Skip to main content

Optical and Optoacoustic Imaging Probes

  • Chapter
  • First Online:
Molecular Imaging in Oncology

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 216))

  • 1794 Accesses

Abstract

Tissue has characteristic properties when it comes to light absorption and scattering. For optical (OI) and optoacoustic imaging (OAI) these properties can be utilised to visualise biological tissue characteristics, as, for example, the oxygenation state of haemoglobin alters the optical and optoacoustic properties of the molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Towle EL, Richards LM, Kazmi SM, Fox DJ, Dunn AK (2012) Comparison of indocyanine green angiography and laser speckle contrast imaging for the assessment of vasculature perfusion. Neurosurgery 71:1023–1030; discussion 1030–1021

    Google Scholar 

  2. Joshi BP, Wang TD (2018) Targeted optical imaging agents in cancer: focus on clinical applications. Contrast Media Mol Imaging 2018:2015237

    PubMed  PubMed Central  Google Scholar 

  3. Ntziachristos V, Bremer C, Weissleder R (2003) Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 13:195–208

    PubMed  Google Scholar 

  4. Bremer C et al (2005) Optical imaging of spontaneous breast tumors using protease sensing ‘smart’ optical probes. Invest Radiol 40:321–327

    CAS  PubMed  Google Scholar 

  5. Wall A et al (2008) Differentiation of angiogenic burden in human cancer xenografts using a perfusion-type optical contrast agent (SIDAG). Breast Cancer Res 10:R23

    PubMed  PubMed Central  Google Scholar 

  6. Tummers QR et al (2015) The value of intraoperative near-infrared fluorescence imaging based on enhanced permeability and retention of indocyanine green: feasibility and false-positives in ovarian cancer. PLoS ONE 10:e0129766

    PubMed  PubMed Central  Google Scholar 

  7. Wallace MB et al (2010) The safety of intravenous fluorescein for confocal laser endomicroscopy in the gastrointestinal tract. Aliment Pharmacol Ther 31:548–552

    CAS  PubMed  Google Scholar 

  8. Schwarz C et al (2019) The value of indocyanine green clearance assessment to predict postoperative liver dysfunction in patients undergoing liver resection. Sci Rep 9:8421

    PubMed  PubMed Central  Google Scholar 

  9. Feenstra DJ et al (2019) Indocyanine green molecular angiography of choroidal neovascularization. Exp Eye Res 180:122–128

    CAS  PubMed  Google Scholar 

  10. Handgraaf HJM et al (2018) Staging laparoscopy with ultrasound and near-infrared fluorescence imaging to detect occult metastases of pancreatic and periampullary cancer. PLoS ONE 13:e0205960

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Schaafsma BE et al (2014) Optimization of sentinel lymph node mapping in bladder cancer using near-infrared fluorescence imaging. J Surg Oncol 110:845–850

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Beck MC et al (2017) Fluorescence optical imaging in pediatric patients with inflammatory and non-inflammatory joint diseases: a comparative study with ultrasonography. Arthritis Res Ther 19:233

    PubMed  PubMed Central  Google Scholar 

  13. Al-Taher M et al (2018) Intraoperative enhanced imaging for detection of endometriosis: a systematic review of the literature. Eur J Obstet Gynecol Reprod Biol 224:108–116

    PubMed  Google Scholar 

  14. Nakaseko Y, Ishizawa T, Saiura A (2018) Fluorescence-guided surgery for liver tumors. J Surg Oncol 118:324–331

    PubMed  Google Scholar 

  15. Skubleny D et al (2018) Diagnostic evaluation of sentinel lymph node biopsy using indocyanine green and infrared or fluorescent imaging in gastric cancer: a systematic review and meta-analysis. Surg Endosc 32:2620–2631

    PubMed  Google Scholar 

  16. Capozza M et al (2018) Photoacoustic imaging of integrin-overexpressing tumors using a novel ICG-based contrast agent in mice. Photoacoustics 11:36–45

    PubMed  PubMed Central  Google Scholar 

  17. Chen Z, Dean-Ben XL, Gottschalk S, Razansky D (2018) Performance of optoacoustic and fluorescence imaging in detecting deep-seated fluorescent agents. Biomed Opt Express 9:2229–2239

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fukuda H, Casas A, Batlle A (2005) Aminolevulinic acid: from its unique biological function to its star role in photodynamic therapy. Int J Biochem Cell Biol 37:272–276

    CAS  PubMed  Google Scholar 

  19. Wei L, Roberts DW, Sanai N, Liu JTC (2019) Visualization technologies for 5-ALA-based fluorescence-guided surgeries. J Neurooncol 141:495–505

    CAS  PubMed  Google Scholar 

  20. Copland JA et al (2004) Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography. Mol Imaging Biol 6:341–349

    PubMed  Google Scholar 

  21. Liopo A et al (2012) Biocompatible gold nanorod conjugates for preclinical biomedical research. J Nanomed Nanotechnol S2

    Google Scholar 

  22. Lozano N et al (2012) Liposome-gold nanorod hybrids for high-resolution visualization deep in tissues. J Am Chem Soc 134:13256–13258

    CAS  PubMed  Google Scholar 

  23. Manohar S, Ungureanu C, Van Leeuwen TG (2011) Gold nanorods as molecular contrast agents in photoacoustic imaging: the promises and the caveats. Contrast Media Mol Imaging 6:389–400

    CAS  PubMed  Google Scholar 

  24. Lankveld DP et al (2011) Blood clearance and tissue distribution of PEGylated and non-PEGylated gold nanorods after intravenous administration in rats. Nanomedicine (Lond) 6:339–349

    CAS  Google Scholar 

  25. Rayavarapu RG et al (2010) In vitro toxicity studies of polymer-coated gold nanorods. Nanotechnology 21:145101

    PubMed  Google Scholar 

  26. Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond) 3:703–717

    CAS  Google Scholar 

  27. Rhodes DR et al (2004) ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6:1–6

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Shin G et al (2011) GENT: gene expression database of normal and tumor tissues. Cancer Inform 10:149–157

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Srinivasarao M, Galliford CV, Low PS (2015) Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat Rev Drug Discov 14:203–219

    CAS  Google Scholar 

  30. Choi HS et al (2007) Renal clearance of quantum dots. Nat Biotechnol 25:1165–1170

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Deen WM, Lazzara MJ, Myers BD (2001) Structural determinants of glomerular permeability. Am J Physiol Renal Physiol 281:F579–F596

    CAS  PubMed  Google Scholar 

  32. Ohlson M, Sorensson J, Haraldsson B (2001) A gel-membrane model of glomerular charge and size selectivity in series. Am J Physiol Renal Physiol 280:F396–F405

    CAS  Google Scholar 

  33. Kelloff GJ et al (2005) The progress and promise of molecular imaging probes in oncologic drug development. Clin Cancer Res 11:7967–7985

    CAS  PubMed  Google Scholar 

  34. Kaur S et al (2012) Recent trends in antibody-based oncologic imaging. Cancer Lett 315:97–111

    CAS  PubMed  Google Scholar 

  35. Freise AC, Wu AM (2015) In vivo imaging with antibodies and engineered fragments. Mol Immunol 67:142–152

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Knowles SM, Wu AM (2012) Advances in immuno-positron emission tomography: antibodies for molecular imaging in oncology. J Clin Oncol 30:3884–3892

    PubMed  PubMed Central  Google Scholar 

  37. Strasser J et al (2019) Unraveling the macromolecular pathways of IgG oligomerization and complement activation on antigenic surfaces. Nano Lett

    Google Scholar 

  38. Wu AM (2014) Engineered antibodies for molecular imaging of cancer. Methods 65:139–147

    CAS  PubMed  Google Scholar 

  39. Cooper MS, Sabbah E, Mather SJ (2006) Conjugation of chelating agents to proteins and radiolabeling with trivalent metallic isotopes. Nat Protoc 1:314–317

    CAS  PubMed  Google Scholar 

  40. Kaden TA (2006) Labelling monoclonal antibodies with macrocyclic radiometal complexes. A challenge for coordination chemists. Dalton Trans 3617–3623

    Google Scholar 

  41. Lobo ED, Hansen RJ, Balthasar JP (2004) Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci 93:2645–2668

    CAS  PubMed  Google Scholar 

  42. Vugmeyster Y et al (2008) Preclinical pharmacokinetics, interspecies scaling, and tissue distribution of humanized monoclonal anti-IL-13 antibodies with different IL-13 neutralization mechanisms. Int Immunopharmacol 8:477–483

    CAS  PubMed  Google Scholar 

  43. Wang W, Wang EQ, Balthasar JP (2008) Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 84:548–558

    CAS  PubMed  Google Scholar 

  44. Chiu ML, Gilliland GL (2016) Engineering antibody therapeutics. Curr Opin Struct Biol 38:163–173

    CAS  PubMed  Google Scholar 

  45. Vogl T et al (2014) Alarmin S100A8/S100A9 as a biomarker for molecular imaging of local inflammatory activity. Nat Commun 5:4593

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chester KA et al (2000) Clinical applications of phage-derived sFvs and sFv fusion proteins. Dis Markers 16:53–62

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Smolarek D, Bertrand O, Czerwinski M (2012) Variable fragments of heavy chain antibodies (VHHs): a new magic bullet molecule of medicine? Postepy Hig Med Dosw (Online) 66:348–358

    Google Scholar 

  48. Salvador JP, Vilaplana L, Marco MP (2019) Nanobody: outstanding features for diagnostic and therapeutic applications. Anal Bioanal Chem 411:1703–1713

    CAS  PubMed  Google Scholar 

  49. Massa S, Xavier C, Muyldermans S, Devoogdt N (2016) Emerging site-specific bioconjugation strategies for radioimmunotracer development. Expert Opin Drug Deliv 13:1149–1163

    CAS  PubMed  Google Scholar 

  50. Peng L et al (2018) Phage display-derived peptide-based dual-modality imaging probe for bladder cancer diagnosis and resection postinstillation: a preclinical study. Mol Cancer Ther 17:2100–2111

    CAS  PubMed  Google Scholar 

  51. Eder M et al (2019) Bicyclic peptides as a new modality for imaging and targeting of proteins overexpressed by tumors. Cancer Res 79:841–852

    CAS  PubMed  Google Scholar 

  52. Faust A et al (2015) Development and evaluation of a non-peptidic ligand for the molecular imaging of inflammatory processes using S100A9 (MRP14) as a novel target. Chem Commun (Camb) 51:15637–15640

    CAS  Google Scholar 

  53. Voller T et al (2018) A non-peptidic S100A9 specific ligand for optical imaging of phagocyte activity in vivo. Mol Imaging Biol 20:407–416

    PubMed  Google Scholar 

  54. Keating JJ et al (2017) Intraoperative near-infrared fluorescence imaging targeting folate receptors identifies lung cancer in a large-animal model. Cancer 123:1051–1060

    CAS  PubMed  Google Scholar 

  55. Georgakoudi I et al (2002) NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes. Cancer Res 62:682–687

    CAS  PubMed  Google Scholar 

  56. Fernandes B, Matama T, Guimaraes D, Gomes A, Cavaco-Paulo A (2016) Fluorescent quantification of melanin. Pigment Cell Melanoma Res 29:707–712

    CAS  PubMed  Google Scholar 

  57. Slooter MD, Janssen A, Bemelman WA, Tanis PJ, Hompes R (2019) Currently available and experimental dyes for intraoperative near-infrared fluorescence imaging of the ureters: a systematic review. Tech Coloproctol 23:305–313

    CAS  PubMed  PubMed Central  Google Scholar 

  58. van Manen L et al (2018) A practical guide for the use of indocyanine green and methylene blue in fluorescence-guided abdominal surgery. J Surg Oncol 118:283–300

    PubMed  PubMed Central  Google Scholar 

  59. Ptaszek M (2013) Rational design of fluorophores for in vivo applications. Prog Mol Biol Transl Sci 113:59–108

    CAS  PubMed  Google Scholar 

  60. Ni Y, Wu J (2014) Far-red and near infrared BODIPY dyes: synthesis and applications for fluorescent pH probes and bio-imaging. Org Biomol Chem 12:3774–3791

    CAS  PubMed  Google Scholar 

  61. Sato K et al (2016) Effect of charge localization on the in vivo optical imaging properties of near-infrared cyanine dye/monoclonal antibody conjugates. Mol BioSyst 12:3046–3056

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hage C et al (2018) Comparison of the accuracy of FMT/CT and PET/MRI for the assessment of antibody biodistribution in squamous cell carcinoma xenografts. J Nucl Med 59:44–50

    CAS  PubMed  Google Scholar 

  63. Ho CM et al (2012) Use of indocyanine green for functional assessment of human hepatocytes for transplantation. Asian J Surg 35:9–15

    PubMed  Google Scholar 

  64. Laramie MD, Smith MK, Marmarchi F, McNally LR Henary M (2018) Small molecule optoacoustic contrast agents: an unexplored avenue for enhancing in vivo imaging. Molecules 23

    Google Scholar 

  65. Matayoshi ED, Wang GT, Krafft GA, Erickson J (1990) Novel fluorogenic substrates for assaying retroviral proteases by resonance energy transfer. Science 247:954–958

    CAS  PubMed  Google Scholar 

  66. Swan DC, Tucker RA, Holloway BP, Icenogle JP (1997) A sensitive, type-specific, fluorogenic probe assay for detection of human papillomavirus DNA. J Clin Microbiol 35:886–891

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Chinnathambi S, Shirahata N (2019) Recent advances on fluorescent biomarkers of near-infrared quantum dots for in vitro and in vivo imaging. Sci Technol Adv Mater 20:337–355

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Himmelstoss SF, Hirsch T (2019) A critical comparison of lanthanide based upconversion nanoparticles to fluorescent proteins, semiconductor quantum dots, and carbon dots for use in optical sensing and imaging. Methods Appl Fluoresc 7:022002

    CAS  PubMed  Google Scholar 

  69. Sukhanova A et al (2018) Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett 13:44

    PubMed  PubMed Central  Google Scholar 

  70. Padmanabhan P, Kumar A, Kumar S, Chaudhary RK, Gulyas B (2016) Nanoparticles in practice for molecular-imaging applications: an overview. Acta Biomater 41:1–16

    CAS  Google Scholar 

  71. Sarcan ET, Silindir-Gunay M, Ozer AY (2018) Theranostic polymeric nanoparticles for NIR imaging and photodynamic therapy. Int J Pharm 551:329–338

    CAS  PubMed  Google Scholar 

  72. Wang K et al (2019) Small fluorescent albumin nanoparticles for targeted photothermal therapy via albumin-Binding protein pathways. Colloids Surf B Biointerfaces 181:696–704

    CAS  PubMed  Google Scholar 

  73. Maawy AA et al (2014) Specific tumor labeling enhanced by polyethylene glycol linkage of near infrared dyes conjugated to a chimeric anti-carcinoembryonic antigen antibody in a nude mouse model of human pancreatic cancer. J Biomed Opt 19:101504

    PubMed  PubMed Central  Google Scholar 

  74. Liu C et al (2018) Multispectral photoacoustic imaging of tumor protease activity with a gold nanocage-based activatable probe. Mol Imaging Biol 20:919–929

    CAS  PubMed  Google Scholar 

  75. Shi H et al (2019) A simple, pH-activatable fluorescent aptamer probe with ultralow background for bi-specific tumor imaging. Anal Chem

    Google Scholar 

  76. Tang Y et al (2019) pH-Activatable tumor-targeting gold nanoprobe for near-infrared fluorescence/CT dual-modal imaging in vivo. Colloids Surf B Biointerfaces 179:56–65

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Eisenblätter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eisenblätter, M., Wildgruber, M. (2020). Optical and Optoacoustic Imaging Probes. In: Schober, O., Kiessling, F., Debus, J. (eds) Molecular Imaging in Oncology. Recent Results in Cancer Research, vol 216. Springer, Cham. https://doi.org/10.1007/978-3-030-42618-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42618-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42617-0

  • Online ISBN: 978-3-030-42618-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics