Skip to main content

Fish Antifreeze Proteins

  • Chapter
  • First Online:
Antifreeze Proteins Volume 1

Abstract

Fish antifreeze proteins (APs) including both glycoproteins and small proteins are associated with freezing avoidance in most polar fishes. There are two major types of APs, the antifreeze glycoproteins (AFGPs) found in Antarctic notothenioid fishes and northern cod fishes (gadids) and three other structurally unique small antifreeze proteins (AFPs) in unrelated taxa. Although the APs differ in composition, size, and structure, on a molar basis almost all depress the freezing point of water to the same extent by adsorbing to and inhibiting the growth of ice by the Kelvin effect. Liver is the site of synthesis and source of the blood APs except in the Antarctic notothenioids. Pancreatic tissues also synthesize APs that enter the anterior intestine where they prevent freezing of the hyposmotic intestinal fluid. Occasionally ice crystals most likely enter at the gills or intestinal mucosa and APs bind to them and inhibit their growth. Systemic macrophages recognize the AP decorated crystals, phagocytose them, and migrate to the spleen. Seasonal exposure to warm water less than −1 °C melts the ice in some fish, but this is not an option for those inhabiting year round freezing seawater and the fate of their splenic ice is unknown. Aglomerular kidneys conserve the APs in the circulation in many fishes and if glomeruli are present, they are generally non-functional. Some body fluids lack APs such as the urine and ocular fluids and the stable undercooled state is maintained because the surrounding tissues are fortified with APs. There is a correlation between severity of the environment and levels of blood APs with the caveat that in some northern fishes there is a seasonal presence of APs in some cods, eel pouts, sculpins, and flounder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlgren JA, Devries AL (1984) Comparison of antifreeze glycoproteins from several Antarctic fishes. Polar Biol 3:93–97

    CAS  Google Scholar 

  • Ahlgren JA, Cheng C-HC, Schrag JD, Devries AL (1988) Freezing avoidance and the distribution of antifreeze glycopeptides in body fluids and tissues of Antarctic fish. J Exp Biol 137:549–563

    CAS  PubMed  Google Scholar 

  • Antson AA, Smith DJ, Roper DI, Lewis S, Caves LSD, Verma CS, Buckley SL, Lillford PJ, Hubbard RE (2001) Understanding the mechanism of ice binding by type III antifreeze proteins. J Mol Biol 305:875–889

    CAS  PubMed  Google Scholar 

  • Baardsnes J, Davies PL (2001) Sialic acid synthase: the origin of fish type III antifreeze protein? TIBS 24:468–469

    Google Scholar 

  • Baardsnes J, Kondejewski LH, Hodges RS, Chao HM, Kay C, Davies PL (1999) New ice-binding face for type I antifreeze protein. FEBS Lett 463:87–91

    CAS  PubMed  Google Scholar 

  • Baardsnes J, Jelokhani-Niaraki M, Kondejewski LH, Kuiper MJ, Kay CM, Hodges RS, Davies PL (2001) Antifreeze protein from shorthorn sculpin: identification of the ice-binding surface. Protein Sci 10:2566–2576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bar DM, Bernheim R, Guo AS, Davies PL, Braslavsky I (2016) Putting life on ice: bacteria that bind to frozen water. J R Soc Interface 13:121. https://doi.org/10.1098/rsif.2016.0210

    Article  CAS  Google Scholar 

  • Bielecki A, Rokicka M, Ropelewska E, Dziekonska-Rynko J (2008) Leeches (Hirudinida: Piscicolidae) – parasites of Antarctic fish from Channichthyidae family. Wiad Parazytol 54(4):345–348

    PubMed  Google Scholar 

  • Bilyk K, Devries AL (2010) Freezing avoidance of the Antarctic ice fishes (Channichthyidae) across thermal gradients in the Southern Ocean. Polar Biol 33(2):203–213

    Google Scholar 

  • Black VS (1951) Some aspects of the physiology of fish. Univ Tor Stud Biol Ser 71:53–89

    Google Scholar 

  • Boyd RB, Devries AL (1983) The seasonal distribution of anionic binding sites in the basement membrane of the kidney glomerulus of the winter flounder Pseudopleuronectes americanus. Cell Tissue Res 234:271–277

    CAS  PubMed  Google Scholar 

  • Braslavsky I, Drori R (2013) LabVIEW-operated novel nanoliter osmometer for ice binding protein investigations. J Vis Exp 72:e4189

