Skip to main content

Plant Antifreeze Proteins

  • Chapter
  • First Online:
Antifreeze Proteins Volume 1

Abstract

Plants are increasingly subjected to episodes of spring frost injury due to erratic weather patterns fostered by climate change. While many plant species undergo a seasonal cycle of cold acclimation and deacclimation, warm, late-winter temperatures induce plants to lose their frost tolerance and thus experience lethal injury when more seasonable freezing temperatures return. The production of plant antifreeze compounds (AFPs) is among the mechanisms that plants use to cold acclimate and either avoid freezing or limit the damage caused by the formation of large ice crystals in their tissues. The current review describes the process of cold acclimation in plants and the potential role antifreeze proteins may have in promoting cold hardiness. The discovery of plant antifreeze proteins, their production in different higher plant and algal species, the three-dimensional structure of AFPs, the potential role of AFPs in ice nucleation and propagation, and attempts to improve plant freezing tolerance by the production of insect AFPs in transgenic plants is discussed. The potential application of plant AFPs in the food industry is also presented. Lastly, the ability of plants to exhibit deep supercooling as an alternative method of freeze avoidance and the role of sugars with AFPs in freezing point depression and reducing the adhesive stress resulting from the presence of ice is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antikainen M, Griffith M (1997) Antifreeze protein accumulation in freezing-tolerant cereals. Physiol Plant 99(3):423–432

    CAS  Google Scholar 

  • Antikainen M, Griffith M, Zhang J, Hon W-C, Yang DS, Pihakaski-Maunsbach K (1996) Immunolocalization of antifreeze proteins in winter rye leaves, crowns, and roots by tissue printing. Plant Physiol 110(3):845–857

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arora R (2018) Mechanism of freeze-thaw injury and recovery: a cool retrospective and warming up to new ideas. Plant Sci 270:301–313

    CAS  PubMed  Google Scholar 

  • Arora R, Palta JP (1988) In vivo perturbation of membrane associated calcium by freeze-thaw stress in onion bulb cells. Plant Physiol 87:622–628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bayer-Giraldi M, Uhlig C, John U, Mock T, Valentin K (2010) Antifreeze proteins in polar sea ice diatoms. Environ Microbiol 12:1041–1062

    CAS  PubMed  Google Scholar 

  • Bayer-Giraldi M, Weikusat I, Besir H, Dieckmann G (2011) Characterization of an antifreeze protein from the polar diatom Fragilariopsis cylindrus and its relevance in sea ice. Cryobiology 63:210–219

    CAS  PubMed  Google Scholar 

  • Bredow M, Vanderbeld V, Walker VK (2016) Knockdown of ice-binding proteins in Brachypodium distachyon demonstrates their role in freeze protection. PLoS One 11(12):e0167941. https://doi.org/10.1371/journal.pone.0167941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bredow M, Tomalty HE, Smith L, Walker VK (2017a) Ice and anti-nucleating activities of an ice-binding protein from the annual grass Brachypodium distachyon. Plant Cell Environ 41:983–992. https://doi.org/10.1111/pce.12889

    Article  CAS  PubMed  Google Scholar 

  • Bredow M, Vanderbeld V, Walker VK (2017b) Ice-binding proteins confer freeze tolerance on Arabidopsis thaliana. Plant Biotechnol J 15:68–81

    CAS  PubMed  Google Scholar 

  • Burke MJ (1979) Discussion. Water in plants: the phenomenon of frost survival. In: Underwood LS, Tieszen LL, Callahan AB, Folk GE (eds) Comparative mechanisms of cold adaptations. Academic Press, New York, pp 259–281

    Google Scholar 

  • Canny MJ (1995) Apoplastic water and solute movement: new rules for an old space. Annu Rev Plant Physiol Plant Mol Biol 46:215–236

    CAS  Google Scholar 

  • Castonguay Y, Nadeau P, Laerge S (1993) Freezing tolerance and alteration of translatable mRNAs in alfalfa hardened at subzero temperatures. Plant and Cell Physiol 34:31–38

    CAS  Google Scholar 

  • Celik Y, Graham LA, Mok Y-F, Bar M, Davies PL, Braslavsky L (2010) Superheating of ice crystals in antifreeze protein solutions. Proc Natl Acad Sci U S A 107:5423–5428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang R (1981) Physical chemistry with applications to biological systems, 2nd edn. Macmillan, New York

    Google Scholar 

  • Chen THH, Gusta LV, Fowler DB (1983) Freezing injury and root development in winter cereals. Plant Physiol 73(3):773–777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chun JU, Yu XM, Griffith M (1998) Genetic studies of antifreeze proteins and their correlation with winter survival in wheat. Euphytica 102:219–226

    CAS  Google Scholar 

  • Cutler AJ, Saleem M, Kendall E, Gusta LV, Georges F, Fletcher GL (1989) Winter flounder antifreeze protein improves the cold hardiness of plant tissues. J Plant Physiol 135(3):351–354

    CAS  Google Scholar 

  • Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10(4):623–638

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies PL (2014) Ice-binding proteins: a remarkable diversity of structures for stopping and starting ice growth. Trends Biochem Sci 39:548–555

    CAS  PubMed  Google Scholar 

  • DeVries AL (1971) Glycoproteins as biological antifreeze agents in Antarctic fishes. Science 172:1152–1155

    CAS  PubMed  Google Scholar 

  • DeVries AL, Wohlschlag C (1969) Freezing resistance in some Antarctic fishes. Science 163:1073–1075

    CAS  PubMed  Google Scholar 

  • Doucet CJ, Byass L, Elias L, Worrall D, Smallwood M, Bowles DJ (2000) Distribution and characterization of recrystallization inhibitor activity in plant and lichen species from the UK and maritime Antarctic. Cryobiology 40:218–227

    CAS  PubMed  Google Scholar 

  • Duman JG (1994) Purification and characterization of a thermal hysteresis protein from a plant, the bittersweet nightshade Solanum dulcamara. Biochim Biophys Acta 1206:129–135

    CAS  PubMed  Google Scholar 

  • Duman JG (2015) Anima ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function. J Exp Biol 218:1846–1855

    PubMed  Google Scholar 

  • Duman JG, DeVries AL (1972) Freezing behavior of aqueous solutions of glycoproteins from the blood of an Antarctic fish. Cryobiology 9:469–472

    CAS  PubMed  Google Scholar 

  • Duman JG, Olsen TM (1993) Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants. Cryobiology 30:322–328

    Google Scholar 

  • Duman G, Wisniewski M (2014) The use of antifreeze proteins for frost protection in sensitive crop plants. Environ Exp Bot 106:60–69

    CAS  Google Scholar 

  • Duman JG, Wu DW, Olsen TM, Urrutia M, Tursman D (1993) Thermal-hysteresis proteins. Adv Low Temp Biol 2:131–182

    Google Scholar 

  • Duman JG, Walters KR, Sformo T, Carrasco MA, Nickell P, Barnes BM (2010) Antifreeze and ice nucleator proteins. In: Denlinger D, Lee RE (eds) Low temperature biology of insects. Cambridge University Press, Cambridge, pp 59–90

    Google Scholar 

  • Ebbinghaus S, Meister K, Born B, DeVries AL, Gruebele M, Havenith M (2010) Antifreeze glycoprotein activity correlates with long-range protein−water dynamics. J Am Chem Soc 2010(132):12210–12211

    Google Scholar 

  • Ebbinghaus S, Meister K, Prigozhin MB, DeVries AL, Havenith M, Dzubiella J, Gruebele M (2012) Functional importance of short-range and long-range solvent interactions in helical antifreeze peptides. Biophys J 103:L20–L22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    CAS  PubMed  Google Scholar 

  • Fowler DB (2008) Cold acclimation threshold induction temperatures in cereals. Crop Sci 48(3):1147–1154

    Google Scholar 

  • Fowler DB (2012) Wheat production in the high winter stress climate of the great plains of North America—an experiment in crop adaptation. Crop Sci 52(1):11–20. https://doi.org/10.2135/cropsci2011.05.0279

    Article  Google Scholar 

  • Franks F (1985) Biophysics and biochemistry at low temperatures. Cambridge University Press, Cambridge, p 210

    Google Scholar 

  • Fujikawa S, Kasuga J, Takata N, Arakawa K (2009) Factors related to change of deep supercooling capability in xylem parenchyma cells of trees. In: Gusta LV, Wisniewski ME, Tanino K (eds) Plant cold hardiness: from the laboratory to the field. CABI, Oxford, pp 29–42

    Google Scholar 

  • George MF, Burke MJ, Pellett HM, Johnson AG (1974) Low temperature exotherms and woody plant distribution. HortScience 9:519–522

    Google Scholar 

  • Giannou V, Kessoglou V, Tzia C (2003) Quality and safety characteristics of bread made from frozen dough. Trends Food Sci Tech 14(3):99–108

    CAS  Google Scholar 

  • Gray GR, Chauvin LP, Sarhan F, Huner NP (1997) Cold acclimation and freezing tolerance (a complex interaction of light and temperature). Plant Physiol 114(2):467–474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith M, Yaish MW (2004) Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci 9:399–405

    CAS  PubMed  Google Scholar 

  • Griffith M, Ala P, Yang DS, Hon WC, Moffatt BA (1992) Antifreeze protein produced endogenously in winter rye leaves. Plant Physiol 100:593–596

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu L, Hanson PJ, Mac Post W, Kaiser DP, Yang B, Nemani R, Pallardy SG, Meyers T (2008) The 2007 eastern US spring freeze: increased cold damage in a warming world. Bioscience 58(3):253–262

    Google Scholar 

  • Gupta R, Deswal R (2012) Low temperature stress modulated secretome analysis and purification of antifreeze protein from Hippophae rhamnoides, a Himalayan wonder plant. J Proteome Res 11:2684–2696

    CAS  PubMed  Google Scholar 

  • Gupta R, Deswal R (2014a) Antifreeze proteins enable plants to survive in freezing conditions. J Biosci 39:931–944

    CAS  PubMed  Google Scholar 

  • Gupta R, Deswal R (2014b) Refolding of β-stranded class I chitinases of Hippophae rhamnoides enhance the antifreeze activity during cold acclimation. PLoS One 9:e91723

    PubMed  PubMed Central  Google Scholar 

  • Gusta LV, Wisniewski ME, Nesbitt NT, Gusta ML (2004) The effect of water, sugars, and proteins on the pattern of ice nucleation and propagation in acclimated and non-acclimated canola leaves. Plant Physiol 135:1642–1653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gusta LV, Tyler MJ, Chen THH (1983) Deep undercooling in woody plant taxa growing north of the −49 C isotherm. Plant Physiol 72:122–128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gusta L, Wisniewski M, Trischuk R (2009) Patterns of freezing in plants: the influence of species, environment and experiential procedures. In: Gusta L, Wisniewski M, Tanino K (eds) Plant cold hardiness: from the laboratory to the field. CABI, Boston, pp 214–225

    Google Scholar 

  • Gusta LV, Burke MJ, Kapoor AC (1975) Determination of unfrozen water in winter cereals at subfreezing temperatures. Plant Physiol 56(5):707–709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gusta LV, Wisniewski M (2013) Understanding plant cold hardiness: an opinion. Physiol Plant 147(1):4–14

    CAS  PubMed  Google Scholar 

  • Gusta LV, O’Connor BJ, MacHutcheon MG (1997) The selection of superior winter-hardy genotypes using a prolonged freeze test. Can J Plant Sci 77(1):15–21

    Google Scholar 

  • Gwak Y, Jung W, Lee Y, Kim JS, Kim CG, Ju J-H, Song C, Hyun J-K, Jin ES (2014) An intracellular antifreeze protein from and Antarctic microalga that responds to various stresses. FASEB J 28:4924–4935

    CAS  PubMed  Google Scholar 

  • Herman EM, Rotter K, Premakumar R, Elwinger G, Bae R, Ehler-King L, Chen S, Livingston DP (2006) Additional freeze hardiness in wheat acquired by exposure to −3°C is associated with extensive physiological, morphological, and molecular changes. J Exp Bot 57(14):3601–3618

    CAS  PubMed  Google Scholar 

  • Hiilovaara-Teijo M, Hannukkala A, Griffith M, Yu X-M, Pihakaski-Maunsbach K (1999) Snow-mold-induced apoplastic proteins in winter rye leaves lack antifreeze activity. Plant Physiol 121(2):665–674

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holmberg N, Bülow L (1998) Improving stress tolerance in plants by gene transfer. Trends Plant Sci 3(2):61–66

    Google Scholar 

  • Hon WC, Griffith M, Chong P, Yang DSC (1994) Extraction and isolation of antifreeze proteins from winter rye (Secale cereale L.) leaves. Plant Physiol 104:971–980

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hon WC, Griffith M, Mlynarz A, Kwok YC, Yang DSC (1995) Antifreeze proteins in winter rye are similar to pathogenesis-related proteins. Plant Physiol 109:879–889

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong S, Sucoff E (1980) Units of freezing of deep supercooled water in woody xylem. Plant Physiol 66:40–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang T, Duman JG (2001) Cloning and characterization of a thermal hysteresis (antifreeze) protein with DNA-binding activity from winter bittersweet nightshade, Solanum dulcamara. Plant Mol Biol 48:339–350

    Google Scholar 

  • Huang T, Nicodemus J, Zarka DG, Thomashow MF, Wisniewski M, Duman JG (2002) Expression of an insect (Dendroides canadensis) antifreeze protein in Arabidopsis thaliana results in a decrease in plant freezing temperature. Plant Mol Biol 50:333–344

    CAS  PubMed  Google Scholar 

  • Hughes SL, Schart V, Malcolmson J, Hogarth KA, Martynowicz DM, Tralman-Baker E, Patel SN, Graether SP (2013) The importance of size and disorder in the cryoprotective effects of dehydrins. Plant Physiol 163(3):1376–1386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Janech MG, Krell A, Mock T, Kang J-S, Raymond JA (2006) Ice-binding proteins from sea-ice diatoms (Bacillariophyceae). J Phycol 42:410–416

    CAS  Google Scholar 

  • Jarzabek M, Pukacki PM, Nuc K (2009) Cold-regulated proteins with potent antifreeze and cryoprotective activities in spruces (Picea spp.). Cryobiology 58:268–274

    CAS  PubMed  Google Scholar 

  • Jung W, Campbell RL, Gwak Y, Kim JI, Davies PL, Jin ES (2016) New cysteine-rich ice-binding protein secreted from Antarctic microalga, Chloromonas sp. PLoS One 11:e0154056. https://doi.org/10.1371/journal.pone.0154056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawahara H, Fujii A, Inoue M, Kitao S, Fukuoka J, Obata H (2009) Antifreeze activity of Japanese radish and purification of antifreeze peptide. Cryo-Lett 30:119–131

    CAS  Google Scholar 

  • Kasuga J, Fukushi Y, Kuwabara C, Wamg D, Nishioka A, Fujikawa E, Arakawa K, Fujikawa S (2010) Analysis of supercooling-facilitating (anti-ice nucleation) activity of flavonol glycosides. Cryobiology 60:24–243

    Google Scholar 

  • Kindel PK, Liao S-Y, Liske MR, Olien CR (1989) Arabinoxylans from rye and wheat seed that interact with ice. Carbohydr Res 187(2):173–185. https://doi.org/10.1016/0008-6215(89)80001-1

    Article  CAS  PubMed  Google Scholar 

  • Knight CA, DeVries AL (1989) Melting inhibition and superheating of ice by an antifreeze glycopeptides. Science 245:505–507

    CAS  PubMed  Google Scholar 

  • Knight CA, Duman JG (1986) Inhibition of recrystallization of ice by insect thermal hysteresis proteins: a possible cryoprotective role. Cryobiology 23:256–262

    CAS  Google Scholar 

  • Knight CA, DeVries AL, Oolman LD (1984) Fish antifreeze protein and the freezing and recrystallization of ice. Nature 308:295–296

    CAS  PubMed  Google Scholar 

  • Knight CA, Cheng C-HC, DeVries L (1991) Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes. Biophys J 59:409–418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kontogiorgos V, Regand A, Yada RY, Goff HD (2007) Isolation and characterization of ice structuring proteins from cold acclimated winter wheat grass extract for recrystallization inhibition in frozen foods. J Food Biochem 31:139–160

    CAS  Google Scholar 

  • Krieger EI, Darden T, Nabuurs SB, Finkelstein A, Vriend G (2004) Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins 57:678–683

    CAS  PubMed  Google Scholar 

  • Kuiper MJ, Davies PL, Walker VK (2001) A theoretical model of a plant antifreeze protein from Lolium perenne. Biophys J 81:3560–3565

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuwabara C, Wang D, Endoh K, Fukushi Y, Arakawa K, Fujikawa S (2013) Analysis of supercooling activity of tannin-related phenols. Cryobiology 67:40–49

    CAS  PubMed  Google Scholar 

  • Larson D, Middle L, Vu H, Zhang W, Serianni AS, Duman JG, Barnes BM (2014) Wood frog adaptations to overwintering in Alaska: new limits to freezing tolerance. J Exp Biol 217:2193–2200

    PubMed  Google Scholar 

  • Le MQ, Engelsberger WR, Hincha DK (2008) Natural genetic variation in acclimation capacity at sub-zero temperatures after cold acclimation at 4°C in different Arabidopsis thaliana accessions. Cryobiology 57:104–112

    CAS  PubMed  Google Scholar 

  • Levitt J (1959) Effects of artificial increases in sugar content on frost hardiness. Plant Physiol 34:401–402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stress, Vol 1: Chilling, freezing, and high temperature stresses. Academic Press, New York

    Google Scholar 

  • Lin X, Wisniewski ME, Duman JG (2011a) Expression of two self-enhancing antifreeze proteins from the beetle Dendroides canadensis in Arabidopsis thaliana. Plant Mol Biol Rep 29:802–813

    CAS  Google Scholar 

  • Lindow SE (1989) Control of epiphytic ice nucleation-active bacteria for management of frost injury. In: Lee RE, Warren GJ, Gusta LV (eds) Biological ice nucleation and its applications. APS Press, Minneapolis, MN, pp 239–256

    Google Scholar 

  • Lineberger RD, Steponkus PL (1980) Cryoprotection by glucose, sucrose and raffinose to chloroplast thylakoids. Plant Physiol 65:298–304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin X, Wisniewski ME, Duman JG (2011b) Expression of two self-enhancing antifreeze proteins from the beetle Dendroides canadensis in Arabidopsis thaliana. Plant Mol Biol Rep 29(4):802–813

    CAS  Google Scholar 

  • Livingston DP III (2007) Quantifying liquid water in frozen plant tissues by isothermal calorimetry. Thermochim Acta 459:116–120

    CAS  Google Scholar 

  • Livingston DP III, Herman EM, Premakumar R, Tallury SP (2007) Using Arabidopsis thaliana as a model to study subzero acclimation in small grains. Cryobiology 54:154–163

    CAS  PubMed  Google Scholar 

  • Livingston D, Premakumar R, Tallury SP (2005) Carbohydrate concentrations in crown fractions from winter oat during hardening at sub-zero temperatures. Ann Bot 96(2):331–335. https://doi.org/10.1093/aob/mci167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livingston DP, Henson CA (1998) Apoplastic sugars, fructans, fructan exohydrolase, and invertase in winter oat: responses to second-phase cold hardening. Plant Physiol 116(1):403–408

    CAS  PubMed Central  Google Scholar 

  • Livingston DP III, Tuong TD (2014) Understanding the response of winter cereals to freezing stress through freeze-fixation and 3d reconstruction of ice formation in crowns. Environ Exp Bot 106:24–33

    Google Scholar 

  • Livingston DP III, Hincha D, Heyer AG (2009) Fructan and its relationship to abiotic stress tolerance in plants. Cell Mol Life Sci 66:2007–2023

    CAS  PubMed  PubMed Central  Google Scholar 

  • Livingston DP, Henson CA, Tuong TD, Wise ML, Tallury SP, Duke SH (2013) Histological analysis and 3D reconstruction of winter cereal crowns recovering from freezing: a unique response in oat (Avena sativa L.). PLoS One 8(1):e53468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Caballero S, Cano-Sánchez P, Mares-Mejía I, Díaz-Sánchez AG, Macías-Rubalcava ML, Hermoso JA, Rodríguez-Romero A (2014) Comparative study of two GH19 chitinase-like proteins from Hevea brasiliensis, one exhibiting a novel carbohydrate-binding domain. FEBS J 281(19):4535–4554

    PubMed  Google Scholar 

  • Mazur P (1984) Freezing of living cells: mechanisms and implications. Am J Phys 247:C125–C142

    CAS  Google Scholar 

  • Meister K, Ebbinghaus Y, Xu Y, Duman JG, DeVries AL, Gruebele DM, Leitner DM, Havenith M (2013) Long-range protein-water dynamics in hyperactive insect antifreeze proteins. Proc Natl Acad Sci U S A 110:1617–1622

    CAS  PubMed  Google Scholar 

  • Meister K, Duman JG, Xu Y, DeVries AL, Leitner DM, Havenith M (2014) The role of sulfates in the enhancement of antifreeze protein activity. J Pys Chem B 118:7920–7924

    CAS  Google Scholar 

  • Meyer K, Keil M, Naldrett MJ (1999) A leucine-rich repeat protein of carrot that exhibits antifreeze activity. FEBS Lett 447:171–178

    CAS  PubMed  Google Scholar 

  • Middleton AJ, Brown AM, Davies PL, Walker VK (2009) Identification of the ice-binding face of a plant antifreeze protein. FEBS Lett 583:815–819

    CAS  PubMed  Google Scholar 

  • Middleton AJ, Marshall CB, Faucher F, Bar-Dolev M, Braslavsky I, Campbell RL, Walker VK, Davies PL (2012) Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site. J Mol Biol 416:713–724

    CAS  PubMed  Google Scholar 

  • Mock T, Thomas DN (2005) Recent advances in sea-ice microbiology. Environ Micro 7:605–619

    CAS  Google Scholar 

  • Moffatt B, Ewart KV, Eastman M (2006) Cold comfort: plant antifreeze proteins. Physiol Plant 126:5–16

    CAS  Google Scholar 

  • Nakamura T, Ishikawa M, Nakatani H, Oda A (2008) Characterization of cold-responsive extracellular chitinase in bromegrass cell cultures and its relationship to antifreeze activity. Plant Physiol 147:391–401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neuner G, Xu BC, Hacker J (2010) Velocity and pattern of ice propagation and deep supercooling in woody stems of Castanea sativa, Morus nigra and Quercus robur measured by IDTA. Tree Physiol 30:1037–1045

    PubMed  Google Scholar 

  • Olien CR (1965) Interference of cereal polymers and related compounds with freezing. Cryobiology 2(2):47–54

    CAS  PubMed  Google Scholar 

  • Olien CR (1971) A comparison of desiccation and freezing as stress vectors. Cryobiology 8:244–248

    CAS  PubMed  Google Scholar 

  • Olien CR (1973) Thermodynamic components of freezing stress. J Theor Biol 39:201–210

    CAS  PubMed  Google Scholar 

  • Olien CR (1974) Energies of freezing and frost desiccation. Plant Physiol 53:764–767

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olien CR (1984) An adaptive response of rye to freezing. Crop Sci 24:51–54

    Google Scholar 

  • Olien CR (1977) Barley: patterns of response to freezing stress. US Dep Agric Tech Bull 1558:1–8

    Google Scholar 

  • Olien CR, Smith MN (1977) Ice adhesions in relation to freeze stress. Plant Physiol 60:499–503

    Google Scholar 

  • Olien CR, Lester GE (1985) Freeze-induced changes in soluble carbohydrates of rye. Crop Sci 25:288–290

    CAS  Google Scholar 

  • Olien C, Marchetti B (1976) Recovery of hardened barley from winter injuries. Crop Sci 16(2):201–204

    Google Scholar 

  • Olive LC, Meister K, DeVries AL, Duman JG, Guo S, Bakker HJ, Voets IK (2016) Blocking rapid ice crystal growth through non-basal plane adsorption of antifreeze proteins. Proc Natl Acad Sci U S A 113:3740–3745

    Google Scholar 

  • Öquist G, Huner NP (2003) Photosynthesis of overwintering evergreen plants. Annu Rev Plant Biol 54(1):329–355

    PubMed  Google Scholar 

  • Pearce RS (2001) Plant freezing and damage. Ann Bot 87(4):417–424

    CAS  Google Scholar 

  • Pennington ER, Day C, Parker JM, Barker M, Kennedy A (2016) Thermodynamics of interaction between carbohydrates and unilamellar diapalmitolyl phosphatidlcholine membranes. Evidence of dehydration and interdigitation. J Therm Anal Calorim 123:2611–2617

    CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera - a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    CAS  PubMed  Google Scholar 

  • Petraya N, Marshall CB, Celik Y, Davies PL, Braslavsky L (2008) Direct visualization of spruce budworm antifreeze protein interacting with ice crystals: basal plane affinity confers hyperactivity. Biophys J 95:333–341

    Google Scholar 

  • Pihakaski-Maunsbach K, Griffith M, Antikainen M, Maunsbach AB (1996) Immunogold localization of glucanase-like antifreeze protein in cold acclimated winter rye. Protoplasma 191(3):115–125. https://doi.org/10.1007/bf01281809

    Article  CAS  Google Scholar 

  • Pihakaski-Maunsbach K, Tamminen I, Pietiäinen M, Griffith M (2003) Antifreeze proteins are secreted by winter rye cells in suspension culture. Physiol Plant 118(3):390–398. https://doi.org/10.1034/j.1399-3054.2003.00110.x

    Article  CAS  Google Scholar 

  • Priddle J, Heywood RB, Theriot E (1986) Some environmental factors influencing phytoplankton in the Southern Ocean around South Georgia. Polar Biol 5:65–79

    Google Scholar 

  • Quamme HA (1995) Deep supercooling in buds of woody plants. In: Lee RE, Warren GJ, Gusta LV (eds) Biological ice nucleation and its applications. APS Press, Minneapolis, MN, pp 183–199

    Google Scholar 

  • Rajashekar C, Burke MJ (1996) Freezing characteristics of rigid plant tissues (development of cell tension during extracellular freezing). Plant Physiol 111(2):597–603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond JA (2000) Distribution and partial characterization of ice-active proteins associated with sea ice diatoms. Polar Biol 23:721–729

    Google Scholar 

  • Raymond JA (2014) The ice-binding proteins of a snow alga Chlorospina brevispina: probable acquisition by horizontal gene transfer. Extremophiles 6:987–994

    Google Scholar 

  • Raymond JG, DeVries AL (1977) Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci U S A 86:881–885

    Google Scholar 

  • Raymond JA, Kim KJ (2012) Possible role of horizontal gene transfer in the colonization of sea ice by algae. PLoS One 7:e35968. https://doi.org/10.1371/journal.pone.0035968.pmid:22567121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond JA, Knight C (2003) Ice binding, recrystallization inhibition, and cryoprotective properties of ice-active substances associated with Antarctic Sea ice diatoms. Cryobiology 46:174–181

    CAS  PubMed  Google Scholar 

  • Raymond JA, Morgan-Kiss R (2013) Separate origins of ice-binding proteins in Antarctic Chlamydomonas species. PLoS One 8:e59186. https://doi.org/10.1371/journal.pone.0059186. pmid:23536869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond JA, Morgan-Kiss R (2017) Multiple ICE-binding proteins of probable prokaryotic origin in an antarctic lake alga, Chlamydomonas sp. ICE-MDV (Chlorophyceae). J Phycol 53:848–854

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond JA, Wilson P, DeVries AL (1989) Inhibition of ice on nonbasal planes of ice by fish antifreezes. Proc Natl Acad Sc USA 86:881–885

    CAS  Google Scholar 

  • Raymond JA, Janech MG, Fritsen CH (2009) Novel ice-binding proteins from a psychrophilic Antarctic alga (Chlamydomonadaceae, Chlorophyceae). J Phycol 45:130–136

    CAS  PubMed  Google Scholar 

  • Raymond JA, Sullivan CW, DeVries AL (1994) Release of an ice-active substance by sea ice diatoms. Polar Biol 14:71–75

    Google Scholar 

  • Regand A, Goff HD (2006) Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass. J Dairy Sci 89(1):49–57

    CAS  PubMed  Google Scholar 

  • Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich IE (1996) Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J 15:5690–5700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sabala I, Egertsdotter U, Fircks HV, Arnold SV (1996) Abscisic acid-induced secretion of an antifreeze-like protein in embryogenic cell lines of Picea abies. J Plant Physiol 149:163–170

    CAS  Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plants. Ecological studies 62. Springer, Berlin

    Google Scholar 

  • Santerius KA (1973) The protective effect of sugars on chloroplast membranes during temperature and water stress and its relationship to frost, desiccation and heat resistance. Planta 113:105–114

    Google Scholar 

  • Sathyanesan SN (1999) Purification and identification of thermal hysteresis proteins and other proteins in the bittersweet nightshade (Solanum dulcamara). PhD Thesis, Department of Biological Sciences, University of Notre Dame, p. 157

    Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch M (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shier WT, Lin Y, DeVries AL (1975) Structure of the carbohydrate of antifreeze glycoproteins from an Antarctic fish. FEBS Lett 54:135–138

    CAS  PubMed  Google Scholar 

  • Sidebottom CS, Buckley P, Pudney S, Twigg C, Jarman C, Holt J, Telford A, McArthur D (2000) Heat-stable antifreeze protein from grass. Nature 406:256

    CAS  PubMed  Google Scholar 

  • Siminovitch D, Scarth GW (1938) A study of the mechanism of frost injury to plants. Can J Res 16(11):467–481

    Google Scholar 

  • Simpson DJ, Smallwood M, Twigg S, Doucet CJ, Ross J, Bowles DJ (2005) Purification and characterisation of an antifreeze protein from Forsythia suspensa (L.). Cryobiology 51(2):230–234

    CAS  PubMed  Google Scholar 

  • Steponkus PL (1968) The relationship of carbohydrates to cold acclimation of Hedera helix L. cv. Thorndale. Physiol Plant 21:777–791

    CAS  Google Scholar 

  • Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Annu Rev Plant Physiol 35(1):543–584

    CAS  Google Scholar 

  • Stressmann M, Kitao S, Griffith M, Moresoli C, Bravo LA, Marangoni AG (2004) Calcium interacts with antifreeze proteins and chitinase from cold-acclimated winter rye. Plant Physiol 135(1):364–376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiyama N, Simura T (1967) Studies on the varietal differentiation of frost resistance of the tea plant. IV. The effects of sugar level combined with protein in chloroplasts on the frost resistance. Jpn J Breed 17:292–296

    Google Scholar 

  • Takahashi D, Kawamura Y, Uemura M (2013) Changes of detergent-resistant plasma membrane proteins in oat and rye during cold acclimation: association with differential freezing tolerance. J Proteome Res 12(11):4998–5011

    CAS  PubMed  Google Scholar 

  • Takahashi D, Kawamura Y, Uemura M (2016) Cold acclimation is accompanied by complex responses of glycosylphosphatidylinositol (GPI)-anchored proteins in Arabidopsis. J Exp Bot 67(17):5203–5215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanino KK, McKersie BD (1985) Injury within the crown of winter wheat seedlings after freezing and icing stress. Can J Bot 63(3):432–436

    Google Scholar 

  • Thomas DN, Dieckmann GS (2002) Antarctic Sea ice - a habitat for extremophiles. Science 295:641–644

    CAS  PubMed  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Biol 50(1):571–599

    CAS  Google Scholar 

  • Tomalty HE, Walker VK (2014) Perturbation of bacterial ice nucleation activity by a grass antifreeze protein. Biophys Biochem Res Commun 452:636–641

    CAS  Google Scholar 

  • Trischuk RG, Schilling BS, Low NH, Gray GR, Gusta LV (2014) Cold acclimation, de-acclimation and re-acclimation of spring canola, winter canola and winter wheat: the role of carbohydrates, cold-induced stress proteins and vernalization. Environ Exper Bot 106:156–163

    CAS  Google Scholar 

  • Trunova TL (1965) Light and temperature systems in the hardening of winter wheat and the significance of oligosaccharides for frost resistance. Fiziol Rast 12:70–77

    Google Scholar 

  • Tumanov II, Trunova TI, Smirnova NA, Zvereva GN (1976) Role of light in development of frost resistance of plants. Fiziol Rast 23:109–114

    Google Scholar 

  • Tumanov I, Krasasvtsev O (1959) Hardening of northern woody plants in temperatures below zero. Sov Plant Physiol 6:654–657

    Google Scholar 

  • Tursman D, Duman JG (1995) Cryoprotective effects of thermal hysteresis protein on survivorship of frozen gut cells from the freeze tolerant centipede Lithobius forficatus. J Exp Zool 272:249–257

    CAS  Google Scholar 

  • Uemura M, Joseph RA, Steponkus PL (1995) Cold acclimation of Arabidopsis thaliana (effect on plasma membrane lipid composition and freeze-induced lesions). Plant Physiol 109(1):15–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uemura M, Steponkus P (2003) Modification of the intracellular sugar content alters the incidence of freeze-induced membrane lesions of protoplasts isolated from Arabidopsis thaliana leaves. Plant Cell Environ 26(7):1083–1096

    CAS  Google Scholar 

  • Uemura M, Tominaga Y, Nakagawara C, Shigematsu S, Minami A, Kawamura Y (2006) Responses of the plasma membrane to low temperatures. Physiol Plant 126(1):81–89

    CAS  Google Scholar 

  • Urrutia M, Duman JG, Knight CA (1992) Plant thermal hysteresis proteins. Biochim Biophys Acta 1121:199–206

    CAS  PubMed  Google Scholar 

  • Walters KR, Serianni A, Sformo T, Barnes BM, Duman JG (2009) A nonprotein thermal hysteresis-producing xylomannan antifreeze in the freeze-tolerant Alaskan beetle Upis ceramboides. Proc Natl Acad Sci U S A 106:20210–20215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walters KR, Serianni AS, Voituron Y, Sformo T, Barnes BM, Duman JG (2011) A thermal hysteresis-producing xylomannan glycolipid antifreeze associated with cold tolerance is found in diverse taxa. J Comp Physiol B 181:631–640

    CAS  PubMed  Google Scholar 

  • Wang Y, Qiu L, Dai C, Wang J, Luo J, Zhang F, Ma J (2008) Expression of insect (Microdera puntipennis dzungarica) antifreeze protein MpAFP149 confers the cold tolerance to transgenic tobacco. Plant Cell Rep 27(8):1349–1358

    CAS  PubMed  Google Scholar 

  • Wang ZP, Yang PZ, Fan BF, Chen Z (1998) An oligo selection procedure for identification of sequence-specific DNA-binding activities associated with the plant defense response. Plant J 16:515–522

    CAS  PubMed  Google Scholar 

  • Webb MS, Uemura M, Steponkus PL (1994) A comparison of freezing injury in oat and rye: two cereals at the extremes of freezing tolerance. Plant Physiol 104:467–478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weiser C (1970) Cold resistance and injury in woody plants. Science 169(3952):1269–1278

    CAS  PubMed  Google Scholar 

  • Willick IR, Takahashi D, Fowler DB, Uemura M, Tanino KK (2018) Tissue-specific changes in apoplastic proteins and cell wall structure during cold acclimation of winter wheat crowns. J Exp Bot 69:1221–1234. https://doi.org/10.1093/jxb/erx450

  • Wisniewski ME, Gusta LV, Fuller MP, Karlson D (2009) Ice nucleation, propagation and deep supercooling: the lost tribes of freezing studies. In: Gusta LV, Wisniewski ME, Tanino K (eds) Plant cold hardiness: from the laboratory to the field. CAB International, Cambridge, pp 1–11

    Google Scholar 

  • Wisniewski M (1995) Deep supercooling in woody plants and the role of cell wall structure. In: Lee RE, Warren GJ, Gusta LV (eds) Biological ice nucleation and its applications. APS Press, Minneapolis, MN, pp 163–181

    Google Scholar 

  • Wisniewski M, Davis G, Arora R (1991) Effect of macerase, oxalic acid, and EGTA on deep supercooling and pit membrane structure of xylem parenchyma of peach. Plant Physiol 96(4):1354–1359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wisniewski M, Gusta L, Neuner G (2014) Adaptive mechanisms of freeze avoidance in plants: a brief update. Environ Exp Bot 99:133–140

    CAS  Google Scholar 

  • Wisniewski M, Webb R, Balsamo R, Close TJ, Yu X-M, Griffith M (1999) Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: a dehydrin from peach (Prunus persica). Physiol Plant 105(4):600–608. https://doi.org/10.1034/j.1399-3054.1999.105402.x

    Article  CAS  Google Scholar 

  • Worrall D, Elias E, Ashford D, Smallwood M, Sidebottom C, Lillford P, Telford J, Holt C (1998) A carrot leucine-rich repeat protein that inhibits ice recrystallization. Science 282:115–117

    CAS  PubMed  Google Scholar 

  • Xu H-N, Huang W, Jia C, Kim Y, Liu H (2009) Evaluation of water holding capacity and breadmaking properties for frozen dough containing ice structuring proteins from winter wheat. J Cereal Sci 49(2):250–253

    CAS  Google Scholar 

  • Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43:174–181

    Google Scholar 

  • Yeh S, Moffatt BA, Griffith M, Xiong F, Yang DSC (2000) Chitinase genes responsive to cold encode antifreeze genes in winter cereals. Plant Physiol 124:1251–1264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida M, Abe J, Moriyama M, Shimokawa S, Nakamura Y (1997) Seasonal changes in the physical state of crown water associated with freezing tolerance in winter wheat. Physiol Plant 99(3):363–370

    CAS  Google Scholar 

  • Yoshida S, Uemura M (1984) Protein and lipid compositions of isolated plasma membranes from orchard grass (Dactylis glomerata L.) and changes during cold acclimation. Plant Physiol 75(1):31–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu XM, Griffith M (1999) Antifreeze proteins in winter rye leaves form oligomeric complexes. Plant Physiol 119:1361–1369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu XM, Griffith M (2001) Winter rye antifreeze activity increases in response to cold and drought, but not abscisic acid. Physiol Plant 112(1):78–86

    CAS  PubMed  Google Scholar 

  • Zachariassen KE, Kristensen E (2000) Ice nucleation and antinucleation in nature. Crybiology 41:257–279

    CAS  Google Scholar 

  • Zachariassen KE, Hammel HT (1976) Nucleating agents in the haemolymph of insects tolerant to freezing. Nature 262:285–287

    CAS  PubMed  Google Scholar 

  • Zamani A, Sturrock R, Ekramoddoullah A, Wiseman S, Griffith M (2003) Endochitinase activity in the apoplastic fluid of Phellinus weirii-infected Douglas-fir and its association with over wintering and antifreeze activity. For Pathol 33(5):299–316

    Google Scholar 

  • Zhang C, Zhang H, Wang L (2007a) Effect of carrot (Daucus carota) antifreeze proteins on the fermentation capacity of frozen dough. Food Res Int 40:763–769

    CAS  Google Scholar 

  • Zhang C, Zhang H, Wang L, Gao H, Guo XN, Yao HY (2007b) Improvement of texture properties and flavor of frozen dough by carrot (Daucus carota) antifreeze protein supplementation. J Agric Food Chem 55:9620–9626

    CAS  PubMed  Google Scholar 

  • Zhang SH, Wei YL, Liu J, Yu HM, Yin JH, Pan HY, Baldwin TC (2011) An apoplastic chitinase CpCHT1 isolated from the corolla of wintersweet exhibits both antifreeze and antifungal activities. Biol Plant 55:141–148

    CAS  Google Scholar 

  • Zhu B, Xiong A-S, Peng R-H, Xu J, Jin X-F, Meng X-R, Yao Q-H (2010) Over-expression of ThpI from Choristoneura fumiferana enhances tolerance to cold in Arabidopsis. Mol Biol Rep 37(2):961–966

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Wisniewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wisniewski, M., Willick, I.R., Duman, J.G., Livingston, D., Newton, S.S. (2020). Plant Antifreeze Proteins. In: Ramløv, H., Friis, D. (eds) Antifreeze Proteins Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-030-41929-5_7

Download citation

Publish with us

Policies and ethics