Skip to main content

Applications of Small Animal PET

  • Chapter
  • First Online:
Molecular Imaging in Oncology

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 216))

  • 1780 Accesses

Abstract

Understanding the (molecular) mechanisms underlying tumor progression is fundamental for developing and improving cancer diagnosis and therapy. Positron emission tomography (PET) is a method to non-invasively and longitudinally provide such information. Depending on the radioactive tracer employed, a range of molecular processes can be visualized. Preclinical PET has fundamentally contributed to the establishment of novel imaging, diagnostic, and therapy approaches in the clinical situation. It is a valuable tool to corroborate in vivo imaging findings with conventional ex vivo tissue analysis. Here, we provide an overview of challenges and applications of preclinical PET in the field of oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adonai N, Nguyen KN, Walsh J et al (2002) Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc Natl Acad Sci 99:3030–3035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Amundson SA, Bittner M, Meltzer P et al (2001) Induction of gene expression as a monitor of exposure to ionizing radiation. Radiat Res 156:657–661

    Article  CAS  PubMed  Google Scholar 

  3. Beaney RP, Lammertsma AA, Jones T et al (1984) Positron emission tomography for in-vivo measurement of regional blood flow, oxygen utilisation, and blood volume in patients with breast carcinoma. Lancet (London, England) 1:131–134

    Article  CAS  Google Scholar 

  4. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    Article  CAS  PubMed  Google Scholar 

  5. Brepoels L, Stroobants S, Verhoef G et al (2009) (18)F-FDG and (18)F-FLT uptake early after cyclophosphamide and mTOR inhibition in an experimental lymphoma model. J Nucl Med 50:1102–1109

    Article  CAS  PubMed  Google Scholar 

  6. Bulk E, Hascher A, Liersch R et al (2008) Adjuvant therapy with small hairpin RNA interference prevents non-small cell lung cancer metastasis development in mice. Cancer Res 68:1896–1904

    Article  CAS  PubMed  Google Scholar 

  7. Cai W, Chen K, Mohamedali KA et al (2006) PET of vascular endothelial growth factor receptor expression. J Nucl Med 47:2048–2056

    CAS  PubMed  Google Scholar 

  8. Carlson SK, Classic KL, Bender CE, Russell SJ (2007) Small animal absorbed radiation dose from serial micro-computed tomography imaging. Mol Imaging Biol 9:78–82

    Article  PubMed  Google Scholar 

  9. Chakravarty R, Hong H, Cai W (2014) Positron emission tomography image-guided drug delivery: current status and future perspectives. Mol Pharm 11:3777–3797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cherry SR (2004) In vivo molecular and genomic imaging: new challenges for imaging physics. Phys Med Biol 49:R13–R48

    Article  CAS  PubMed  Google Scholar 

  11. Cicone F, Viertl D, Quintela Pousa AM et al (2017) Cardiac radionuclide imaging in rodents: a review of methods, results, and factors at play. Front Med 4:35

    Article  Google Scholar 

  12. Corsten MF, Shah K (2008) Therapeutic stem-cells for cancer treatment: hopes and hurdles in tactical warfare. Lancet Oncol 9:376–384

    Article  PubMed  Google Scholar 

  13. de Jong M, Essers J, van Weerden WM (2014) Imaging preclinical tumour models: improving translational power. Nat Rev Cancer 14:481–493

    Article  PubMed  CAS  Google Scholar 

  14. Demirci E, Ahmed R, Ocak M et al (2017) Preclinical evaluation of 18F-ML-10 to determine timing of apoptotic response to chemotherapy in solid tumors. Mol Imaging 16:1536012116685941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Fruhwirth GO, Kneilling M, de Vries IJM et al (2018) The potential of in vivo imaging for optimization of molecular and cellular anti-cancer immunotherapies. Mol Imaging Biol 20:696–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fueger BJ, Czernin J, Hildebrandt I et al (2006) Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med 47:999–1006

    CAS  PubMed  Google Scholar 

  17. Funk T, Sun M, Hasegawa BH (2004) Radiation dose estimate in small animal SPECT and PET. Med Phys 31:2680–2686

    Article  CAS  PubMed  Google Scholar 

  18. Graf N, Herrmann K, Numberger B et al (2013) [18F]FLT is superior to [18F]FDG for predicting early response to antiproliferative treatment in high-grade lymphoma in a dose-dependent manner. Eur J Nucl Med Mol Imaging 40:34–43