    Google Scholar 

  • Brown JD, Sonnichsen FD (2002) The structure of fish antifreeze proteins. In: Ewart KV, Hew CL (eds) Fish antifreeze proteins. World Scientific, Singapore

    Google Scholar 

  • Burcham TS, Osuga DT, Chino H, Feeney RE (1984) Analysis of antifreeze glyco-proteins in fish serum. Anal Biochem 139:197–204

    CAS  PubMed  Google Scholar 

  • Bush CA, Feeney RE (1986) Conformation of the glycotripeptide repeating unit of antifreeze glycoprotein of polar fish as determined from the fully assigned proton N.M.R. spectrum. Int J Pept Protein Res 28:386–397

    CAS  PubMed  Google Scholar 

  • Celik Y, Drori R, Pertaya-Braun N, Altan A, Barton T, Bar-Dolev M, Groisman A, Davies PL, Braslavsky I (2013) Microfluidic experiments reveal that antifreeze proteins bound to ice crystals suffice to prevent their growth. Proc Natl Acad Sci U S A 110:1309–1314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabartty A, Yang DS, Hew CL (1989) Structure-function relationship in a winter flounder antifreeze polypeptide: II. Alteration of the component growth rates of ice by synthetic antifreeze polypeptides. J Biol Chem 264:11313–11316

    CAS  PubMed  Google Scholar 

  • Chao HM, Deluca CI, Davies PL (1995) Mixing antifreeze protein types changes ice crystal morphology without affecting antifreeze activity. FEBS Lett 357:183–186

    CAS  PubMed  Google Scholar 

  • Chao H, Houston ME, Hodges RS, Kay CM, Sykes BD, Loewen MC, Davies PL, Sonnichsen FD (1997) A diminished role for hydrogen bonds in antifreeze protein binding to ice. Biochemistry 36:14625–14660

    Google Scholar 

  • Chen L, Devries AL, Cheng C-HC (1997a) Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc Natl Acad Sci U S A 94:3811–3816

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Devries AL, Cheng C-HC (1997b) Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod. Proc Natl Acad Sci U S A 94:3817–3822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng C-HC (1996) Genomic basis for antifreeze glycopeptide heterogeneity and abundance in Antarctic notothenioid fishes. In: Ennion SJ, Goldspink G (eds) Gene expression and manipulation in aquatic organisms. Cambridge University Press, Cambridge

    Google Scholar 

  • Cheng C-HC (1998) Evolution of the diverse antifreeze proteins. Curr Opin Genet Dev 8:715–720

    CAS  PubMed  Google Scholar 

  • Cheng C-HC, Detrich HW III (2007) Molecular ecophysiology of Antarctic notothenioid fishes. Phil Trans R Soc Lond B 362:2215–2232

    CAS  Google Scholar 

  • Cheng C-HC, Devries AL (1989) Structures of antifreeze peptides from the Antarctic eel pout, Austrolycichthys brachycephalus. Biochim Biophys Acta 997:55–64

    CAS  PubMed  Google Scholar 

  • Cheng Y, Yang Z, Tan H, Liu R, Chen G, Jia Z (2002) Analysis of ice-binding sites in fish type II antifreeze protein by quantum mechanics. Biophys J 83:2202–2210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng C-HC, Cziko AP, Evans CW (2006) Non-hepatic origin of notothenioid antifreeze reveals pancreatic synthesis as common mechanism in polar fish freezing avoidance. Proc Natl Acad Sci U S A 103:10491–10497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke A (1987) Seasonality in the Antarctic marine environment. Comp Biochem Physiol 90:461–473

    Google Scholar 

  • Clarke CJ, Buckley SL, Linder N (2002) A new name for antifreeze proteins–ice structuring proteins. CryoLetters 23:89–92

    CAS  PubMed  Google Scholar 

  • Cohen DM, Inada T, Iwamoto T, Scialabba N (1990) Gadiform fishes of the world. FAO, Rome

    Google Scholar 

  • Cole AM, Peddrick W, Diamond G (1997) Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J Biol Chem 272:12008–12013

    CAS  PubMed  Google Scholar 

  • Cziko P, Evans CW, Cheng C-HC, Devries AL (2006) Freezing resistance of antifreeze-deficient larval Antarctic fish. J Exp Biol 209:407–420

