Skip to main content

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

Abstract

It is estimated that 600,000 to 1 million cardiac catheterizations (CC) are performed annually in the United States. This figure exceeds the number of coronary artery bypass graft procedures (CABG) performed on an annual basis, and is expected to grow annually by about 1–5% in the United States. This chapter discusses the evolution in design and development of angioplasty devices including a list of currently available commercial products and experimental designs under research and development. This will enable the reader to get a glimpse of how the medical device sector is attempting to address this major healthcare problem whose total medical costs are expected to reach $1.1 trillion by 2035.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonow RO, Mann DL, Zipes DP, Libby P. Braunwald’s heart disease: a textbook of cardiovascular medicine. Philadelphia: Elsevier/Saunders; 2015.

    Google Scholar 

  2. Slicker K, Lane WG, Oyetayo OO, Copeland LA, Stock EM, Michel JB, et al. Daily cardiac catheterization procedural volume and complications at an academic medical center. Cardiovasc Diagn Ther. 2016;6(5):446–52.

    Article  Google Scholar 

  3. Roubin GS. Author. The first balloon-expandable coronary stent: an expedition that changed cardiovascular medicine: a memoir [electronic resource]. St Lucia: University of Queensland Press; 2014.

    Google Scholar 

  4. Singh IM, Holmes DR. Myocardial revascularization by percutaneous coronary intervention: past, present, and the future. Curr Probl Cardiol. 2011;36(10):375–401.

    Article  Google Scholar 

  5. Byrne RA, Stone GW, Ormiston J, Kastrati A. Coronary balloon angioplasty, stents, and scaffolds. Lancet. 2017;390(10096):781–92.

    Article  Google Scholar 

  6. Garg S, Serruys PW. Coronary stents: current status. J Am Coll Cardiol. 2010;56(10):S1.

    Article  CAS  Google Scholar 

  7. Shreenivas SS, Sarembock IJ, Kereiakes DJ. Chapter 16 – Stent thrombosis: implications for new stent designs and dual antiplatelet therapy duration. In: Topaz O, editor. Cardiovascular thrombus. San Diego: Academic Press; 2018. p. 225–47.

    Chapter  Google Scholar 

  8. Dubel GJ. Angioplasty balloons, stents, and endografts. Tech Vasc Interv Radiol. 2000;3(4):214–25.

    Article  Google Scholar 

  9. Mishra S, Bahl VK. Coronary hardware part 3 – balloon angioplasty catheters. Indian Heart J. 2010;62(4):335–41.

    Google Scholar 

  10. Garramone S. Structure-property relationships in angioplasty balloons. Worcester Polytechnic Institute, Digital WPI; 2001. https://web.wpi.edu/Pubs/ETD/Available/etd-0430101-122300/unrestricted/garramone.pdf

  11. Park S, Bearinger JP, Lautenschlager EP, Castner DG, Healy KE. Surface modification of poly(ethylene terephthalate) angioplasty balloons with a hydrophilic poly(acrylamide-co-ethylene glycol) interpenetrating polymer network coating. J Biomed Mater Res. 2000;53(5):568–76.

    Article  CAS  Google Scholar 

  12. U.S. Department of Health and Human Services, U. S. Food and Drug Administration. FDA executive summary circulatory system devices panel meeting: paclitaxel-coated drug coated balloon and drug-eluting stent late mortality panel; 2019.

    Google Scholar 

  13. U.S. Department of Health and Human Services, U.S. Food and Drug Administration. Premarket approval (PMA): Lutonix 035 drug coated balloon PTA catheter; 2017.

    Google Scholar 

  14. Hsieh M, Huang Y, Yeh J, Chen C, Chen D, Yang C, et al. Predictors of long-term outcomes after drug-eluting balloon angioplasty for bare-metal stent restenosis. Heart Lung Circ. 2018;27(5):588–94.

    Article  Google Scholar 

  15. Li Y, Tellez A, Rousselle SD, Dillon KN, Garza JA, Barry C, et al. Biological effect on drug distribution and vascular healing via paclitaxel-coated balloon technology in drug eluting stent restenosis swine model. Catheter Cardiovasc Interv. 2016;88(1):89–98.

    Article  Google Scholar 

  16. Meneguz-Moreno R, Ribamar Costa J, Abizaid A. Drug-coated balloons: Hope or hot air: update on the role of coronary DCB. Curr Cardiol Rep. 2018;20(10):100.

    Article  Google Scholar 

  17. Task Fm, Windecker S, Kolh P, Alfonso F, Collet J, Cremer J, et al. 2014 ESC/EACTS guidelines on myocardial revascularization the task force on myocardial revascularization of the European Society of Cardiology (ESC) and The European Association for Cardio-Thoracic Surgery (EACTS) developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2014;35(37):2541–619.

    Article  Google Scholar 

  18. Sigwart U, Puel J, Mirkovitch V, Joffre F, Kappenberger L. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med. 1987;316(12):701.

    Article  CAS  Google Scholar 

  19. Pache JÜ, Kastrati A, Mehilli J, Schühlen H, Dotzer F, Hausleiter J, et al. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO-2) trial. J Am Coll Cardiol. 2003;41(8):1283–8.

    Article  Google Scholar 

  20. Stefanini GG, Taniwaki M, Windecker S. Coronary stents: novel developments. Heart. 2014;100(13):1051–61.

    Article  Google Scholar 

  21. Hanawa T. Materials for metallic stents. J Artif Organs. 2009;12(2):73–9.

    Article  CAS  Google Scholar 

  22. Purnama A, Hermawan H, Mantovani D. Biodegradable metal stents: a focused review on materials and clinical studies. J Biomater Tissue Eng. 2014 Nov; 4(11):868–74(7).

    Google Scholar 

  23. Schewe S, Glocker DA, Ranade SV. Chapter 4 – Coatings for radiopacity. In: Medical coatings and deposition technologies. Hoboken: Wiley; 2016. p. 115–30.

    Chapter  Google Scholar 

  24. O’Brien B, Carroll W. The evolution of cardiovascular stent materials and surfaces in response to clinical drivers: a review. Acta Biomater. 2009;5(4):945–58.

    Article  CAS  Google Scholar 

  25. Trevor S, Benjamin H, Daniel RF, Michael F, Yong-Xiang C, Edward O. The evolution of coronary stents: a brief review. Can J Cardiol. 2014;30(1):35–45.

    Article  Google Scholar 

  26. Khan W, Farah S, Domb AJ. Drug eluting stents: developments and current status. J Control Release. 2012;161(2):703–12.

    Article  CAS  Google Scholar 

  27. U.S. Department of Health and Human Services, U. S. Food and Drug Administration. Establishment registration & device listing; 2019.

    Google Scholar 

  28. Neumann F, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U, et al. ESC/EACTS guidelines on myocardial revascularization. Eur Heart J. 2018;2018:ehy394.

    Google Scholar 

  29. Bønaa KH, Mannsverk J, Wiseth R, Aaberge L, Myreng Y, Nygård O, et al. Drug-eluting or bare-metal stents for coronary artery disease. N Engl J Med. 2016;375(13):1242–52.

    Article  CAS  Google Scholar 

  30. Zheng F, Xing S, Gong Z, Xing Q. Five-year outcomes for first generation drug-eluting stents versus bare-metal stents in patients with ST-segment elevation myocardial infarction: a meta-analysis of randomised controlled trials. Heart Lung Circ. 2014 Jun;23(6):542–8.

    Article  Google Scholar 

  31. U.S. Department of Health and Human Services, U. S. Food and Drug Administration. Premarket approval (PMA): Resolute onyx zotarolimus-eluting coronary stent system; 2017.

    Google Scholar 

  32. Whitbeck MG, Applegate RJ. Second generation drug-eluting stents: a review of the everolimus-eluting platform. Clin Med Insights Cardiol. 2013;7:115–26.

    Article  CAS  Google Scholar 

  33. Health, Center for Devices and Radiological. Recently-approved devices – EluNIR® ridaforolimus eluting coronary stent system – P170008; 2017.

    Google Scholar 

  34. Partida RA, Yeh RW. Contemporary drug-eluting stent platforms. Interv Cardiol Clin. 2016;5(3):331–47.

    Google Scholar 

  35. Alahmar A, Gershlick A. Drug-eluting stents—issues and developments. US Cardiol Rev. 2009;6(2):87–96.

    Google Scholar 

  36. Park DS, Bae I, Jeong MH, Lim K, Hong YJ, Shim JW, et al. Anti-restenotic and anti-thrombotic effect of polymer-free N-TiO2 film-based tacrolimus-eluting stent in a porcine model. Mater Today Commun. 2020;22:100777.

    Article  CAS  Google Scholar 

  37. Lüscher TF, Steffel J, Eberli FR, Joner M, Nakazawa G, Tanner FC, et al. Drug-eluting stent and coronary thrombosis. Circulation. 2007;115(8):1051.

    Article  Google Scholar 

  38. Zhu S, Viswambharan H, Gajanayake T, Ming X, Yang Z. Sirolimus increases tissue factor expression but not activity in cultured human vascular smooth muscle cells. BMC Cardiovasc Disord. 2005;5(1):22.

    Article  CAS  Google Scholar 

  39. Cho Y, Yang H, Park K, Chung W, Choi D, Seo W, et al. Paclitaxel- versus sirolimus-eluting stents for treatment of ST-segment elevation myocardial infarction. J Am Coll Cardiol Intv. 2010;3(5):498.

    Article  Google Scholar 

  40. Axel DI, Kunert W, Goggelmann C, Oberhoff M, Herdeg C, Kuttner A, et al. Paclitaxel inhibits arterial smooth muscle cell proliferation and migration in vitro and in vivo using local drug delivery. Circulation. 1997;96(2):636–45.

    Article  CAS  Google Scholar 

  41. Busch R, Strohbach A, Peterson S, Sternberg K, Felix S. Parameters of endothelial function are dependent on polymeric surface material. Biomed Tech (Berl). 2013; 58(1). https://doi.org/10.1515/bmt-2013-4053

  42. Busch R, Strohbach A, Rethfeldt S, Walz S, Busch M, Petersen S, et al. New stent surface materials: the impact of polymer-dependent interactions of human endothelial cells, smooth muscle cells, and platelets. Acta Biomater. 2014;10(2):688–700.

    Article  CAS  Google Scholar 

  43. Akinapelli A, Chen JP, Roy K, Donnelly J, Dawkins K, Huibregtse B, et al. Current state of bioabsorbable polymer-coated drug-eluting stents. Curr Cardiol Rev. 2016;13(2):139–54.

    Google Scholar 

  44. Ranade SV, Udipi Kishore, Glocker DA. Chapter 3 – Drug delivery coatings for coronary stents. In: Medical coatings and deposition technologies. Hoboken: Wiley; 2016. p. 75–114.

    Chapter  Google Scholar 

  45. Kang S, Park KW, Kang D, Lim W, Park KT, Han J, et al. Biodegradable-polymer drug-eluting stents vs. bare metal stents vs. durable-polymer drug-eluting stents: a systematic review and Bayesian approach network meta-analysis. Eur Heart J. 2014;35(17):1147–58.

    Article  CAS  Google Scholar 

  46. van der Heijden KMM, Zocca P, GAJ J, Schotborgh CE, Roguin A, et al. Bioresorbable polymer-coated orsiro versus durable polymer-coated resolute onyx stents (BIONYX): rationale and design of the randomized TWENTE IV multicenter trial. Am Heart J. 2018;198:25–32.

    Article  CAS  Google Scholar 

  47. Lam MK, Sen H, Tandjung K, van Houwelingen KG, de Vries AG, Danse PW, et al. Comparison of 3 biodegradable polymer and durable polymer-based drug-eluting stents in all-comers (BIO-RESORT): rationale and study design of the randomized TWENTE III multicenter trial. Am Heart J. 2014;167(4):445–51.

    Article  CAS  Google Scholar 

  48. Garg S, Serruys PW. Coronary stents looking forward. J Am Coll Cardiol. 2010;56(10):S43–78.

    Article  CAS  Google Scholar 

  49. Grube E, Schofer J, Hauptmann KE, Nickenig G, Curzen N, Allocco DJ, et al. A novel paclitaxel-eluting stent with an ultrathin abluminal biodegradable polymer: 9-month outcomes with the JACTAX HD stent. J Am Coll Cardiol Intv. 2010;3(4):431–8.

    Article  Google Scholar 

  50. Nogic J, McCormick LM, Francis R, Nerlekar N, Jaworski C, West NEJ, et al. Novel bioabsorbable polymer and polymer-free metallic drug-eluting stents. J Cardiol. 2018;71(5):435–43.

    Article  Google Scholar 

  51. Baquet M, Jochheim D, Mehilli J. Polymer-free drug-eluting stents for coronary artery disease. J Interv Cardiol. 2018;31(3):330–7.

    Article  Google Scholar 

  52. Lee JH, Kim ED, Jun EJ, Yoo HS, Lee JW. Analysis of trends and prospects regarding stents for human blood vessels. Biomater Res. 2018;22:8.

    Article  CAS  Google Scholar 

  53. De Luca G, Smits P, Hofma SH, Di Lorenzo E, Vlachojannis GJ, Van’t Hof AWJ, Arnoud WJ, et al. Everolimus eluting stent vs first generation drug-eluting stent in primary angioplasty: a pooled patient-level meta-analysis of randomized trials. Int J Cardiol. 2017;244:121–7.

    Article  Google Scholar 

  54. Kawakami R, Hao H, Imanaka T, Shibuya M, Ueda Y, Tsujimoto M, et al. Initial pathological responses of second-generation everolimus-eluting stents implantation in Japanese coronary arteries: comparison with first-generation sirolimus-eluting stents. J Cardiol. 2018;71(5):452–7.

    Article  Google Scholar 

  55. Byrne RA, Joner M, Kastrati A. Stent thrombosis and restenosis: what have we learned and where are we going? The Andreas Gruntzig lecture ESC 2014. Eur Heart J. 2015;36(47):3320.

    Article  Google Scholar 

  56. Otsuka F, Finn AV, Yazdani SK, Nakano M, Kolodgie FD, Virmani R. The importance of the endothelium in atherothrombosis and coronary stenting. Nat Rev Cardiol. 2012;9(8):439–53.

    Article  CAS  Google Scholar 

  57. Otsuka F, Byrne RA, Yahagi K, Mori H, Ladich E, Fowler DR, et al. Neoatherosclerosis: overview of histopathologic findings and implications for intravascular imaging assessment. Eur Heart J. 2015;36(32):2147–59.

    Article  Google Scholar 

  58. Inoue T, Node K. Molecular basis of restenosis and novel issues of drug-eluting stents. Circ J. 2009 Apr;73(4):615–21.

    Article  CAS  Google Scholar 

  59. Fukuda D, Sata M, Tanaka K, Nagai R. Potent inhibitory effect of sirolimus on circulating vascular progenitor cells. Circulation. 2005;111(7):926–31.

    Article  CAS  Google Scholar 

  60. Meyers SR, Kenan DJ, Khoo X, Grinstaff MW. A bioactive stent surface coating that promotes endothelialization while preventing platelet adhesion. Biomacromolecules. 2011;12(3):533–9.

    Article  CAS  Google Scholar 

  61. Butzal M, Loges S, Schweizer M, Fischer U, Gehling UM, Hossfeld DK, et al. Rapamycin inhibits proliferation and differentiation of human endothelial progenitor cells in vitro. Exp Cell Res. 2004 Oct 15;300(1):65–71.

    Article  CAS  Google Scholar 

  62. Im SH, Jung Y, Kim SH. Current status and future direction of biodegradable metallic and polymeric vascular scaffolds for next-generation stents. Acta Biomater. 2017;60:3–22.

    Article  CAS  Google Scholar 

  63. Dave B. Bioresorbable scaffolds: current evidences in the treatment of coronary artery disease. J Clin Diagn Res. 2016 Oct;10(10):OE01–7.

    CAS  Google Scholar 

  64. Borhani S, Hassanajili S, Ahmadi Tafti SH, Rabbani S. Cardiovascular stents: overview, evolution, and next generation. Prog Biomater. 2018;7(3):175–205.

    Article  CAS  Google Scholar 

  65. Hideo-Kajita A, Wopperer S, Seleme VB, Ribeiro MH, Campos CM. The development of magnesium-based resorbable and iron-based biocorrodible metal scaffold technology and biomedical applications in coronary artery disease patients. Appl Sci (Basel). 2019 Sep 1;9(17):3527.

    Article  CAS  Google Scholar 

  66. Inoue T, Croce K, Morooka T, Sakuma M, Node K, Simon DI. Vascular inflammation and repair: implications for reendothelialization, restenosis, and stent thrombosis. JACC Cardiovasc Interv. 2011;4(10):1057–66.

    Article  Google Scholar 

  67. McGonigle J, Webster TJ, Bhardwaj G, Glocker DA, Ranade SV. Chapter 5 – Biocompatibility and medical device coatings. In: Medical coatings and deposition technologies. Hoboken: Wiley; 2016. p. 131–80.

    Chapter  Google Scholar 

  68. Wu D, Yu M, Gao H, Zhang L, Song F, Zhang X, et al. Polymer-free versus permanent polymer drug eluting stents in coronary artery disease: a meta-analysis of 10 RCTs with 6575 patients. Chronic Dis Transl Med. 2015;1(4):221–30.

    Article  Google Scholar 

  69. Richards CN, Schneider PA. Will mesh-covered stents help reduce stroke associated with carotid stent-angioplasty? Semin Vasc Surg. 2017;30(1):25–30.

    Article  Google Scholar 

  70. Yang Z, Tu Q, Wang J, Huang N. The role of heparin binding surfaces in the direction of endothelial and smooth muscle cell fate and re-endothelialization. Biomaterials. 2012;33(28):6615–25.

    Article  CAS  Google Scholar 

  71. McKittrick CM, Cardona MJ, Black RA, McCormick C. Development of a bioactive polymeric drug eluting coronary stent coating using electrospraying. Ann Biomed Eng. 2020;48(1):271–81.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

King, M.W., Bambharoliya, T., Ramakrishna, H., Zhang, F. (2020). Evolution of Angioplasty Devices. In: Coronary Artery Disease and The Evolution of Angioplasty Devices. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-42443-5_6

Download citation

Publish with us

Policies and ethics