Skip to main content

Insect Antifreeze Proteins

  • Chapter
  • First Online:
Antifreeze Proteins Volume 1

Abstract

Insects are the most abundant and diverse group of animals on earth. Therefore, it is not surprising that they have evolved numerous, generally non-mutually exclusive, adaptations to permit survival at subzero temperatures. In general, these adaptations can be divided into those that prevent freezing of freeze susceptible species (freeze avoidance) and those that allow the insect to freeze and survive (freeze tolerance). Three types of ice-binding proteins (IBPs) are often involved in either freeze tolerance or avoidance, but they are not required for either, as numerous other adaptations are often employed either in concert with IBPs or in their absence: (1) Antifreeze proteins (AFPs) in freeze avoiding insects lower the freezing point of the hemolymph below the melting point, generating a difference between the two (thermal hysteresis) of generally 2–9 °C. AFPs (A) inhibit inoculative freezing initiated by surface ice across the cuticle and (B) promote supercooling by inhibiting ice nucleators. (2) Recrystallization inhibition proteins (RIPs), found in many freeze-tolerant species, produce a much smaller hemolymph thermal hysteresis, generally less than 1 °C, and function to prevent damaging recrystallization of ice. (3) Hemolymph ice-nucleating proteins (INPs), present in many freeze-tolerant insects, function to initiate ice nucleation in the extracellular fluid at high subzero temperatures, thereby inhibiting lethal intracellular freezing that can follow freezing after significant supercooling. Details of the physiology and biochemistry of these IBPs will be discussed, along with the roles of the other subzero adaptations. Also, potential AFP functions other than prevention of freezing will be mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amornwittawat N, Wang S, Duman JG, Wen X (2008) Polycarboxylates enhance beetle antifreeze protein activity. Biochim Biophys Acta 1784:1942–1948

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amornwittawat N, Wang S, Banatlao J, Chung M, Velasco E, Duman JG, Wen X (2009) Effects of polyhydroxy compounds on beetle antifreeze protein activity. Biochim Biophys Acta 1794:341–346

    CAS  PubMed  Google Scholar 

  • Andorfer CA, Duman JG (2000) Isolation and characterization of cDNA clones encoding antifreeze proteins of the Pyrochroid beetle Dendroides canadensis. J Insect Physiol 46:365–372

    CAS  PubMed  Google Scholar 

  • Bale JS, Hansen TN, Baust JG (1989) Nucleators and sites of nucleation in the freeze tolerant larvae of the gallfly Eurosta solidaginis (Fitch). J Insect Physiol 35:291–298

    Google Scholar 

  • Bale JS, Worland MR, Block W (2000) Thermal tolerance and acclimation response of the subAntarctic beetle Hydromediom sparsutam. Polar Biol 23:77–84

    Google Scholar 

  • Basu K, Graham LA, Campbell RL, Davies PL (2015) Flies expand the repertoire of protein structures that bind ice. Proc Natl Acad Sci USA 112:737–742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baumer A, Duman JG, Havenith M (2016) Ice nucleation of an insect lipoprotein ice nucleator (LPIN) correlates with retardation of the hydrogen bond dynamics at the myo-inositol ring. Phys Chem Chem Phys 18:19318–19323

    PubMed  Google Scholar 

  • Baust JG, Zachariassen KE (1983) Seasonally active cell matrix associated ice nucleators in an insect. Cryo-Lett 4:65–71

    Google Scholar 

  • Bennett VA, Sformo T, Walters K, Toien O, Jeannet K, Hochstrasser R, Pan Q, Serianni AS, Barnes BM, Duman JG (2005) Comparative overwintering physiology of Alaska and Indiana populations of the beetle Cucujus clavipes (Fabricus): roles of antifreeze proteins, polyols, dehydration, and diapause. J Exp Biol 208:4467–4477

    CAS  PubMed  Google Scholar 

  • Block W, Young SR (1979) Measurements of supercooling points in small arthropods and water droplets. CryoLetters 1:85–91

    Google Scholar 

  • Bolen DW (2004) Effects of naturally occurring osmolytes on protein stability and solubility: issues important in protein crystallization. Methods 34:312–344

    CAS  PubMed  Google Scholar 

  • Bremdal S, Zachariassen KE (1988) Thermal hysteresis factors and supercooling of hibernating Rhagium inquisitor beetles. In: Sehnal F, Zabza A, Denlinger DL (eds) Proceeding from endocrinological frontiers in physiological insect physiology. Wroclaw Technical University Press, Wroclaw, pp 187–191

    Google Scholar 

  • Brown CL, Bale JS, Walters KFA (2004) Freezing induces a loss of breeze tolerance in an overwintering insect. Proc R Soc Series B 271:1507–1511

    CAS  Google Scholar 

  • Buch JL, Ramløv H (2017) Detecting seasonal variation of antifreeze protein distribution in Rhagium mordax using immunofluorescence and high resolution microscopy. Cryobiology 74:132–140

    CAS  PubMed  Google Scholar 

  • Campbell EM, Ball A, Hoppler S, Bowman A (2008) Invertebrate aquaporins: a review. J Comp Physiol B 178:935–955

    CAS  PubMed  Google Scholar 

  • Cannon RJC, Block W (1988) Cold tolerance in microarthropods. Biol Rev 63:23–77

    Google Scholar 

  • Carrasco MA, Duman JG (2011) A cross-species compendium of proteins related to cold stress identified by bioinformatic approaches. J Insect Physiol 57:1127–1135

    CAS  PubMed  Google Scholar 

  • Carrasco MA, Buechler SA, Arnold RJ, Sformo T, Barnes BM, Duman JG (2011) Elucidating the biochemical overwintering adaptations of larval , a nonmodel organism, via high throughput proteomics. J Proteome Res 10(10):4634–4646

    CAS  PubMed  Google Scholar 

  • Carrasco MA, Buechler S, Arnold R, Sformo T, Barnes BM, Duman JG (2012) Investigating the deep supercooling ability of an Alaskan beetle, Cucujus clavipes puniceus, via high throughput proteomics. J Proteome 75:1220–1234

    CAS  Google Scholar 

  • Celik Y, Graham LA, Mok Y-F, Bar M, Davies PL, Braslavsky I (2010) Superheating of ice crystals in antifreeze protein solutions. Proc Natl Acad Sci USA 107:5423–5428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chown SL, Sinclair BJ (2010) The macrophysiology of insect cold tolerence. In: Denlinger DL, Lee RE (eds) Low temperature biology of insects. Cambridge University Press, Cambridge, pp 191–222

    Google Scholar 

  • Chown SL, Terblanche JS (2007) Physiological diversity in insects: evolutionary and and ecological contexts. Adv Insect Physiol 33:50–152

    Google Scholar 

  • Crich D, Rahaman MY (2011) Synthesis and verification of the xylomannan antifreeze substance from the freeze-tolerant Alaskan beetle Upis ceramboides. J Org Chem 76:8611–8620

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daley ME, Spyracopoulos L, Jia Z, Davies PL, Sykes BD (2002) Structure and dynamics of a β-helical antifreeze protein. Biochemist 4:5515–5525

    Google Scholar 

  • Danks HV (1991) Winter habitats and ecological adaptations for winter survival. In: Lee RE, Denlinger DL (eds) Insects at low temperature. Chapman and Hall, London, pp 231–259

    Google Scholar 

  • Davies PL (2014) Ice-binding proteins: a remarkable diversity of structures for stopping and starting ice growth. Trends Biochem Sci 39:548–555

    CAS  PubMed  Google Scholar 

  • Denlinger DL, Lee RE (eds). Low temperature biology of insects. Cambridge: Cambridge University Press; 2010. 390 pp.

    Google Scholar 

  • DeVries AL (1971) Glycoproteins as biological antifreeze agents in Antarctic fishes. Science 172:1152–1155

    CAS  PubMed  Google Scholar 

  • DeVries AL (1986) Antifreeze glycopeptides and peptides: interactions with ice and water. Meth Enzymol 127:293–303

    CAS  Google Scholar 

  • DeVries AL, Cheng C-HC (1992) The role of antifreeze glycopeptides and peptides in the survival of cold water fishes. In: Somero GN, Osmond CB, Bolis CL (eds) Water and life: comparative analysis of water relationships at the organismic, cellular, and molecular levels. Springer, Berlin, pp 303–315

    Google Scholar 

  • DeVries AL, Cheng C-HC (2005) Antifreeze proteins in polar fishes. In: Farrell AP, Steffensen JF (eds) Fish physiology, vol XXII. Academic, San Diego, pp 155–201

    Google Scholar 

  • DeVries AL, Lin Y (1977) Structure of a peptide antifreeze and mechanism of adsorption to ice. Biochem Biophys Acta 495:388–392

    CAS  PubMed  Google Scholar 

  • DeVries AL, Wohlschlag C (1969) Freezing resistance in some Antarctic fishes. Science 163:1073–1075

    CAS  PubMed  Google Scholar 

  • DeVries AL, Komatsu SK, Feeney RE (1970) Chemical and physical properties of freezing point-depressing glycoproteins from Antarctic fishes. J Biol Chem 245:2901–2908

    CAS  PubMed  Google Scholar 

  • DeVries AL, Vandenheede J, Feeney RE (1971) Primary structure of freezing point depressing glycoproteins. J Biol Chem 246:305–308

    CAS  PubMed  Google Scholar 

  • Doucet D, Tyshenko MG, Davies PL, Walker VK (2002) A family of expressed antifreeze protein genes from the moth, Choristoneura fumiferana. Eur J Biochem 269:38–46

    CAS  PubMed  Google Scholar 

  • Duman JG (1977a) The role of macromolecular antifreeze in the darkling beetle Meracantha contracta. J Comp Physiol B 115:279–286

    CAS  Google Scholar 

  • Duman JG (1977b) Variations in macromolecular antifreeze levels in larvae of the darkling beetle Meracantha contracta. J Exp Zool 201:85–93

    CAS  PubMed  Google Scholar 

  • Duman JG (1977c) The effects of temperature, photoperiod, and relative humidity on antifreeze production in larvae of the darkling beetle, Meracantha contracta. J Exp Zool 201:333–337

    Google Scholar 

  • Duman JG (1979) Thermal hysteresis factors in overwintering insects. J Insect Physiol 25:805–810

    CAS  Google Scholar 

  • Duman JG (1980) Factors involved in the overwintering survival of the freeze tolerant beetle, Dendroides canadensis. J Comp Physiol B 136:53–59

    CAS  Google Scholar 

  • Duman JG (1984a) Change in overwintering mechanism in the Cucujid beetle, Cucujus clavipes. J Insect Physiol 30:235–239

    CAS  Google Scholar 

  • Duman JG (1984b) Thermal hysteresis antifreeze proteins in the midgut fluid of overwintering larvae of the beetle Dendroides canadensis. J Exp Zool 230:355–361

    CAS  Google Scholar 

  • Duman JG (2001) Antifreeze and ice nucleator proteins in terrestrial arthropods. Annu Rev Physiol 63:327–357

    CAS  PubMed  Google Scholar 

  • Duman JG (2002) The inhibition of ice nucleators by insect antifreeze proteins is enhanced by glycerol and citrate. J Comp Physiol B 172:163–168

    CAS  PubMed  Google Scholar 

  • Duman JG (2015) Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function. J Exp Biol 218:1846–1855

    PubMed  Google Scholar 

  • Duman JG, DeVries AL (1972) Freezing behavior of aqueous solutions of glycoproteins from the blood of an Antarctic fish. Cryobiology 9:469–472

    CAS  PubMed  Google Scholar 

  • Duman JG, Horwath KL (1983) The role of hemolymph proteins in the cold tolerance of terrestrial arthropods. Annu Rev Physiol 45:261–270

    CAS  PubMed  Google Scholar 

  • Duman JG, Serianni AS (2002) The role of endogenous antifreeze protein enhancers in the hemolymph thermal hysteresis activity of the beetle Dendroides canadensis. J Insect Physiol 48:103–111

    CAS  PubMed  Google Scholar 

  • Duman JG, Horwath KL, Tomchaney AP, Patterson JL (1982) Antifreeze agents of terrestrial arthropods. Comp Biochem Physiol 73A:545–555

    CAS  Google Scholar 

  • Duman JG, Morris JP, Castellino FJ (1984) Purification and composition of an ice nucleating protein from queens of the hornet, Vespula maculata. J Comp Physiol B 154:79–83

    CAS  Google Scholar 

  • Duman JG, Neven LG, Beals JM, Olson KR, Castellino FJ (1985) Freeze tolerance adaptations, including haemolymph protein and lipoprotein ice nucleators, in larvae of the cranefly Tipula trivittata. J Insect Physiol 31:1–9

    CAS  Google Scholar 

  • Duman JG, Wu DW, Wolber PK, Mueller GM, Neven LG (1991a) Further characterization of the lipoprotein ice nucleator from freeze tolerant larvae of the cranefly Tipula trivittata. Comp Biochem Physiol B 99:599–607

    Google Scholar 

  • Duman JG, Xu L, Neven LG, Tursman D, Wu DW (1991b) Hemolymph proteins involved in insect subzero temperature tolerance: ice nucleators and antifreeze proteins. In: Lee RE, Denlinger DL (eds) Insects at low temperatures. Chapman and Hall, London, pp 94–127

    Google Scholar 

  • Duman JG, Wu DW, Yeung KL, Wolf EE (1992) Hemolymph proteins involved in the cold tolerance of terrestrial arthropods: antifreeze and ice nucleator proteins. In: Somero GN, Osmond CB (eds) Water and life. Springer, Berlin, pp 282–300

    Google Scholar 

  • Duman JG, Wu DW, Olsen TM, Urrutia M, Tursman D (1993) Thermal hysteresis proteins. Adv Low Temp Biol 2:131–182

    Google Scholar 

  • Duman JG, Olsen TM, Yeung KL, Jerva F (1995) The roles of ice nucleators in cold tolerant invertebrates. In: Lee RE, Warren GJ, Gusta LV (eds) Biological ice nucleation and its application. APS, St. Paul, pp 201–219

    Google Scholar 

  • Duman JG, Parmalee D, Goetz FW, Li N, Wu DW, Benjamin T (1998) Molecular characterization and sequencing of antifreeze proteins from larvae of the beetle Dendroides canadensis. J Comp Physiol B 168:225–232

    CAS  PubMed  Google Scholar 

  • Duman JG, Verleye D, Li N (2002) Site specific forms of antifreeze proteins in the beetle Dendroides canadensis. J Comp Physiol B 172:547–552

    CAS  PubMed  Google Scholar 

  • Duman JG, Bennett V, Sformo T, Hochstrasser R, Barnes BM (2004) Antifreeze proteins in Alaskan insects and spiders. J Insect Physiol 50:259–266

    CAS  PubMed  Google Scholar 

  • Duman JG, Walters KR, Sformo T, Carrasco MA, Nickell P, Barnes BM (2010) Antifreeze and ice nucleator proteins. In: Denlinger DL, Lee RE (eds) Low temperature biology of insects. Cambridge University Press, Cambridge, pp 59–90

    Google Scholar 

  • Ebbinghaus S, Meister K, Born B, DeVries AL, Gruebele M, Havenith M (2010) Antifreeze glycoprotein activity correlates with long-range protein−water dynamics. J Am Chem Soc 132(35):12210–12211

    CAS  PubMed  Google Scholar 

  • Ebbinghaus S, Meister K, Prigozhin MB, DeVries AL, Havenith M, Dzubiella J, Gruebele M (2012) Functional importance of short-range binding and long-range solvent interactions in helical antifreeze peptides. Biophys J 103(2):L20–L22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elnitsky MA, Haywood SAL, Rinehart JP, Denlinger DA Lee RE (2008) Cryoprotective dehydration and resistance to inoculative freezing in the Antarctic midge Belgica Antarctica. J Exp Biol 211:524–530

    PubMed  Google Scholar 

  • Fall R, Wolber PK (1995) Biochemistry of bacterial ice nuclei. In: Lee RE, Warren GJ, Gusta LV (eds) Biological ice nucleation and its application. APS, St. Paul, pp 63–83

    Google Scholar 

  • Fields PG, McNeil JN (1986) Possible duel cold-hardiness strategies in Cisseps fulvicollis (Lepidoptera: Arctiidae). Can Entomol 118:1309–1311

    Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    CAS  PubMed  Google Scholar 

  • Garnham CP, Campbell RL, Davies PL (2011a) Anchored clathrate waters bind antifreeze proteins to ice. Proc Natl Acad Sci USA 108:7363–7367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garnham CP, Campbell RL, Walker VK, Davies PL (2011b) Novel dimeric beta-helical model of an ice nucleation protein with bridged active sites. BMC Struct Biol 11:36

    Google Scholar 

  • Gauthier SY, Kay CM, Sykes BD, Walker VK, Davies PL (1998) Disulfide bond mapping and structural characterization of spruce budworm antifreeze protein. Eur J Biochem 258:445–453

    CAS  PubMed  Google Scholar 

  • Gehrken U (1988) Mechanisms involved in insect cold tolerance. Doctorate thesis, University of Oslo, Oslo

    Google Scholar 

  • Gehrken U (1992) Inoculative freezing and thermal hysteresis in the adult beetles Ips accuminatus and Rhagium inquisitor. J Insect Physiol 38:519–524

    Google Scholar 

  • Gehrken U, Stromme A, Lundheim R, Zachariassen KE (1991) Inoculative freezing in overwintering Tenebrionid beetle, Bolitophagus reticulates Panz. J Insect Physiol 37:683–687

    Google Scholar 

  • Graether SP, Jia Z (2001) Modeling Pseudomonas syringae ice-nucleation protein as a beta-helical protein. Biophys J 80:1169–1173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graether SP, Sykes BD (2004) Cold survival in freeze-intolerant insects. Eur J Biochem 271:3285–3296

    CAS  PubMed  Google Scholar 

  • Graether SP, Kuiper MJ, Gagné SM, Walker VK, Jia Z, Sykes BD, Davies PL (2000) β-Helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Nature 406:325–328

    CAS  PubMed  Google Scholar 

  • Graether SP, Gagné SM, Spyracopoulos L, Jia Z, Davies PL, Sykes BD (2003) Spruce budworm antifreeze protein: changes in structure and dynamics at low temperature. J Mol Biol 327:1155–1168

    CAS  PubMed  Google Scholar 

  • Graham LA, Liou Y-C, Walker VK, Davies PL (1997) Hyperactive antifreeze proteins from beetles. Nature 188:727–728

    Google Scholar 

  • Graham LA, Walker VK, Davies PL (2000) Developmental and environmental regulation of antifreeze proteins in the mealworm beetle Tenebrio molitor. FEBS J 267:6452–6458

    CAS  Google Scholar 

  • Graham LA, Qin W, Lougheed SC, Davies PL, Walker VK (2007) Evolution of hyperactive, repetitive antifreeze proteins in beetles. J Mol Evol 64:387–398

    CAS  PubMed  Google Scholar 

  • Green RL, Warren GJ (1985) Physical and functional repetition in a bacterial ice nucleation gene. Nature 317:645–648

    CAS  Google Scholar 

  • Griffith M, Yaish MW (2004) Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci 9:399–405

    CAS  PubMed  Google Scholar 

  • Grimstone AV, Mullinger AM, Ramsay JA (1968) Further studies on the rectal complex of the mealworm, Tenebrio molitor. Philos Trans R Soc Lond Ser B Biol Sci 248:344–382

    Google Scholar 

  • Guz N, Toprak U, Dageri A, Gurkan MO, Denlinger DL (2014) Identification of a putative antifreeze protein gene that is highly expressed during preparation for winter in the sunn pest, Eurygaster maura. J Insect Physiol 68:30–35

    CAS  PubMed  Google Scholar 

  • Hakim A, Nguyen JB, Basu K, Zhu DF, Thakral D, Davies PL, Isaacs FJ, Modis Y, Meng W (2013) Crystal structure of an insect antifreeze protein and its implications for ice binding. J Biol Chem 288:12295–12304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han EN, Bauce E (2000) Dormancy in the life cycle of the spruce budworm: physiological mechanisms and ecological implications. Recent Res Dev Entomol 3:43–54

    Google Scholar 

  • Holmstrup M, Sømme L (1998) Dehydration and cold hardiness in the Arctic collembolan Onychiurus arcticus Tullberg 1876. J Comp Physiol B 168:197–203

    Google Scholar 

  • Holmstrup M, Westh P (1994) Dehydration of earthworm cocoons exposed to cold: a novel cold hardiness mechanism. J Comp Physiol B 164:312–315

    Google Scholar 

  • Holmstrup M, Zachariassen KE (1996) Physiology of cold hardiness in earthworms: a review. Comp Biochem Physiol 115A:91–101

    CAS  Google Scholar 

  • Horwath KL, Duman JG (1982) Involvement of the circadian system in photoperiodic regulation of insect antifreeze proteins. J Exp Zool 219:267–270

    CAS  Google Scholar 

  • Horwath KL, Duman JG (1983a) Preparatory adaptations for winter survival in the cold hardy beetles, Dendroides canadensis and Dendroides concolor. J Comp Physiol B 151:225–232

    Google Scholar 

  • Horwath K, Duman JG (1983b) Photoperiodic and thermal regulation of antifreeze protein levels in the beetle Dendroides canadensis. J Insect Physiol 29:907–917

    CAS  Google Scholar 

  • Horwath KL, Duman JG (1983c) Induction of antifreeze protein production by juvenile hormone in larvae of the beetle, Dendroides canadensis. J Comp Physiol B 151:233–240

    CAS  Google Scholar 

  • Horwath KL, Duman JG (1984a) Yearly variations in the overwintering mechanism of the cold hardy beetle, Dendroides canadensis. Physiol Zool 57:40–45

    Google Scholar 

  • Horwath KL, Duman JG (1984b) Further studies on the involvement of the circadian system in photoperiodic control of antifreeze protein production in the beetle Dendroides canadensis. J Insect Physiol 30:947–955

    CAS  Google Scholar 

  • Horwath KL, Duman JG (1986) Thermoperiodic involvement in antifreeze protein production in the cold hardy beetle Dendroides canadensis: implications for photoperiodic time measurement. J Insect Physiol 32:799–806

    CAS  Google Scholar 

  • Husby JA, Zachariassen KE (1980) Antifreeze agents in the body fluids of winter active insects and spiders. Experientia 36:963–964

    CAS  Google Scholar 

  • Ishiwata A, Sakurai A, Nishimiya Y, Tsuda S, Ito Y (2011) Synthetic study and structural analysis of the antifreeze agent xylomannan from upis ceramboides. J Am Chem Soc 133(48):19524–19535

    CAS  PubMed  Google Scholar 

  • Izumi Y, Sonoda S, Yoshida H, Danks HV, Tsumuki H (2006) Role of membrane transport of water and glycerol in the freeze tolerance of the rice stem borer, Chilo suppressalis, Walker (Lepidoptera: Pyralidae). J Insect Physiol 52:215–220

    CAS  PubMed  Google Scholar 

  • Jia Z, Davies PL (2002) Antifreeze proteins: an unusual receptor-ligand interaction. Trends Biochem Sci 27:101–106

    CAS  PubMed  Google Scholar 

  • Keeling CI, Henderson H, Li M, Yuen M, Clark EL, Fraser JD, Huber DP, Liao NY, RoderickDocking T, Birol I, Chan SK, Taylor GA, Palmquist D, Jones SJ, Bohlmann J (2012) Transcriptome and full-length cDNA resources for the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major insect pest of pine forests. Insect Biochem Mol Biol 42:525–536

    CAS  PubMed  Google Scholar 

  • Knight CA (1967) The freezing of super-cooled liquids. Van Nostrand, Princeton, pp 8–48

    Google Scholar 

  • Knight CA, DeVries AL (1989) Melting inhibition by fish antifreeze glycopeptides. Science 254:505–507

    Google Scholar 

  • Knight CA, Duman JG (1986) Inhibition of recrystallization of ice by insect thermal hysteresis proteins: a possible cryoprotective role. Cryobiology 23:256–262

    CAS  Google Scholar 

  • Knight CA, DeVries AL, Oolman LD (1984) Fish antifreeze protein and the freezing and recrystallization of ice. Nature 308:295–296

    CAS  PubMed  Google Scholar 

  • Knight CA, Cheng CC, DeVries AL (1991) Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes. Biophys J 59:409–418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knight CA, Wen D, Laursen RA (1995) Nonequilibrium antifreeze peptides and the recrystallization of ice. Cryobiology 32:23–34

    CAS  PubMed  Google Scholar 

  • Kobashigawa Y, Nishimiya Y, Miura K, Ohgiya S, Miura A, Tsuda S (2005) A part of ice nucleation protein exhibits the ice-binding ability. FEBS Lett 579:1493–1497

    CAS  PubMed  Google Scholar 

  • Koeppe JK, Fuchs M, Chen TT, Hunt L-M, Kovalick GE, Briers T (1985) The role of juvenile hormone in reproduction. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 8. Pergamon, Oxford, pp 165–204

    Google Scholar 

  • Kostal V (2010) Cell structural modifications in insects at low temperatures. In: Denlinger DL, Lee RE (eds) Low temperature biology of insects. Cambridge University Press, Cambridge, pp 116–140

    Google Scholar 

  • Kostal V, Simek P, Zahradnıckova H, Cimlova J, Stetina T (2012) Conversion of the chill susceptible fruit fly larva (Drosophila melanogaster) to a freeze tolerant organism. Proc Natl Acad Sci USA 109:3270–3274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kostal V, Korbelova J, Poupardin R, Moos M, Simek P (2016a) Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanogaster. J Exp Biol 219:2358–2367

    PubMed  Google Scholar 

  • Kostal V, Mollaei M, Schottner K (2016b) Diapause induction as an interplay between seasonal token stimuli, and modifying and directly limiting factors: hibernation in Chymomyza costata. Physiol Entomol 41:344–357

    Google Scholar 

  • Krieger EI, Darden T, Nabuurs SB, Finkelstein A, Vriend G (2004) Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins 57:678–683

    CAS  PubMed  Google Scholar 

  • Kristiansen E, Pedersen S, Ramløv H, Zachariassen KE (1999) Antifreeze activity in the cerambycid beetle Rhagium inquisitor. J Comp Physiol B 169:55–60

    CAS  Google Scholar 

  • Kristiansen E, Ramløv H, Højrup P, Pedersen SA, Hagen L, Zachariassen KE (2011) Structural characteristics of a novel antifreeze protein from the longhorn beetle Rhagium inquisitor. Insect Biochem Mol Biol 41:109–117

    CAS  PubMed  Google Scholar 

  • Kristiansen E, Wilkens C, Vincents B, Friis D, Lorentzen AB, Jenssen H, Løbner-Olesen A, Ramløv H (2012) Hyperactive antifreeze proteins from longhorn beetles: some structural insights. J Insect Physiol 58:1502–1510

    CAS  PubMed  Google Scholar 

  • Larson DJ, Middle L, Vu H, Zhang W, Serianni AS, Duman J, Barnes BM (2014) Wood frog adaptations to overwintering in Alaska: new limits to freezing tolerance. J Exp Biol 217(12):2193–2200

    PubMed  Google Scholar 

  • Lee RE (2010) A primer on insect cold tolerance. In: Denlinger DL, Lee RE (eds) Low temperature biology of insects. Cambridge University Press, Cambridge, pp 3–34

    Google Scholar 

  • Lee RE, Denlinger DL (1991) Insects at low temperature. Chapman and Hall, New York, p 513

    Google Scholar 

  • Lee RE, Denlinger DL (2010) Rapid cold hardening: ecological significance and underpinning mechanisms. In: Denlinger DL, Lee RE (eds) Low temperature biology of insects. Cambridge University Press, Cambridge, pp 35–58

    Google Scholar 

  • Lee RE, Zachariassen KE, Baust JG (1981) Effect of cryoprotectants on the activity of hemolymph nucleating agents in physical solutions. Cryobiology 18:511–514

    CAS  PubMed  Google Scholar 

  • Lee RE, Mugnano JA, Taylor RT (1992) Endogenous crystalloid spheres regulate the supercooling point of the gall fly Eurosta solidaginis. Cryobiology 29:750–751

    Google Scholar 

  • Lee RE, Warren GJ, Gusta LV. Biological ice nucleation and its applications. St Paul: MN APS; 1995. 370 pp.

    Google Scholar 

  • Lee RE, Costanzo JP, Mugnano JA (1996) Regulation of supercooling and ice nucleation in insects. Eur J Entomol 93:405–418

    Google Scholar 

  • Li N, Andorfer CA, Duman JG (1998a) Enhancement of insect antifreeze protein activity by low molecular weight solutes. J Exp Biol 201:2243–2251

    CAS  PubMed  Google Scholar 

  • Li N, Chibber BAK, Castellino FJ, Duman JG (1998b) Mapping of disulfide bridges in antifreeze proteins from overwintering larvae of the beetle Dendroides canadensis. Biochemistry 37:6343–6350

    CAS  PubMed  Google Scholar 

  • Li Y, Gong H, Park HY (2000) Purification and partial characterization of thermal hysteresis proteins from overwintering larvae of the pine needle gall midge Thecodiplosis japonesis (Diptera: cecitomiidae). Cryo Lett 21:117–124

    CAS  Google Scholar 

  • Li J, Ma W, Ma J (2016) Heat inducible expression of antifreeze protein genes from the beetles Tenebrio molitor and Microdera punctipennis. Cryo Lett 37:10–18

    Google Scholar 

  • Lin F-H, Davies PL, Graham LA (2011) The thr- and ala-rich hyperactive antifreeze protein from inchworm folds as a flat silk-like β-helix. Biochemist 50:4467–4478

    CAS  Google Scholar 

  • Lindow SE (1983) The role of bacterial ice nucleation in frost injury to plants. Rev Phytopathol 21:363–384

    Google Scholar 

  • Lindow SE (1995) Control of epiphytic ice-nucleation-active bacteria for management of plant frost injury. In: Lee RE, Warren LGJ, Gusta LV (eds) Biological ice nucleation and its applications. APS, St. Paul, pp 239–256

    Google Scholar 

  • Liou Y-C, Thibault P, Walker VK, Davies PL, Graham LA (1999) A complex family of highly heterogeneous and internally repetitive hyperactive antifreeze proteins from the beetle Tenebrio molitor. Biochemistry 38:11415–11424

    CAS  PubMed  Google Scholar 

  • Liu K, Wang C, Ji Ma J, Shi G, Xi Yao X, Fang H, Yanlin Song Y, Wang J (2016) Janus effect of antifreeze proteins on ice nucleation. Proc Natl Acad Sci USA 113:14739–14744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lundheim R (1996) Adaptive and incidental biological ice nucleators. Doctorate thesis, Norwegian University of Science and Technology, Trondheim

    Google Scholar 

  • Lundheim R, Zachariassen KE (1993) Water balance of overwintering beetles in relation to strategies for cold tolerance. J Comp Physiol B 163:1–4

    Google Scholar 

  • Ma J, Wang J, Mao XF, Wang Y (2012) Differential expression of two antifreeze proteins in the desert beetle Anatolica polita (Coleoptera: Tenebriondae): seasonal variation and environmental effects. Cryo Lett 33:337–348

    CAS  Google Scholar 

  • Mao XI, Liu Z, Ma J, Pang H, Zhang F (2011) Characterization of a novel β-helix antifreeze protein from the desert beetle Anatolica polita. Cryobiology 62:91–99

    CAS  PubMed  Google Scholar 

  • Mazur P (1984) Freezing of living cells: mechanism and implications. Am J Physiol 247:C125–C142

    CAS  PubMed  Google Scholar 

  • Meister K, Ebbinghaus Y, Xu Y, Duman JG, DeVries AL, Gruebele DM, Leitner DM, Havenith M (2013) Long-range protein-water dynamics in hyperactive insect antifreeze proteins. Proc Natl Acad Sci U S A 110:1617–1622

    CAS  PubMed  Google Scholar 

  • Meister K, Duman JG, Xu Y, DeVries AL, Leitner DM, Havenith M (2014) The role of sulfates on antifreeze protein activity. J Phys Chem B 118(28):7920–7924

    CAS  PubMed  Google Scholar 

  • Meister K, Lotze S, Olijve LLC, DeVries AL, Duman JG, Voets IK, Bakker HJ (2015) Investigation of the ice-binding site of an insect antifreeze protein using sum-frequency generation spectroscopy. J Phys Chem Lett 6(7):1162–1167

    CAS  PubMed  Google Scholar 

  • Michaud MR, Denlinger DL (2010) Genomics, proteomics and metabolomics: finding the other players in insect cold tolerance. In: Denlinger DL, Lee RE (eds) Low temperature biology of insects. Cambridge University Press, Cambridge, pp 91–115

    Google Scholar 

  • Miller K (1982) Cold-hardiness strategies of some adult and immature insects overwintering in interior Alaska. Comp Biochem Physiol A Physiol 73(4):595–604

    Google Scholar 

  • Miller LK, Werner R (1987) Extreme supercooling as an overwintering strategy in three species of willow gall insects from interior Alaska. Oikos 49(3):253

    Google Scholar 

  • Mueller GM, Wolber PK, Warren GJ (1990) Clustering of ice nucleation protein correlates with ice nucleation activity. Cryobiology 27:416–422

    CAS  PubMed  Google Scholar 

  • Mugnano JA, Lee RE, Taylor RT (1996) Fat body cells and calcium phosphate sphrelules induce ice nucleation in the freeze tolerant larvae of the gall fly Eurosta solidaginis (Fitch). J Exp Biol 199:465–471

    CAS  PubMed  Google Scholar 

  • Neven LG, Duman JG, Beals JM, Castellino FJ (1986) Overwintering adaptations of the stag beetle, Ceruchus piceus: removal of ice nucleators in winter to promote supercooling. J Comp Physiol B 156:707–716

    CAS  Google Scholar 

  • Neven LG, Duman JG, Low MG, Sehl LC, Castellino FJ (1989) Purification and characterization of an insect hemolymph lipoprotein ice nucleator: evidence for the importance of phosphatidylinositol and apolipoprotein in the ice nucleator activity. J Comp Physiol B 159:71–82

    CAS  Google Scholar 

  • Nickell PK, Sass S, Verleye D, Blumenthall EM, Duman JG (2013) Antifreeze proteins in the primary urine of larvae of the beetle Dendroides canadensis (Latreille). J Exp Biol 216:1695–1703

    CAS  PubMed  Google Scholar 

  • Nicodemus J, O’Tousa JE, Duman JG (2006) Expression of a beetle, Dendroides anadensis, antifreeze protein in Drosophila melanogaster. J Insect Physiol 52:888–896

    CAS  PubMed  Google Scholar 

  • Nishimiya Y, Sato R, Miura A, Tsuda S (2006) Antifreeze protein of Dorcus curvidens binodulus. Submitted (JUN-2006) to EMBL/GenBank/DDBJ databases

    Google Scholar 

  • Nutt DR, Smith JC (2008) Duel function of the hydration layer around an antifreeze protein revealed by atomistic molecular dynamics simulations. J Am Chem Soc 130:13066–13073

    CAS  PubMed  Google Scholar 

  • Olive LC, Meister K, DeVries AL, Duman JG, Guo S, Bakker HJ, Voets IK (2016) Blocking rapid ice crystal growth through non-basal plane adsorption of antifreeze proteins. Proc Natl Acad Sci USA 113:3740–3745

    Google Scholar 

  • Olsen TM, Duman JG (1997a) Maintenance of the supercooled state in overwintering Pyrochroid beetle larvae, Dendroides canadensis: role of hemolymph ice nucleators and antifreeze proteins. J Comp Physiol B 167:105–113

    Google Scholar 

  • Olsen TM, Duman JG (1997b) Maintenance of the supercooled state in the gut of overwintering Pyrochroid beetle larvae, Dendroides canadensis: role of gut ice nucleators and antifreeze proteins. J Comp Physiol B 167:114–122

    Google Scholar 

  • Olsen TM, Sass SJ, Li N, Duman JG (1998) Factors contributing to seasonal increases in inoculative freezing resistance in overwintering fire-colored beetle larvae Dendroides canadensis (Pyrochroidae). J Exp Biol 201:1585–1594

    CAS  PubMed  Google Scholar 

  • Patterson J, Duman JG (1978) The role of thermal hysteresis producing antifreeze proteins in the low temperature tolerance and water balance of larvae of the mealworm, Tenebrio molitor. J Exp Biol 74:37–45

    Google Scholar 

  • Patterson JL, Duman JG (1979) Composition of a protein antifreeze from larvae of the beetle, Tenebrio molitor. J Exp Zool P 210:361–367

    CAS  Google Scholar 

  • Patterson JL, Duman JG (1982) Purification and composition of protein antifreezes with high cysteine contents from larvae of the beetle, Tenebrio molitor. J Exp Zool 219:381–384

    CAS  Google Scholar 

  • Patterson JL, Kelly TJ, Duman JG (1981) Purification and composition of a thermal hysteresis producing protein from the milkweed bug, Oncopeltus fasciatus. J Comp Physiol B 142:539–542

    CAS  Google Scholar 

  • Pedersen PG, Holmstrup M (2003) Freeze or dehydrate: only two options for the survival of subzero temperatures in the arctic enchytraeid Fridericia ratzeli. J Comp Physiol B 173:601–609

    CAS  PubMed  Google Scholar 

  • Pennisi E (2013) The CRISPR craze. Science 341:833–836

    CAS  PubMed  Google Scholar 

  • Pertaya N, Marshall CB, Celik Y, Davies PL, Braslavsky I (2008) Direct visualization of spruce budworm antifreeze protein interacting with ice: basal plane affinity confers hyperactivity. Biophys J 95:333–341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    CAS  PubMed  Google Scholar 

  • Philip BN, Yi S-X, Elnitsky MA, Lee RE (2008) Aquaporins play a role in desiccation and freeze tolerance in larvae of the goldenrod gall fly, Eurosta solidaginis. J Exp Biol 211:1114–1119

    CAS  PubMed  Google Scholar 

  • Qin W, Doucet D, Tyshenko MG, Walker VK (2007) Transcription of antifreeze protein genes in Choristoneura fumiferana. Insect Mol Biol 16:423–434

    CAS  PubMed  Google Scholar 

  • Qiu L, Mao X, Hou F, Ma J (2013) A novel function – thermal protective properties of an antifreeze protein from the summer desert beetle Microdera punctipennis. Cryobiology 66:60–68

    CAS  PubMed  Google Scholar 

  • Ramløv H (1999) Microclimate and variations in haemolymph composition in the freezing-tolerant alpine weta Hemideina maori Hutton (Orthoptera: Stenopelmatidae). J Comp Physiol B 169:224–235

    Google Scholar 

  • Ramløv H (2000) Aspects of natural cold tolerance in ectothermic animals. Hum Reprod 15:26–46

    PubMed  Google Scholar 

  • Ramløv H, Bedford J, Leader JP (1992) Freezing tolerance of the New Zealand alpine weta Hemideina maori hutton (Orthoptera: Stenopelmatidae). J Therm Biol 17:51–54

    Google Scholar 

  • Ramløv H, DeVries AL, Wilson PW (2005) Antifreeze glycoproteins from the antartic fish Dissostichus mawsoni studied by differential scanning calorimetry (DSC) in combination with nanolitre osmometry. Cryo Lett 26:73–84

    Google Scholar 

  • Ramsay RA (1964) The rectal complex of the mealworm, Tenebrio molitor L. (Coleoptera, Tenebrionidae). Philos Trans R Soc Lond Ser B Biol Sci 248:279–314

    Google Scholar 

  • Raymond JA, DeVries AL (1977) Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci USA 74:2589–2593

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond JA, Wilson PW, DeVries AL (1989) Inhibition of growth on nonbasal planes in ice by fish antifreeze. Proc Natl Acad Sci USA 86:881–885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reid DS, Folin AT, Lem CA (1985) The effect of solutes on the temperature of heterogeneous nucleation of ice from aqueous solution. CryoLetters 6:189–198

    CAS  Google Scholar 

  • Richardson JS, Richardson DC (2002) Natural beta-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc Natl Acad Sci USA 99:2754–2759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ring JA (1982) Freezing tolerant insects with low supercooling points. Comp Biochem Physiol 73A:605–612

    Google Scholar 

  • Rozsypal J, Košťál V (2018) Supercooling and freezing as eco-physiological alternatives rather than mutually exclusive strategies: a case study in Pyrrhocoris apterus. J Insect Physiol 111:53–62

    CAS  PubMed  Google Scholar 

  • Rozsypal J, Moos M, Šimekand P, Vladimıŕ KoŠtál V (2018) Thermal analysis of ice and glass transitions in insects that do and do not survive freezing. J Exp Biol 221:jeb170464. https://doi.org/10.1242/jeb.170464

    Article  PubMed  Google Scholar 

  • Salt RW (1936) Studies on the freezing process in insects. Tech Bull Univ Minn Agric Exp Station 116:1–41

    Google Scholar 

  • Salt RW (1953) The influence of food on cold hardiness of insects. Can Entomol 85:261–269

    Google Scholar 

  • Salt RW (1956) Freezing and melting points of insect tissues. Can J Zool 34:1–5

    Google Scholar 

  • Salt RW (1958) Role of glycerol in producing abnormally low supercooling and freezing points in an insect, Bracon cephi (Gahan). Nature 181:1281

    CAS  Google Scholar 

  • Salt RW (1959) Role of glycerol in the cold hardening of Bracon cephi (Gahan). Can J Zool 37:59–69

    CAS  Google Scholar 

  • Salt RW (1961) Principles of insect cold hardiness. Annu Rev Entomol 6:55–74

    Google Scholar 

  • Salt RW (1966) Factors influencing nucleation in supercooled insects. Can J Zool 44:117–133

    Google Scholar 

  • Schneppenheim R, Theede H (1980) Isolation and characterization of freezing point depressing peptides from larvae of Tenebrio molitor. Comp Biochem Physiol 67:561–568

    Google Scholar 

  • Scholander PF, Flagg W, Hock RJ, Irving L (1953) Studies on the physiology of frozen plants and animals in the arctic. J Cell Comp Physiol 42:1–56

    CAS  Google Scholar 

  • Sformo T, Kohl F, McIntyre J, Kerr P, Duman JG, Barnes BM (2009) Simultaneous freeze tolerance and avoidance in individual fungus gnats, Exechia nugatoria. J Comp Physiol B 179:897–902

    PubMed  Google Scholar 

  • Sformo T, Walters K, Jeannet K, McIntyre J, Wowk B, Fahy G, Barnes BM, Duman JG (2010) Deep supercooling, vitrification, and limited survival to −100°C in larvae of the Alaskan beetle Cucujus clavipes puniceus (Coleoptera: Cucujuidae). J Exper Biol 213:502–509

    CAS  Google Scholar 

  • Sformo T, McIntyre J, Walters KR, Barnes BM, Duman JG (2011) Probability of freezing in the freeze avoiding beetle larvae Cucujus clavipes puniceus (Coleoptera, Cucujidae) from interior Alaska. J Insect Physiol 57:1170–1177

    CAS  PubMed  Google Scholar 

  • Shier WT, Lin Y, DeVries AL (1975) Structure of the carbohydrate of antifreeze glycoproteins from an Antartic fish. FEBS Lett 54:135–138

    CAS  PubMed  Google Scholar 

  • Shimada K, Riihimaa A (1988) Cold acclimation, inoculative freezing and slow cooling: essential factors contributing to the freezing-tolerance in diapausing larvae of Chymomyza costata (Diptera: Drosophilidae). Cryo-Letters 9:5–10

    Google Scholar 

  • Sicheri F, Yang DSC (1995) Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature 375:427–431

    CAS  PubMed  Google Scholar 

  • Sinclair BJ (1999) Insect cold tolerance: how many kinds of frozen? Eur J Entomol 96:157–164

    Google Scholar 

  • Somero GN, Lockwood BL, Tomanek L (2017) Biochemical adaptation: response to environmental challenges from life’s origins to anthropocene. Sinauer Associates, Sunderland, p 572

    Google Scholar 

  • Sømme L (1978) Nucleating agents in the haemolymph of third instar larvae of Eurosta solidaginis (Fitch) (Diptera:Tephritidae). Norw J Entomol 25:187–188

    Google Scholar 

  • Sømme L (1982) Supercooling and winter survival in terrestrial insects. Comp Physiol Biochem 73A:519–543

    Google Scholar 

  • Southworth MW, Wolber PK, Warren GJ (1988) Nonlinear relationship between concentration and activity of a bacterial ice nucleation protein. J Biol Chem 263:15211–15216

    CAS  PubMed  Google Scholar 

  • Storey KB, Storey JM (1991) Biochemistry of cryoprotectants. In: Lee RE, Denlinger DL (eds) Insects at low temperature. Chapman and Hall, New York, pp 64–93

    Google Scholar 

  • Storey KB, Storey JM (2010) Oxygen: stress and adaptation in cold-hardy insects. In: Denlinger DL, Lee RE (eds) Low temperature biology of insects. Cambridge University Press, Cambridge, pp 141–165

    Google Scholar 

  • Sun T, Lin F-H, Campbell RL, Allingham JS, Davies PL (2014) An antifreeze protein folds with an interior network of more than 400 semi-clathrate waters. Science 343:795–798

    CAS  PubMed  Google Scholar 

  • Tanno K (1977) Ecological observation and frost-resistance in overwintering pre-pupa, Sciara sp. (Sciaridae). Low Temp Sci SerB 35:63–74

    Google Scholar 

  • Thomas MC (2002) Cucujidae Laetrille 1802. In: Arnett RH, Thomas MC, Skelley PE, Frank JH (eds) American beetles, vol 2. CRC, Boca Raton, pp 329–330

    Google Scholar 

  • Tomchaney AP, Morris JP, Kang SH, Duman JG (1982) Purification, composition and physical properties of a thermal hysteresis “antifreeze” protein from larvae of the beetle, Tenebrio molitor. Biochemistry 21:716–721

    CAS  PubMed  Google Scholar 

  • Tomczak MM, Hincha DK, Estrada SD, Wolkers WF, Crowe LM, Feeney RE, Tablin F, Crowe JH (2002) A mechanism for stabilization of membranes at low temperatures by an antifreeze protein. Biophys J 82:874–881

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tursman D, Duman JG (1995) Cryoprotective effects of thermal hysteresis protein on survivorship of frozen gut cells from the freeze tolerant centipede Lithobius forficatus. J Exp Zool 272:249–257

    CAS  Google Scholar 

  • Tursman D, Duman JG, Knight CA (1994) Freeze tolerance adaptations in the centipede Lithobius forficatus. J Exp Zool 268:347–353

    Google Scholar 

  • Tyshenko MG, Doucet D, Davies PL, Walker VK (1997) The antifreeze potential of the spruce budworm thermal hysteresis protein. Nat Biotechnol 15:887–890

    CAS  PubMed  Google Scholar 

  • Vali G (1995) Principles of icenucleation. In: Lee RE, Warren GJ, Gusta LV (eds) Biological ice nucleation and its applications. APS, St Paul, pp 1–28

    Google Scholar 

  • Vu HM, Duman JG (2017) Upper lethal temperatures in three cold-tolerant insects are higher in winter than in summer. J Exp Biol 220:2726–2732

    PubMed  Google Scholar 

  • Vu HM, Pennoyer JE, Ruiz KR, Portmann P, Duman JG (2019) Beetle, Dendroides canadensis, antifreeze proteins increased high temperature survivorship in transgenic fruit flies, Drosophila melanogaster. J Insect Physiol 112:68–72

    CAS  PubMed  Google Scholar 

  • Walters KR, Pan Q, Serianni AS, Duman JG (2009a) Cryoprotectant biosynthesis and selective accumulation of threitol in the freeze tolerant beetle, Upis ceramboides. J Biol Chem 284:16822–16831

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walters KR, Serianni AS, Sformo T, Barnes BM, Duman JG (2009b) A non-protein thermal hysteresis-producing xylomannan antifreeze in a freeze tolerant Alaskan beetle. Proc Natl Acad Sci USA 106:20210–20215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walters KR, Sformo T, Barnes BM, Duman JG (2009c) Freeze tolerance of an Arctic Alaska stonefly. J Exp Biol 212:305–312

    PubMed  Google Scholar 

  • Walters KR, Serianni AS, Voituron Y, Sformo T, Barnes BM, Duman JG (2011) A thermal hysteresis-producing xylomannan glycolipid antifreeze associated with cold-tolerance is found in diverse taxa. J Comp Physiol B 181:631–640

    CAS  PubMed  Google Scholar 

  • Wang L, Duman JG (2005) Antifreeze proteins of the beetle Dendroides canadensis enhance one another’s activities. Biochemist 44:10305–10312

    CAS  Google Scholar 

  • Wang L, Duman JG (2006) A thaumatin-like protein from larvae of the beetle Dendroides canadensis enhances the activity of antifreeze proteins. Biochemist 215:1278–1284

    Google Scholar 

  • Wang L, Amornwittawat N, Juwita V, Kayo Y, Duman JG, Pascal T, Goddard WA, Wen X (2009a) Arginine, a key residue for the enhancing ability of an antifreeze protein of the beetle Dendroides canadensis. Biochemist 48:9696–9703

    CAS  Google Scholar 

  • Wang S, Amornwittawat N, Banatlao J, Chung M, Kao Y, Wen X (2009b) Hofmeister effects of common monovalent salts on the beetle antifreeze protein activity. J Phys Chem B 113:13891–13894

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Wen X, Nikolovski P, Juvita V, Arafin JF (2012) Expanding the molecular recognition repertoire of antifreeze polypeptides: effects on nucleoside crystal growth. Chem Commun 48:11555–11557

    CAS  Google Scholar 

  • Wang S, Wen X, DeVries AL, Bagdagulyan Y, Morita A, Golen JA, Duman JG, Rheingold AL (2014) Molecular recognition of methyl α-D-mannopyranoside by anti-freeze (glyco) proteins. J Am Chem Soc 136:8973–8981

    CAS  PubMed  PubMed Central  Google Scholar 

  • Warner DT (1962) Some possible relationships of carbohydrates and other biological components with the water structure at 37°C. Nature 196:1055–1058

    CAS  Google Scholar 

  • Warren G, Corotto L (1989) The consensus sequence of ice nucleation proteins from Erwinia herbicola, Pseudomonas fluorescens and Pseudomonas syringae. Gene 85:239–242

    CAS  PubMed  Google Scholar 

  • Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) Swiss-model: homology modelling of protein structures and complexes. Nucleic Acids Res 46(W1):W296–W303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wen X, Wang S, Duman JG, Arafin JF, Juwita V, Goddard WA, Rios A, Liu F, Kim S-K, Abrol R, DeVries AL, Henling LM (2016) Antifreeze proteins govern the precipitation of trehalose in a freeze avoiding insect at low temperature. Proc Natl Acad Sci USA 113:6683–6688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wharton DA, Goodall G, Marshall CJ (2003) Freezing survival and cryoprotective dehydration as cold tolerance mechanisms in the Antarctic nematode Panagroulamis davidi. J Exp Biol 206:215–221

    PubMed  Google Scholar 

  • Wharton DA, Barrett J, Goodall G, Marshall CJ, Ramlov H (2005) Ice-active proteins from the Antarctic nematode Panagrolaimus davidi. Cryobiology 51:198–207

    CAS  PubMed  Google Scholar 

  • Wharton DA, Pow B, Kristensen M, Ramlov HR, Marshall CJ (2009) Ice-active proteins and cryoprotectants from the New Zealand alpine cockroach Celatoblatta quinquemaculata. J Insect Physiol 55:27–31

    CAS  PubMed  Google Scholar 

  • Wilkens C, Ramløv H (2009) Seasonal variations in antifreeze protein activity and haemolymph osmolality in larvae of the beetle Rhagium mordax (Coleoptera: Cerambycidae). CryoLetters 29:293–300

    Google Scholar 

  • Wilson EO (1988) The current state of biological diversity. In: Wilson EO, Peter FM (eds) Biological diversity. National Academy Press, Washington, DC, pp 3–18

    Google Scholar 

  • Wilson P, Ramlov H (1995) Hemolymph ice nucleating proteins from the New Zealand alpine weta Hemideina maori (Orthoptera: Stenopelmatidae). Comp Biochem Physiol B112:535–542

    Google Scholar 

  • Wolber PK, Warren GJ (1989) Bacterial ice nucleating proteins. Trends Biochem Sci 14:179–182

    CAS  PubMed  Google Scholar 

  • Worland MR, Block W (2003) Desiccation stress at subzero temperatures in polar terrestrial arthropods. J Insect Physiol 49:193–203

    CAS  PubMed  Google Scholar 

  • Wu DW, Duman JG (1991) Activation of antifreeze proteins from the beetle Dendroides canadensis. J Comp Physiol B 161:279–283

    CAS  Google Scholar 

  • Wu DW, Duman JG, Cheng C-HC Castellino FJ (1991) Purification and characterization of antifreeze proteins from larvae of the beetle Dendroides canadensis. J Comp Physiol B 161:271–278

    CAS  Google Scholar 

  • Xu L, Duman JG (1991) Involvement of juvenile hormone in the induction of antifreeze protein production by fat body of larvae of the beetle Dendroides canadensis. J Exp Zool 258:288–293

    CAS  Google Scholar 

  • Xu L, Neven LG, Duman JG (1990) Hormonal control of hemolymph lipoprotein ice nucleators in overwintering freeze susceptible larvae of the stag beetle Ceruchus piceus: adipokinetic hormone and juvenile hormone. J Comp Physiol B 160:51–59

    CAS  Google Scholar 

  • Xu L, Duman JG, Goodman WG, Wu DW (1992) A role for juvenile hormone in the induction of antifreeze protein production by the fat body in the beetle Tenebrio molitor. Comp Biochem Physiol B 101:105–109

    Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic, and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    CAS  PubMed  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222

    CAS  PubMed  Google Scholar 

  • Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43:174–181

    Google Scholar 

  • Yeung KL, Wolf EE, Duman JG (1991) A scanning tunneling microscopy study of an insect lipoprotein ice nucleator. J Vac Sci Technol B 9:1197–1201

    CAS  Google Scholar 

  • Zachariassen KE (1982) Nucleating agents in cold hardy insects. Comp Biochem Physiol A 73:557–562

    Google Scholar 

  • Zachariassen KE (1985) Physiology of cold tolerance in insects. Physiol Rev 65:799–832

    CAS  PubMed  Google Scholar 

  • Zachariassen KE (1992) Ice nucleating agents in cold-hardy insects. In: Somero GN, Osmond CB, Bolis CL (eds) Water and life: comparative analysis of water relationships at the organismic, cellular and molecular level. Springer, Berlin, pp 262–281

    Google Scholar 

  • Zachariassen KE, Hammel HT (1976) Nucleating agents in the haemolymph of insects tolerant to freezing. Nature 262:285–287

    CAS  PubMed  Google Scholar 

  • Zachariassen KE, Husby JA (1982) Antifreeze effects of thermal hysteresis agents protect highly supercooled insects. Nature 298:865–867

    Google Scholar 

  • Zachariassen KE, Baust JG, Lee RE (1982) A method for quantitative determination of ice nucleating agents in insect haemolymph. Cryobiology 19:180–184

    CAS  PubMed  Google Scholar 

  • Zachariassen KE, DeVries AL, Hunt B, Kristiansen E (2002) Effect of ice fraction and dilution factor on the antifreeze activity in the hemolymph of the cerambycid beetle Rhagium inquisitor. Cryobiology 44:132–141

    CAS  PubMed  Google Scholar 

  • Zachariassen KE, Kristansen E, Pedersen SA, Hammel HT (2004) Ice nucleation in solutions and freezing in insects – homogeneous or heterogeneous? Cryobiology 48:309–321

    PubMed  Google Scholar 

  • Zachariassen KE, Li NG, Laugsand AE, Kristiansen E, Pedersen SA (2008) Is the strategy for cold hardiness in insects determined by their water balance? A study on two closely related families of beetles: Cerambycidae and Chrysomelidae. J Comp Physiol B 178:977–984

    CAS  PubMed  Google Scholar 

  • Zachariassen KE, Duman JG, Kristiansen E, Pedersen S, Li N (2011) Ice nucleation and antifreeze proteins in animals. In: Graether S (ed) Biochemistry and function of antifreeze proteins. Nova Science, New York, pp 73–104

    Google Scholar 

  • Zhang W, Oliver AV, Vu HM, Duman JG, Serianni AS (2012) Methyl 4-O-ß-D-mannopyranosyl ß-D-xylopyranoside. Acta Crystallogr C68:0502–0506

    Google Scholar 

  • Zhang W, Oliver AG, Vu HM, Duman JG, Serianni AS (2013) Methyl 4-O-ß-D-xylopyranosyl ß-D-mannopyranoside. Acta Crystallogr C69:1047–1050

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Duman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duman, J.G., Newton, S.S. (2020). Insect Antifreeze Proteins. In: Ramløv, H., Friis, D. (eds) Antifreeze Proteins Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-030-41929-5_6

Download citation

Publish with us

Policies and ethics