    CAS  PubMed  Google Scholar 

  • Cziko PA, Devries AL, Evans CW, Cheng C-HC (2014) Antifreeze protein-induced superheating of ice inside Antarctic notothenioid fishes inhibits melting during summer warming. Proc Natl Acad Sci U S A 111:14583–14588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies PL (2014) Ice-binding proteins: a remarkable diversity of structures for stopping and starting ice growth. Trends Biochem Sci 39:548–559

    CAS  PubMed  Google Scholar 

  • Davies PA, Baardsnes J, Kuiper MJ, Walker VK (2002) Structure and function of antifreeze proteins. Philos Trans R Soc Lond Ser B Biol Sci 357:927–935

    CAS  Google Scholar 

  • Deluca CI, Davies PL, Ye Q, Jia Z (1998) The effects of steric mutations on the structure of type III antifreeze protein and its interaction with ice. J Mol Biol 275:515–552

    CAS  PubMed  Google Scholar 

  • Demarest JR (1984) Ion and water transport by the flounder urinary bladder: salinity dependence. J Physiol 246:F395

    CAS  Google Scholar 

  • Dempson JB, Kristofferson AH (1987) Spatial and temporal aspects of the ocean migration of anadromous Arctic char. Am Fish Soc Symp 1:340–357

    Google Scholar 

  • Deng G, Laursen RA (1998) Isolation and characterization of an antifreeze protein from the longhorn sculpin, Myoxocephalus octodecimspinosis. Biochim Biophys Acta 1388:305–314

    CAS  PubMed  Google Scholar 

  • Deng G, Andrews DW, Laursen RA (1997) Amino acid sequence of a new type of antifreeze protein from the long horn sculpin Myoxocephalus octodecimspinosis. FEBS Lett 402:17–20

    CAS  PubMed  Google Scholar 

  • Deng C, Cheng C-H, Ye H, He X, Chen L (2010) Evolution of an antifreeze protein by neofunctionalization under escape from adaptive conflict. Proc Natl Acad Sci U S A 107:21593–21598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Denstad J-P, Aunaas T, Borseth JF, Aaset AV, Zachariassen KE (1987) Thermal hysteresis antifreeze agents in fishes from Spitsbergen waters. Polar Res 5:171–174

    Google Scholar 

  • Desjardins M, Graham LA, Davies PL, Fletcher GL (2012) Antifreeze protein gene amplification facilitated niche exploitation and speciation in wolffish. FEBS J 279:2215–2230

    CAS  PubMed  Google Scholar 

  • Devries AL (1970) Freezing resistance in Antarctic fishes. In: Holdgate MW (ed) Antarctic ecology. Academic, New York

    Google Scholar 

  • Devries AL (1971) Glycoproteins as biological antifreeze agents in Antarctic fishes. Science 172:1152–1155

    CAS  PubMed  Google Scholar 

  • Devries AL (1982) Biological antifreeze agents in cold water fishes. Comp Biochem Physiol 73A:627–640

    CAS  Google Scholar 

  • Devries AL (1984) Role of glycopeptides and peptides in inhibition of crystallization of water in polar fishes. Philos Trans R Soc Lond B Biol Sci B304:575–588

    Google Scholar 

  • Devries AL (1986) Glycopeptide and peptide antifreeze - interaction with ice. Methods Enzymol 127:293–303

    CAS  PubMed  Google Scholar 

  • Devries AL (1988) The role of antifreeze glycopeptides and peptides in the freezing avoidance of Antarctic fishes. Comp Biochem Physiol 90B:611–621

    CAS  Google Scholar 

  • Devries AL, Cheng C-HC (2005) Antifreeze proteins and organismal freezing avoidance in polar fishes. In: Farrell AP, Steffensen JF (eds) The physiology of polar fishes. Elsevier, San Diego

    Google Scholar 

  • Devries AL, Lin Y (1977) Structure of a peptide antifreeze and mechanism of adsorption to ice. Biochim Biophys Acta 495:388–392

    CAS  PubMed  Google Scholar 

  • Devries AL, Steffensen JF (2005) The Arctic and Antarctic polar marine environments. In: Farrell AP, Steffensen JF (eds) The physiology of polar fishes. Elsevier, San Diego

    Google Scholar 

  • Devries AL, Wohlschlag DE (1969) Freezing resistance in some Antarctic fishes. Science 163:1073–1075

    CAS  PubMed  Google Scholar 

  • Devries AL, Komatsu SK, Feeney RE (1970) Chemical and physical properties of freezing point depressing glycoproteins from Antarctic fishes. J Biol Chem 245:2901–2908

    CAS  PubMed  Google Scholar 

  • Dieckmann G, Rohardt G, Hellmer H, Kipfstuhl J (1986) The occurrence of ice platelets at 250 m depth near the Filchner Ice Shelf and its significance for sea ice biology. Deep-Sea Res 33:141–148

    Google Scholar 

  • Dobbs GH, Devries AL (1975) Renal function in Antarctic teleost fishes: serum and urine composition. Mar Biol 29:59–70

    CAS  Google Scholar 

  • Dobbs GH, Lin YL, Devries AL (1974) Aglomerularism in Antarctic fish. Science 185:793–794

    CAS  PubMed  Google Scholar 

  • Duman JG (2001) Antifreeze and ice nucleator proteins in terrestrial arthropods. Annu Rev Physiol 63:327–357

    CAS  PubMed  Google Scholar 

  • Duman JG, Devries AL (1974a) The effects of temperature and photoperiod on antifreeze production in cold water fishes. J Exp Zool 190:89–97

    CAS  PubMed  Google Scholar 

  • Duman JG, Devries AL (1974b) Freezing resistance in winter flounder, Pseudopleuronectes americanus. Nature 247:237–238

    CAS  Google Scholar 

  • Duman JG, Devries AL (1975) The role of macromolecular antifreezes in cold water fishes. Comp Biochem Physiol 52A:193–199

    Google Scholar 

  • Duman JG, Devries AL (1976) Isolation, characterization, and physical properties of protein antifreezes from the winter flounder, Pseudopleuronectes americanus. Comp Biochem Physiol 53B:375–380

    Google Scholar 

  • Eastman JT, Devries AL (1986) Renal glomerular evolution in Antarctic notothenioid fishes. J Fish Biol 29:649–662

    Google Scholar 

  • Eastman JT, Devries AL (1997) Morphology of the digestive system of Antarctic notothenioid fishes. Polar Biol 17:1–13

    Google Scholar 

  • Eastman JT, Devries AL, Coalson RE, Nordquist RE, Boyd RB (1979) Renal conservation of antifreeze peptide in Antarctic eelpout, Rhigophila dearborni. Nature 282:217–218

    CAS  PubMed  Google Scholar 

  • Eastman JT, Boyd RB, Devries AL (1987) Renal corpuscle development in boreal fishes with and without antifreezes. Fish Physiol Biochem 4:89–100

    CAS  PubMed  Google Scholar 

  • Enevoldsen LT, Heiner I, Devries AL, Steffensen JF (2003) Does fish from the Disko Bay area of Greenland possess antifreeze proteins during the summer? Polar Biol 26:365–370

    Google Scholar 

  • Evans DH (1993) Osmotic and ionic regulation. In: Evans DH (ed) The physiology of fishes. CRC Press, Boca Raton

    Google Scholar 

  • Evans CW, Devries AL (2017) Coping with ice: freeze avoidance in the Antarctic silverfish (Pleuragramma antarctica) from egg to adult. In: Vacchi M, Pisano E, Ghigliotti L (eds) The Antarctic silverfish: a keystone species in a changing ecosystem. Springer, Cham

    Google Scholar 

  • Evans CW, Gubala V, Nooney R, Williams D, Brimble M, Devries AL (2011) How do Antarctic notothenioid fishes cope with internal ice? A novel function for antifreeze glycoproteins. Antarct Sci 23:57–64

    Google Scholar 

  • Evans C, Hellman L, Middleditch M, Wojnar JM, Brimble MA, Devries AL (2012) Synthesis and recycling of antifreeze glycoproteins in polar fishes. Antarct Sci 24:259–268

    Google Scholar 

  • Ewart KV, Fletcher GL (1990) Isolation and characterization of antifreeze proteins from smelt (Osmerus mordax) and Atlantic herring (Culpea harengus harengus). Can J Zool 68:1652–1658

    CAS  Google Scholar 

  • Ewart KV, Fletcher GL (1993) Herring antifreeze protein: primary structure and evidence for a C-type lectin evolutionary origin. Mol Mar Biol Biotechnol 2:20–27

    CAS  PubMed  Google Scholar 

  • Ewart KV, Rubinsky B, Fletcher GL (1992) Structural and functional similarity between fish antifreeze proteins and calcium-dependent lectins. Biochem Biophys Res Commun 185:335–340

    CAS  PubMed  Google Scholar 

  • Fänge R, Nilsson S (1985) The fish spleen: structure and function. Experientia 41:152–158

    PubMed  Google Scholar 

  • Fields LG, Devries AL (2015) Variation in blood serum antifreeze activity of Antarctic Trematomus fishes across habitat temperature and depth. Comp Biochem Physiol A 185A:43–50

    Google Scholar 

  • Fletcher GL, Hew CH, Joshi SB (1981) Isolation and characterization of antifreeze glycoproteins from the frost fish, Microgadus tomcod. Can J Zool 60:348–355

    Google Scholar 

  • Fletcher GL, Addison RF, Hew CL, Slaughter D (1982a) Antifreeze proteins in the Arctic shorthorn sculpin (Myoxocephalus scorpius). Arctic 35:302–306

    Google Scholar 

  • Fletcher GL, Slaughter D, Hew CL (1982b) Seasonal changes in the plasma levels of glycoprotein antifreeze, Na+, Cl, and glucose in Newfoundland Atlantic cod, Gadus morhua. Can J Zool 60:1851–1854

    CAS  Google Scholar 

  • Fletcher GL, Haya K, King MJ, Reisman HM (1985a) Annual antifreeze cycles in Newfoundland, New Brunswick and Long Island winter flounder Pseudopleuronectes americanus. Mar Ecol Prog Ser 21:205–212

    CAS  Google Scholar 

  • Fletcher GL, Hew CL, Li X, Haya K, Kao MH (1985b) Year-round presence of high levels of plasma antifreeze peptides in a temperate fish, ocean pout (Macrozoarces americanus). Can J Zool 63:488–493

    CAS  Google Scholar 

  • Fletcher GL, King MJ, Kao MH, Shears MA (1989) Antifreeze proteins in the urine of marine fish. Fish Physiol Biochem 6:121–127

    CAS  PubMed  Google Scholar 

  • Fletcher GL, Hew CL, Davies PL (2001) Antifreeze proteins of teleost fishes. Annu Rev Physiol 63:359–390

    CAS  PubMed  Google Scholar 

  • Foldvik A, Kvinge T (1974) Conditional instability of sea water at the freezing point. Deep-Sea Res 21:169–174

    Google Scholar 

  • Foster TD (1984) The marine environment. In: Antarctic ecology. Academic, London

    Google Scholar 

  • Franklen CE, Davison W, Mckenzie JC (1993) The role of the spleen during exercise in Antarctic teleost, Pagothenia borchgrevinki. J Exp Biol 174:381–386

    Google Scholar 

  • Furukawa Y, Nagashima K, Nakatsubo S, Yoshizaki I, Tamaru H, Shimaoka T, Sone T, Yokoyama E, Zepeda S, Terasawa T, Asakawa H, Murata K, Sazaki G (2017) Oscillations and accelerations of ice crystal growth rates in microgravity in presence of antifreeze glycoprotein impurity in supercooled water. Sci Rep 7:43157

    PubMed  PubMed Central  Google Scholar 

  • Garnham CP, Natarajan A, Middleton AJ, Kuiper MJ, Braslavsky I, Davies PL (2010) Compound ice-binding site of an antifreeze protein revealed by mutagenesis and fluorescent tagging. Biochemistry 49:9063–9071

    CAS  PubMed  Google Scholar 

  • Garnham CP, Campbell RL, Davies PL (2011) Anchored clathrate waters bind antifreeze proteins to ice. Proc Natl Acad Sci U S A 108:7363–7367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gauthier SY, Scotter AJ, Lin FH, Baardsnes J, Fletcher GL, Davies PL (2007) A re-evaluation of the role of type IV antifreeze protein. Cryobiology 57:292–296

    Google Scholar 

  • Gong Z, Ewart KV, Hu Z, Fletcher GL, Hew CL (1996) Skin antifreeze protein genes of the winter flounder, Pleuronectes americanus, encode distinct and active polypeptides without the secretory signal and pro-sequences. J Biol Chem 271:4106–4112

    CAS  PubMed  Google Scholar 

  • Harding MM, Ward LG, Haymet ADJ (1999) Type I antifreeze proteins: structure-activity studies and mechanism of ice growth inhibition. Eur J Biochem 264:653–655

    CAS  PubMed  Google Scholar 

  • Harding MM, Anderberg PI, Haymet ADJ (2003) Antifreeze glycoproteins from polar fish. Eur J Biochem 270:1381–1392