    Article  CAS  PubMed  Google Scholar 

  19. Grahn D, Hamilton KF (1957) Genetic variation in the acute lethal response of four inbred mouse strains to whole body X-irradiation. Genetics 42:189–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  21. Hartimath SV, Draghiciu O, van de Wall S et al (2017) Noninvasive monitoring of cancer therapy induced activated T cells using [18 F]FB-IL-2 PET imaging. Oncoimmunology 6:e1248014

    Article  CAS  PubMed  Google Scholar 

  22. Jacobs AH, Rueger MA, Winkeler A et al (2007) Imaging-guided gene therapy of experimental gliomas. Cancer Res 67:1706–1715

    Article  CAS  PubMed  Google Scholar 

  23. Jensen MM, Kjaer A (2015) Monitoring of anti-cancer treatment with (18)F-FDG and (18)F-FLT PET: a comprehensive review of pre-clinical studies. Am J Nucl Med Mol Imaging 5:431–456

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Judenhofer MS, Wehrl HF, Newport DF et al (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14:459–465

    Article  CAS  PubMed  Google Scholar 

  25. Kersten K, de Visser KE, van Miltenburg MH, Jonkers J (2017) Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med 9:137–153

    Article  CAS  PubMed  Google Scholar 

  26. Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lee K-H, Ko B-H, Paik J-Y et al (2005) Effects of anesthetic agents and fasting duration on 18F-FDG biodistribution and insulin levels in tumor-bearing mice. J Nucl Med 46:1531–1536

    CAS  PubMed  Google Scholar 

  28. Lee SJ, Kim SY, Chung JH et al (2010) Induction of thymidine kinase 1 after 5-fluorouracil as a mechanism for 3’-deoxy-3’-[18F]fluorothymidine flare. Biochem Pharmacol 80:1528–1536

    Article  CAS  PubMed  Google Scholar 

  29. Leimgruber A, Moller A, Everitt SJ et al (2014) Effect of platinum-based chemoradiotherapy on cellular proliferation in bone marrow and spleen, estimated by 18F-FLT PET/CT in patients with locally advanced non-small cell lung cancer. J Nucl Med 55:1075–1080

    Article  CAS  PubMed  Google Scholar 

  30. Levin CS, Hoffman EJ (1999) Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol 44:781–799

    Article  CAS  PubMed  Google Scholar 

  31. Lewis DY, Soloviev D, Brindle KM (2015) Imaging tumor metabolism using positron emission tomography. Cancer J 21:129–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mankoff DA, Shields AF, Krohn KA (2005) PET imaging of cellular proliferation. Radiol Clin North Am 43:153–167

    Article  PubMed  Google Scholar 

  33. Matthews PM, Rabiner EA, Passchier J, Gunn RN (2012) Positron emission tomography molecular imaging for drug development. Br J Clin Pharmacol 73:175–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nguyen Q-D, Challapalli A, Smith G et al (2012) Imaging apoptosis with positron emission tomography: ‘Bench to bedside’ development of the caspase-3/7 specific radiotracer [18F]ICMT-11. Eur J Cancer 48:432–440

    Article  CAS  PubMed  Google Scholar 

  35. Osman S, Rowlinson-Busza G, Luthra SK et al (2001) Comparative biodistribution and metabolism of carbon-11-labeled N-[2-(dimethylamino)ethyl]acridine-4-carboxamide and DNA-intercalating analogues. Cancer Res 61:2935–2944

    CAS  PubMed  Google Scholar 

  36. Padhani AR, Krohn KA, Lewis JS, Alber M (2007) Imaging oxygenation of human tumours. Eur Radiol 17:861–872

    Article  PubMed  Google Scholar 

  37. Provost J, Garofalakis A, Sourdon J et al (2018) Simultaneous positron emission tomography and ultrafast ultrasound for hybrid molecular, anatomical and functional imaging. Nat Biomed Eng 2:85–94

    Article  CAS  PubMed  Google Scholar 

  38. Qin H, Zhang M-R, Xie L et al (2015) PET imaging of apoptosis in tumor-bearing mice and rabbits after paclitaxel treatment with (18)F(-)Labeled recombinant human His10-annexin V. Am J Nucl Med Mol Imaging 5:27–37

    CAS  PubMed  Google Scholar 

  39. Rahmim A, Zaidi H (2008) PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun 29:193–207

    Article  PubMed  Google Scholar 

  40. Rock KL, Kono H (2008) The inflammatory response to cell death. Annu Rev Pathol 3:99–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ruggeri BA, Camp F, Miknyoczki S (2014) Animal models of disease: Pre-clinical animal models of cancer and their applications and utility in drug discovery. Biochem Pharmacol 87:150–161

