IC, Rhim T, Lee KY (2016) Theranostic gas-generating nanoparticles for targeted ultrasound imaging and treatment of neuroblastoma. J Control Release 223:197–206. https://doi.org/10.1016/j.jconrel.2015.12.051

    Article  CAS  PubMed  Google Scholar 

  41. Leguerney I, Scoazec JY, Gadot N, Robin N, Penault-Llorca F, Victorin S, Lassau N (2015) Molecular ultrasound imaging using contrast agents targeting endoglin, vascular endothelial growth factor receptor 2 and integrin. Ultrasound Med Biol 41(1):197–207. https://doi.org/10.1016/j.ultrasmedbio.2014.06.014

    Article  PubMed  Google Scholar 

  42. Lentacker I, De Cock I, Deckers R, De Smedt SC, Moonen CT (2014) Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv Drug Deliv Rev 72:49–64. https://doi.org/10.1016/j.addr.2013.11.008

    Article  CAS  PubMed  Google Scholar 

  43. Li M, Luo H, Zhang W, He K, Chen Y, Liu J, Chen J, Wang D, Hao L, Ran H, Zheng Y, Wang Z, Li P (2018) Phase-shift, targeted nanoparticles for ultrasound molecular imaging by low intensity focused ultrasound irradiation. Int J Nanomedicine 13:3907–3920. https://doi.org/10.2147/IJN.S166200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lindner JR, Dayton PA, Coggins MP, Ley K, Song J, Ferrara K, Kaul S (2000) Noninvasive imaging of inflammation by ultrasound detection of phagocytosed microbubbles. Circulation 102(5):531–538

    Article  CAS  PubMed  Google Scholar 

  45. Liu C, Yan F, Xu Y, Zheng H, Sun L (2018) InVivo molecular ultrasound assessment of glioblastoma neovasculature with endoglin-targeted microbubbles. Contrast Media Mol Imaging 2018:8425495. https://doi.org/10.1155/2018/8425495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu J, Shang T, Wang F, Cao Y, Hao L, Ren J, Ran H, Wang Z, Li P, Du Z (2017) Low-intensity focused ultrasound (LIFU)-induced acoustic droplet vaporization in phase-transition perfluoropentane nanodroplets modified by folate for ultrasound molecular imaging. Int J Nanomedicine 12:911–923. https://doi.org/10.2147/IJN.S122667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu J, Xu F, Huang J, Xu J, Liu Y, Yao Y, Ao M, Li A, Hao L, Cao Y, Hu Z, Ran H, Wang Z, Li P (2018) Low-intensity focused ultrasound (LIFU)-activated nanodroplets as a theranostic agent for noninvasive cancer molecular imaging and drug delivery. Biomater Sci 6(11):2838–2849. https://doi.org/10.1039/c8bm00726h

    Article  CAS  PubMed  Google Scholar 

  48. Marshall D, Pedley RB, Boden JA, Boden R, Melton RG, Begent RH (1996) Polyethylene glycol modification of a galactosylated streptavidin clearing agent: effects on immunogenicity and clearance of a biotinylated anti-tumour antibody. Br J Cancer 73(5):565–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Paefgen V, Doleschel D, Kiessling F (2015) Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery. Front Pharmacol 6:197. https://doi.org/10.3389/fphar.2015.00197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Palmowski M, Huppert J, Ladewig G, Hauff P, Reinhardt M, Mueller MM, Woenne EC, Jenne JW, Maurer M, Kauffmann GW, Semmler W, Kiessling F (2008) Molecular profiling of angiogenesis with targeted ultrasound imaging: early assessment of antiangiogenic therapy effects. Mol Cancer Ther 7(1):101–109. https://doi.org/10.1158/1535-7163.MCT-07-0409

    Article  CAS  PubMed  Google Scholar 

  51. Palmowski M, Peschke P, Huppert J, Hauff P, Reinhardt M, Maurer M, Karger CP, Scholz M, Semmler W, Huber PE, Kiessling FM (2009) Molecular ultrasound imaging of early vascular response in prostate tumors irradiated with carbon ions. Neoplasia 11(9):856–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Perera RH, Wu H, Peiris P, Hernandez C, Burke A, Zhang H, Exner AA (2017) Improving performance of nanoscale ultrasound contrast agents using N, N-Diethylacrylamide Stabilization. Nanomedicine 13(1):59–67. https://doi.org/10.1016/j.nano.2016.08.020

    Article  CAS  PubMed  Google Scholar 

  53. Pochon S, Tardy I, Bussat P, Bettinger T, Brochot J, von Wronski M, Passantino L, Schneider M (2010) BR55: a lipopeptide-based VEGFR2-targeted ultrasound contrast agent for molecular imaging of angiogenesis. Invest Radiol 45(2):89–95. https://doi.org/10.1097/RLI.0b013e3181c5927c

    Article  CAS  PubMed  Google Scholar 

  54. Postema M, Schmitz G (2007) Ultrasonic bubbles in medicine: influence of the shell. Ultrason Sonochem 14(4):438–444. https://doi.org/10.1016/j.ultsonch.2006.09.013

    Article  CAS  PubMed  Google Scholar 

  55. Pysz MA, Guracar I, Tian L, Willmann JK (2012) Fast microbubble dwell-time based ultrasonic molecular imaging approach for quantification and monitoring of angiogenesis in cancer. Quant Imaging Med Surg 2(2):68–80. https://doi.org/10.3978/j.issn.2223-4292.2012.06.05

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pysz MA, Machtaler SB, Seeley ES, Lee JJ, Brentnall TA, Rosenberg J, Tranquart F, Willmann JK (2015) Vascular endothelial growth factor receptor type 2-targeted contrast-enhanced US of pancreatic cancer neovasculature in a genetically engineered mouse model: potential for earlier detection. Radiology 274(3):790–799. https://doi.org/10.1148/radiol.14140568

    Article  PubMed  Google Scholar 

  57. Reinhardt M, Hauff P, Briel A, Uhlendorf V, Linker RA, Maurer M, Schirner M (2005) Sensitive particle acoustic quantification (SPAQ): a new ultrasound-based approach for the quantification of ultrasound contrast media in high concentrations. Invest Radiol 40(1):2–7

    CAS  PubMed  Google Scholar 

  58. Rix A, Lederle W, Theek B, Lammers T, Moonen C, Schmitz G, Kiessling F (2018) Advanced ultrasound technologies for diagnosis and therapy. J Nucl Med 59(5):740–746. https://doi.org/10.2967/jnumed.117.200030

    Article  CAS  PubMed  Google Scholar 

  59. Schroeder A, Kost J, Barenholz Y (2009) Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes. Chem Phys Lipids 162(1–2):1–16. https://doi.org/10.1016/j.chemphyslip.2009.08.003

    Article  CAS  PubMed  Google Scholar 

  60. Smeenge M, Tranquart F, Mannaerts CK, de Reijke TM, van de Vijver MJ, Laguna MP, Pochon S, de la Rosette J, Wijkstra H (2017) First-in-human ultrasound molecular imaging with a VEGFR2-specific ultrasound molecular contrast agent (BR55) in prostate cancer: a safety and feasibility pilot study. Invest Radiol 52(7):419–427. https://doi.org/10.1097/RLI.0000000000000362

    Article  CAS  PubMed  Google Scholar 

  61. Sorace AG, Saini R, Mahoney M, Hoyt K (2012) Molecular ultrasound imaging using a targeted contrast agent for assessing early tumor response to antiangiogenic therapy. J Ultrasound Med 31(10):1543–1550

    Article  PubMed  PubMed Central  Google Scholar 

  62. Spivak I, Rix A, Schmitz G, Fokong S, Iranzo O, Lederle W, Kiessling F (2016) Low-dose molecular ultrasound imaging with E-selectin-targeted PBCA microbubbles. Mol Imaging Biol 18(2):180–190. https://doi.org/10.1007/s11307-015-0894-9

    Article  CAS  PubMed  Google Scholar 

  63. Tardy I, Pochon S, Theraulaz M, Emmel P, Passantino L, Tranquart F, Schneider M (2010) Ultrasound molecular imaging of VEGFR2 in a rat prostate tumor model using BR55. Invest Radiol 45(10):573–578. https://doi.org/10.1097/RLI.0b013e3181ee8b83

    Article  CAS  PubMed  Google Scholar 

  64. Tsuruta JK, Klauber-DeMore N, Streeter J, Samples J, Patterson C, Mumper RJ, Ketelsen D, Dayton P (2014) Ultrasound molecular imaging of secreted frizzled related protein-2 expression in murine angiosarcoma. PLoS ONE 9(1):e86642. https://doi.org/10.1371/journal.pone.0086642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Unnikrishnan S, Klibanov AL (2012) Microbubbles as ultrasound contrast agents for molecular imaging: preparation and application. AJR Am J Roentgenol 199(2):292–299. https://doi.org/10.2214/AJR.12.8826

    Article  PubMed  Google Scholar 

  66. Wang S, Herbst EB, Mauldin FW Jr, Diakova GB, Klibanov AL, Hossack JA (2016) Ultra-low-dose ultrasound molecular imaging for the detection of angiogenesis in a mouse murine tumor model: how little can we see? Invest Radiol 51(12):758–766. https://doi.org/10.1097/RLI.0000000000000310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Warram JM, Sorace AG, Saini R, Umphrey HR, Zinn KR, Hoyt K (2011) A triple-targeted ultrasound contrast agent provides improved localization to tumor vasculature. J Ultrasound Med 30(7):921–931

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S (1998) Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 97(5):473–483

    Article  CAS  PubMed  Google Scholar 

  69. Willmann JK, Bonomo L, Carla Testa A, Rinaldi P, Rindi G, Valluru KS, Petrone G, Martini M, Lutz AM, Gambhir SS (2017) Ultrasound molecular imaging With BR55 in patients with breast and ovarian lesions: first-in-human results. J Clin Oncol 35(19):2133–2140. https://doi.org/10.1200/JCO.2016.70.8594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Willmann JK, Kimura RH, Deshpande N, Lutz AM, Cochran JR, Gambhir SS (2010) Targeted contrast-enhanced ultrasound imaging of tumor angiogenesis with contrast microbubbles conjugated to integrin-binding knottin peptides. J Nucl Med 51(3):433–440. https://doi.org/10.2967/jnumed.109.068007

    Article  CAS  PubMed  Google Scholar 

  71. Willmann JK, Lutz AM, Paulmurugan R, Patel MR, Chu P, Rosenberg J, Gambhir SS (2008) Dual-targeted contrast agent for US assessment of tumor angiogenesis in vivo. Radiology 248(3):936–944. https://doi.org/10.1148/radiol.2483072231

    Article  PubMed  PubMed Central  Google Scholar 

  72. Yang H, Cai W, Xu L, Lv X, Qiao Y, Li P, Wu H, Yang Y, Zhang L, Duan Y (2015) Nanobubble-Affibody: novel ultrasound contrast agents for targeted molecular ultrasound imaging of tumor. Biomaterials 37:279–288. https://doi.org/10.1016/j.biomaterials.2014.10.013

    Article  CAS  PubMed  Google Scholar 

  73. Yang L, Cheng J, Chen Y, Yu S, Liu F, Sun Y, Chen Y, Ran H (2017) Phase-transition nanodroplets for real-time photoacoustic/ultrasound dual-modality imaging and photothermal therapy of sentinel lymph node in breast cancer. Sci Rep 7:45213. https://doi.org/10.1038/srep45213. https://www.nature.com/articles/srep45213#supplementary-information

  74. Yuan HX, Wang WP, Wen JX, Lin LW, Exner AA, Guan PS, Chen XJ (2018) Dual-targeted microbubbles specific to integrin alphaVbeta3 and vascular endothelial growth factor receptor 2 for ultrasonography evaluation of tumor angiogenesis. Ultrasound Med Biol 44(7):1460–1467. https://doi.org/10.1016/j.ultrasmedbio.2018.03.022

    Article  PubMed  Google Scholar 

  75. Zafarnia S, Bzyl-Ibach J, Spivak I, Li Y, Koletnik S, Doleschel D, Rix A, Pochon S, Tardy I, Koyadan S, van Zandvoort M, Palmowski M, Kiessling F, Lederle W (2017) Nilotinib enhances tumor angiogenesis and counteracts VEGFR2 blockade in an orthotopic breast cancer xenograft model with desmoplastic response. Neoplasia 19(11):896–907. https://doi.org/10.1016/j.neo.2017.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang H, Ingham ES, Gagnon MK, Mahakian LM, Liu J, Foiret JL, Willmann JK, Ferrara KW (2017) In vitro characterization and in vivo ultrasound molecular imaging of nucleolin-targeted microbubbles. Biomaterials 118:63–73. https://doi.org/10.1016/j.biomaterials.2016.11.026

    Article  CAS  PubMed  Google Scholar 

  77. Zhang H, Tam S, Ingham ES, Mahakian LM, Lai CY, Tumbale SK, Teesalu T, Hubbard NE, Borowsky AD, Ferrara KW (2015) Ultrasound molecular imaging of tumor angiogenesis with a neuropilin-1-targeted microbubble. Biomaterials 56:104–113. https://doi.org/10.1016/j.biomaterials.2015.03.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhou J, Wang H, Zhang H, Lutz AM, Tian L, Hristov D, Willmann JK (2016) VEGFR2-targeted three-dimensional ultrasound imaging can predict responses to antiangiogenic therapy in preclinical models of colon cancer. Cancer Res 76(14):4081–4089. https://doi.org/10.1158/0008-5472.CAN-15-3271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zlitni A, Gambhir SS (2018) Molecular imaging agents for ultrasound. Curr Opin Chem Biol 45:113–120. https://doi.org/10.1016/j.cbpa.2018.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Kiessling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baier, J., Rix, A., Kiessling, F. (2020). Molecular Ultrasound Imaging. In: Schober, O., Kiessling, F., Debus, J. (eds) Molecular Imaging in Oncology. Recent Results in Cancer Research, vol 216. Springer, Cham. https://doi.org/10.1007/978-3-030-42618-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42618-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42617-0

  • Online ISBN: 978-3-030-42618-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics