Skip to main content

Class Age-Structured Epidemic Models

  • Chapter
  • First Online:
Age Structured Epidemic Modeling

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 52))

  • 694 Accesses

Abstract

In most epidemiological models for the transmission of infectious diseases, the infectious individuals are assumed to have the same infectivity. This assumption is reasonable in modeling communicable diseases such as influenza [24] and sexually transmitted diseases such as gonorrhea [82]. However, in the study of diseases such as HIV/AIDS, tuberculosis, and hepatitis C that have a long-term latent or chronic stage, it is necessary to incorporate the infection age (that is, the time that has passed since infection) into the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Beretta, Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters. SIAM J. Math. Anal. 33, 1144–1165 (2002)

    Article  MathSciNet  Google Scholar 

  2. C. Castillo-Chavez, Epidemiological models with age structure, proportionate mixing, and cross-immunity. J. Math. Bioi. 27, 233–258 (1989)

    Article  MathSciNet  Google Scholar 

  3. X. Duan, S. Yuan, Z. Qiu, J. Ma, Global stability of an SVEIR epidemic model with ages of vaccination and latency. Comput. Math. Appl. 68, 288–308 (2014)

    Article  MathSciNet  Google Scholar 

  4. Y. Enatsu, Y. Nakata, Y. Muroya, Lyapunov functional techniques for the global stability analysis of a delayed sirs epidemic model. Nonlinear Anal. Real World Appl. 13, 2120–2133 (2012)

    Article  MathSciNet  Google Scholar 

  5. S. Guo, J. Wu, Bifurcation Theory of Functional Differential Equations. Applied Mathematical Sciences, vol. 184 (Springer, New York, 2013)

    Google Scholar 

  6. J.K. Hale, Asymptotic Behavior of Dissipative Systems (AMS, Providence, 1988)

    Google Scholar 

  7. H.W. Hethcote, J. Yorke, Gonorrhea Transmission Dynamics and Control (Springer, Berlin, 1984)

    Book  Google Scholar 

  8. M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics. Applied Mathematics Monographs CNR, vol. 7 (Giadini Editorie Stampatori, Pisa, 1994)

    Google Scholar 

  9. M. Iannelli, M. Martcheva, A semigroup approach to the well posedness of an age-structured two-sex population model. Dyn. Syst. Appl. 6, 353–369 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Z. Jiang, W. Ma, J. Wei, Global Hopf bifurcation and permanence of a delayed SEIRS epidemic model. Math. Comput. Simul. 122, 35–54 (2016)

    Article  MathSciNet  Google Scholar 

  11. Z. Liu, P. Magal, S. Ruan, Hopf bifurcation for non-densely defined cauchy problems. Z. Angew. Math. Phys. 62, 191–222 (2011)

    Article  MathSciNet  Google Scholar 

  12. P. Magal, Compact attractors for time-periodic age-structured population models. Electron. J. Differ. Equ. 2001, 1–35 (2001)

    MathSciNet  MATH  Google Scholar 

  13. P. Magal, X. Zhao, Global attractors in uniformly persistent dynamical systems. SIAM J. Math. Anal. 37, 251–275 (2005)

    Article  MathSciNet  Google Scholar 

  14. P. Magal, C.C. McCluskey, G.F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model. Appl. Anal. 89, 1109–1140 (2010)

    Article  MathSciNet  Google Scholar 

  15. Y. Nakata, Y. Enatsu, Y. Muroya, On the global stability of an sirs epidemic model with distributed delays. Discrete Cont. Dyn. Syst. Suppl. 2011, 1119–1128 (2011)

    MathSciNet  MATH  Google Scholar 

  16. H.L. Smith, H.R. Thieme, Dynamical Systems and Population Persistence, Graduate Studies in Mathematics, (American Mathematical Society, Providence, 2011)

    MATH  Google Scholar 

  17. Y.L. Song, S. Yuan, Bifurcation analysis in a predator-prey system with time delay. Nonlinear Anal. RWA. 7, 265–284 (2006)

    Article  MathSciNet  Google Scholar 

  18. H.R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators. Differ. Integr. Equ. 3, 1035–1066 (1990)

    MathSciNet  MATH  Google Scholar 

  19. H.R. Thieme, Quasi-compact semigroups via bounded perturbation, in Advances in Mathematical Population Dynamics—Molecules, Cells and Man, ed. by O. Arino, D. Axelrod, M. Kimmel (World Scientific Publishing, River Edge, 1997), pp. 691–711

    Google Scholar 

  20. Z. Wang, Z. Liu, Hopf bifurcation of an age-structured compartmental pest-pathogen model. J. Math. Anal. Appl. 385, 1134–1150 (2012)

    Article  MathSciNet  Google Scholar 

  21. G. Webb, Theory of Nonlinear Age-Dependent Population Dynamics. Monographs and Textbooks in Pure and Applied Mathematics, vol. 89 (Marcel Dekker, New York, 1985)

    Google Scholar 

  22. J. H. Wu, Symmetric functional differential equations and neural networks with memory. Trans. Amer. Math. Soc., 35 4799–4838 (1998).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, XZ., Yang, J., Martcheva, M. (2020). Class Age-Structured Epidemic Models. In: Age Structured Epidemic Modeling. Interdisciplinary Applied Mathematics, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-030-42496-1_8

Download citation

Publish with us

Policies and ethics