    Article  CAS  PubMed  Google Scholar 

  42. Saito Y, Furukawa T, Arano Y et al (2008) Comparison of semiquantitative fluorescence imaging and PET tracer uptake in mesothelioma models as a monitoring system for growth and therapeutic effects. Nucl Med Biol 35:851–860

    Article  CAS  PubMed  Google Scholar 

  43. Sato N, Wu H, Asiedu KO et al (2015) 89 Zr-Oxine Complex PET cell imaging in monitoring cell-based therapies. Radiology 275:490–500

    Article  PubMed  Google Scholar 

  44. Schelhaas S, Heinzmann K, Bollineni VR, et al (2017) Preclinical applications of 3’-deoxy-3’-[18F]fluorothymidine in oncology - A systematic review. Theranostics 7(1):40–50

    Google Scholar 

  45. Schelhaas S, Held A, Bäumer N et al (2016a) Preclinical evidence that 3′-deoxy-3′-[18F]fluorothymidine PET can visualize recovery of hematopoiesis after gemcitabine chemotherapy. Cancer Res 76(24):7089–7095

    Google Scholar 

  46. Schelhaas S, Held A, Wachsmuth L et al (2016b) Gemcitabine mechanism of action confounds early assessment of treatment response by 3′-Deoxy-3′-[18F]fluorothymidine in preclinical models of lung cancer. Cancer Res 76(24):7096–7105

    Google Scholar 

  47. Shields AF, Grierson JR, Dohmen BM et al (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4:1334–1336

    Article  CAS  PubMed  Google Scholar 

  48. Sun X, Xiao Z, Chen G et al (2018) A PET imaging approach for determining EGFR mutation status for improved lung cancer patient management. Sci Transl Med 10:eaan8840

    Google Scholar 

  49. Tatum JL, Kelloff GJ, Gillies RJ et al (2006) Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int J Radiat Biol 82:699–757

    Article  CAS  PubMed  Google Scholar 

  50. Tavaré R, McCracken MN, Zettlitz KA et al (2015) Immuno-PET of murine T cell reconstitution postadoptive stem cell transplantation using anti-CD4 and Anti-CD8 Cys-diabodies. J Nucl Med 56:1258–1264

    Article  PubMed  Google Scholar 

  51. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Waerzeggers Y, Monfared P, Viel T et al (2009) Methods to monitor gene therapy with molecular imaging. Methods 48:146–160

    Article  CAS  PubMed  Google Scholar 

  53. Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8:519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wester H-J (2007) Nuclear imaging probes: from bench to bedside. Clin Cancer Res 13:3470–3481

    Article  CAS  PubMed  Google Scholar 

  55. Winkeler A, Sena-Esteves M, Paulis LEM et al (2007) Switching on the lights for gene therapy. PLoS ONE 2:e528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Yaghoubi SS, Campbell DO, Radu CG, Czernin J (2012) Positron emission tomography reporter genes and reporter probes: gene and cell therapy applications. Theranostics 2:374–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yagle KJ, Eary JF, Tait JF et al (2005) Evaluation of 18F-annexin V as a PET imaging agent in an animal model of apoptosis. J Nucl Med 46:658–666

    CAS  PubMed  Google Scholar 

  58. Yao R, Lecomte R, Crawford ES (2012) Small-animal PET: what is it, and why do we need it? J Nucl Med Technol 40:157–165

    Article  PubMed  Google Scholar 

  59. Zeelen C, Paus C, Draper D et al (2018) In-vivo imaging of tumor-infiltrating immune cells: implications for cancer immunotherapy. Q J Nucl Med Mol Imaging 62:56–77

    Article  PubMed  Google Scholar 

  60. Zhang C-L, Huang T, Wu B-L et al (2017) Stem cells in cancer therapy: opportunities and challenges. Oncotarget 8:75756–75766

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhang X, Xiong Z, Wu Y et al (2006) Quantitative PET imaging of tumor integrin alphavbeta3 expression with 18F-FRGD2. J Nucl Med 47:113–121

    CAS  PubMed  Google Scholar 

  62. Zhou VW, Kyme AZ, Meikle SR, Fulton R (2008) An event-driven motion correction method for neurological PET studies of awake laboratory animals. Mol Imaging Biol 10:315–324

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Schelhaas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schelhaas, S. (2020). Applications of Small Animal PET. In: Schober, O., Kiessling, F., Debus, J. (eds) Molecular Imaging in Oncology. Recent Results in Cancer Research, vol 216. Springer, Cham. https://doi.org/10.1007/978-3-030-42618-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42618-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42617-0

  • Online ISBN: 978-3-030-42618-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics