Skip to main content

Bioinspired Water Desalination and Water Purification Approaches Using Membranes

  • Chapter
  • First Online:
Bioinspired Water Harvesting, Purification, and Oil-Water Separation

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 299))

Abstract

As discussed in Chap. 1, 97.5% of water is saline water, therefore water desalination is increasingly important in some parts of the world. However, water desalinization remains an energy intensive process and prohibitively expensive. In addition, water contamination from human activity affects clean water supply. Water purification from all contaminants is important (Brown and Bhushan 2016; Bhushan 2018).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agre, P., Sasaki, S., and Chrispeels, M. J. (1993), “Aquaporins: a Family of Water Channel Proteins,” Am. J. Physiol. 265, F461.

    Google Scholar 

  • Bhushan, B. (2018), Biomimetics: Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology, third ed., Springer International, Cham, Switzerland.

    Google Scholar 

  • Bhushan, B. (2019), “Bioinspired Oil-water Seperation Approaches for Oil Spill Clean-up and Water Purification,” Phil. Trans. R. Soc. A 377, 20190120.

    Google Scholar 

  • Brown, P. S., and Bhushan, B. (2015), “Bioinspired, Roughness-Induced, Water and Oil Super-philic and Super-phobic Coatings Prepared by Adaptable Layer-by-Layer Technique,” Sci. Rep. 5, 14030.

    Google Scholar 

  • Brown, P. S. and Bhushan, B. (2016), “Bioinspired Materials for Water Supply and Management: Water Collection, Water Purification and Separation of Water from Oil,” Phil. Trans. R. Soc. A 374, 20160135.

    Google Scholar 

  • Cazacu, A. Tong, C., van der Lee, A., Fyles, T. M., and Barboiu, M. (2006), “Columnar Self-Assembled Ureido Crown Ethers:  An Example of Ion-Channel Organization in Lipid Bilayers,” J. Am. Chem. Soc. 128, 9541–9548.

    Google Scholar 

  • Cavallo, F. and Lagally, M. G. (2010), “Semiconductors Turn Soft: Inorganic Nanomembranes,” Soft Matter 6, 439–455.

    Google Scholar 

  • Crini, G. (2005), “Recent Developments in Polysaccharide-based Materials used as Adsorbents in Wastewater Treatment,” Prog. Polym. Sci. 30, 38–70.

    Google Scholar 

  • Corry, B. (2008), “Designing Carbon Nanotube Membranes for Efficient Water Desalination,” J. Phys. Chem. B 112, 1427–1434.

    Google Scholar 

  • Davis, M. E. (2002), “Ordered Porous Materials for Emerging Applications,” Nature 417, 813–820.

    Google Scholar 

  • Davis, S. A., Burkett, S. L., Mendelson, N. H., and Mann, S. (1997), “Bacterial Templating of Ordered Macrostructures in Silica and Silica-surfactant Mesophases,” Nature 385, 420–423.

    Google Scholar 

  • Elimelech, M. and Phillip, W. A. (2011), “The Future of Seawater Desalination: Energy, Technology, and the Environment,” Science 333, 712–717.

    Google Scholar 

  • Esmanski, A. and Ozin, G. A. (2009), “Silicon Inverse-Opal-Based Macroporous Materials as Negative Electrodes for Lithium Ion Batteries,” Adv. Funct. Mater. 19, 1999–2010.

    Google Scholar 

  • Fornasiero, F., Park, H. G., Holt, J. K., Stadermann, M., Grigoropoulos, C. P., Noy, A., and Bakajin, O. (2008), “Ion exclusion by sub-2-nm carbon nanotube pores,” Proc. Natl. Acad. Sci. 105, 17250–17255.

    Google Scholar 

  • Ghadiri, M. R., Granja, J. R., Milligan, R. A., McRee, D. E., and Khazanovich, N. (1993), “Self-assembling Organic Nanotubes Based on a Cyclic Peptide Architecture,” Nature 366, 324–327.

    Google Scholar 

  • Habel, J., Hansen, M., Kynde, S., Larsen, N., Midtgaard, S. R., Jensen, G. V., Bomholt, J., Ogbonna, A., Almdal, K., Schulz, A., and Hélix-Nielsen, C. (2015), “Aquaporin-based Biomimetic Polymeric Membranes: Approaches and Challenges,” Membranes 5, 307–351.

    Google Scholar 

  • Holt, J. K., Park, H. G., Wang, Y., Stadermann, M., Artyukhin, A. B., Grigoropoulos, C. P., Noy, A., and Bakajin, O. (2006), “Fast Mass Transport through Sub-2-Nanometer Carbon Nanotubes,” Science 312, 1034–1037.

    Google Scholar 

  • Hourani, R., Zhang, C., van der Weegen, R., Ruiz, L., Li, C., Keten, S., Helms, B. A., and Xu, T. (2011), “Processable Cyclic Peptide Nanotubes with Tunable Interiors,” J. Am. Chem. Soc. 133, 15296–15299.

    Google Scholar 

  • Hummer, G., Rasaiah, J. C., and Noworyta, J. P. (2001), “Water Conduction Through the Hydrophobic Channel of a Carbon Nanotube,” Nature 414, 188–190.

    Google Scholar 

  • Lee, K. P., Arnot, T. C., and Mattia, D. (2011), “A Review of Reverse Osmosis Membrane Materials for Desalination—Development to Date and Future Potential,” J. Membr. Sci. 370, 1–22.

    Google Scholar 

  • Li, F., Kong, W., Bhushan, B., Zhao, X., and Pan, Y. (2019), “Ultraviolet–driven Switchable Superliquiphobic/superliquiphilic Coating for Separation of Oil-water Mixtures and Emulsions and Water Purification,” J. Colloid Interface Sci. 557, 395–407.

    Google Scholar 

  • Liu, G. and Ding, J. (1998), “Diblock Thin Films with Densely Hexagonally Packed Nanochannels,” Adv. Mater. 10, 69–71.

    Google Scholar 

  • Ma, W., Samal, S. K., Liu, Z., Xiong, R., De Smedt, S. C., Bhushan, B., Zhang, Q., Huang, C. (2017), “Dual pH- and Ammonia-vapor-responsive Electrospun Nanofibrous Membranes for Oil-water Separations,” J. Membr. Sci. 537, 128–139.

    Google Scholar 

  • Negin, S., Daschbach, M. M., Kulikov, O. V., Rath, N., and Gokel, G. W. (2011), “Pore Formation in Phospholipid Bilayers by Branched-Chain Pyrogallol[4]arenes,” J. Am. Chem. Soc. 133, 3234–3237.

    Google Scholar 

  • Ogasawara, W., Shenton, W., Davis, S. A., and Mann, S. (2000), “Template Mineralization of Ordered Macroporous Chitin–Silica Composites Using a Cuttlebone-Derived Organic Matrix,” Chem. Mater. 12, 2835–2837.

    Google Scholar 

  • Peinemann, K.-V., Abetz, V., and Simon, P. F. W. (2007). “Asymmetric Superstructure Formed in a Block Copolymer via Phase Separation,” Nat. Mater. 6, 992–996.

    Google Scholar 

  • Percec, V., Dulcey, A. E., Balagurusamy, V. S. K., Miura, Y., Smidrkal, J., Peterca, M., Nummelin, S., Edlund, U., Hudson, S. D., Heiney, P. A., Duan, H., Magonov, S. N., and Vinogradov, S. A. (2004), “Self-assembly of Amphiphilic Dendritic Dipeptides into Helical Pores,” Nature 430, 764–768.

    Google Scholar 

  • Percec, V., Dulcey, A. E., Peterca, M., Adelman, P., Samant, R., Balagurusamy, V. S. K., and Heiney, P. A. (2007), “Helical Pores Self-Assembled from Homochiral Dendritic Dipeptides Based on l-Tyr and Nonpolar α-Amino Acids,” J. Am. Chem. Soc. 129, 5992–6002.

    Google Scholar 

  • Phillip, W. A., Hillmyer, M. A., Cussler, E. L. (2010), “Cylinder Orientation Mechanism in Block Copolymer Thin Films Upon Solvent Evaporation,” Macromolecules 43, 7763–7770.

    Google Scholar 

  • Pollard, S. J. T., Fowler, G. D., Sollars, C. J., Perry, R. (1992), “Low-cost Adsorbents for Waste and Waste-water Treatment–a Review,” Sci. Total Environ. 116, 31–52.

    Google Scholar 

  • Sengur-Tasdemir, R., Aydin, S., Turken, T., Genceli, E. A., and Koyuncu, I. (2016), “Biomimetic Approaches for Membrane Technologies,” Sep. Purif. Rev. 45, 122–140.

    Google Scholar 

  • Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Mariñas, B. J., and Mayes, A. M. (2008), “Science and Technology for Water Purification in the Coming Decades,” Nature 452, 301–310.

    Google Scholar 

  • Shin, Y., Liu, J., Chang, J. H., Nie, Z., and Exarhos, G. J. (2001), “Hierarchically Ordered Ceramics Through Surfactant-Templated Sol-Gel Mineralization of Biological Cellular Structures,” Adv. Mater. 13, 728–732.

    Google Scholar 

  • Shin, Y., Wang, L.-Q., Chang, J. H., Samuels, W. D., and Exarhos, G. J. (2003), “Morphology Control of Hierarchically Ordered Ceramic Materials Prepared by Surfactant-directed Sol-gel Mineralization of Wood Cellular Structures,” Studies in Surface Science and Catalysis 146, 447–451.

    Google Scholar 

  • Srivastava, A., Srivastava, O. N., Talapatra, S., Vajtai, R., and Ajayan, P. M. (2004), “Carbon Nanotube Filters,” Nat. Mater. 3, 610–614.

    Google Scholar 

  • Surwade, S. P., Smirnov, S. N., Vlassiouk, I. V., Unocic, R. R., Veith, G. M., Dai, S., and Mahurin, S. M. (2015), “Water Desalination using Nanoporous Single-layer Graphene,” Nat. Nanotechnol. 10, 459–464.

    Google Scholar 

  • Taguchi, A. and Schüth, F. (2005), “Ordered Mesoporous Materials in Catalysis,” Micropor. Mesopor. Mater. 77, 1–45.

    Google Scholar 

  • Verkman, A. S., Anderson, M. O., and Papadopoulos, M. C. (2014), “Aquaporins: Important but Elusive Drug Targets,” Nat. Rev. Drug Discov. 13, 259–277.

    Google Scholar 

  • Wang, S. and Peng, Y. (2010), “Natural Zeolites as Effective Adsorbents in Water and Wastewater Treatment,” Chem. Eng. J. 156, 11–24.

    Google Scholar 

  • Yang, D., Qi, L., and Ma, J. (2002), “Eggshell Membrane Templating of Hierarchically Ordered Macroporous Networks Composed of TiO2 Tubes,” Adv. Mater. 14, 1543–1546.

    Google Scholar 

  • Zhang, B., Davis, S. A., and Mann, S. (2002), “Starch Gel Templating of Spongelike Macroporous Silicalite Monoliths and Mesoporous Films,” Chem. Mater. 14, 1369–1375.

    Google Scholar 

  • Zhao, Y. Qiu, C., Li, X., Vararattanavech, A. Shen, W. Torres, J., Hélix-Nielsen, C., Wang, R., Hu, X., Fane, A. G., and Tang, C. Y. (2012), “Synthesis of Robust and High-performance Aquaporin-based Biomimetic Membranes by Interfacial Polymerization-membrane Preparation and RO Performance Characterization,” J. Membr. Sci. 423–424, 422–428.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhushan, B. (2020). Bioinspired Water Desalination and Water Purification Approaches Using Membranes. In: Bioinspired Water Harvesting, Purification, and Oil-Water Separation. Springer Series in Materials Science, vol 299. Springer, Cham. https://doi.org/10.1007/978-3-030-42132-8_7

Download citation

Publish with us

Policies and ethics