    CAS  PubMed  Google Scholar 

  • Haschemeyer AEV, Mathews RW (1980) Antifreeze glycoprotein synthesis in the Antarctic fish Trematomus hansoni by constant infusion in vivo. Physiol Zool 53:383–393

    CAS  Google Scholar 

  • Haymet ADJ, Ward LG, Harding MM (1999) Winter flounder antifreeze proteins: synthesis and ice growth inhibition of analogues that probe the relative importance of hydrophobic and hydrogen-bonding interactions. J Am Chem Soc 121:941–948

    CAS  Google Scholar 

  • Hew CL, Yip C (1976) The synthesis of freezing-point depression protein of the winter flounder Pseudopleuronectes americanus in Xenopus laevis oocytes. Biochem Biophys Res Commun 71:845–850

    CAS  PubMed  Google Scholar 

  • Hew CL, Slaughter D, Joshi S, Fletcher GL, Ananthanarayanan VS (1984) Antifreeze polypeptides from the Newfoundland Ocean pout, Macrozoarces americanus: presence of multiple and compositionally diverse components. J Comp Physiol B B155:81–88

    Google Scholar 

  • Hew CL, Wang N-C, Joshi S, Fletcher GL, Scott GK, Hayes PH, Buettner B, Davies PL (1988) Multiple genes provide the basis for antifreeze protein diversity and dosage in the ocean pout, Macrozoarces americanus. J Biol Chem 263:12049–12055

    CAS  PubMed  Google Scholar 

  • Hinton DE, Snipes RL, Kendall MW (1972) Morphology and enzyme histochemistry in liver of largemouth bass (Micropterus salmoides). J Fish Res Board Can 29:531–534

    Google Scholar 

  • Howe GJ (1991) Biogeography of gadoid fishes. J Biogeogr 18:595–622

    Google Scholar 

  • Hsiao KC, Cheng C-HC, Fernandes IE, Detrich HW, Devries AL (1990) An antifreeze glycopeptide gene from the Antarctic cod Notothenia coriiceps neglecta encodes a polyprotein of high peptide copy number. Proc Natl Acad Sci U S A 87:9265–9269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson AP, Devries AL, Haschemeyer AEV (1979) Antifreeze glycoprotein biosynthesis in Antarctic fishes. Comp Biochem Physiol 62B:179–183

    CAS  Google Scholar 

  • Hunt BM, Hoefling K, Cheng C-HC (2003) Annual warming episodes in seawater temperatures in McMurdo Sound in relationship to endogenous ice in notothenioid fish. Antarct Sci 15:333–338

    Google Scholar 

  • Hunt Von Herbing I, Miyake T, Hall BK, Boutilier RG (1996) Ontogeny of feeding and respiration in larval Atlantic cod Gadus morhua (Teleostei, Gadiformes). I. Morphology. J Morphol 227:15–35

    Google Scholar 

  • Jin Y (2003) Freezing avoidance of Antarctic fishes: the role of a novel antifreeze potentiating protein and the antifreeze glycoproteins. PhD Thesis, University of Illinois

    Google Scholar 

  • Jin Y, Devries AL (2006) Antifreeze glycoprotein levels in Antarctic notothenioid fishes inhabiting different thermal environments and the effect of warm acclimation. Comp Biochem Physiol 76B:560–600

    Google Scholar 

  • Jordan AD, Jurngersen M, Steffensen JF (2001) Oxygen consumption of East Siberian cod: no support for the metabolic cold adaptation theory. J Fish Biol 59:818–823

    Google Scholar 

  • Jung A, Johnson P, Eastman JT, Devries AL (1995) Protein content and freezing avoidance properties of the subdermal extracellular matrix and serum of the Antarctic snailfish, Paraliparis devriesi. Fish Physiol Biochem 14:71–80

    CAS  PubMed  Google Scholar 

  • Kao MH, Fletcher GL, Wang NC, Hew CH (1985) The relationship between molecular weight and antifreeze polypeptide activity in marine fish. Can J Zool 64:578–582

    Google Scholar 

  • Kennett JP (1977) Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanography. J Geophys Res 82:3843–3860

    CAS  Google Scholar 

  • Kennett JP (1982) Marine geology. Prentice-Hall, New Jersey

    Google Scholar 

  • Kitagawa Y, Ogawa M, Fukuchi M (1990) On the kidney of the saffron cod, Eleginus gracilis, and its cold adaptation. Proc NIPR Symp Polar Biol 3:71–75

    Google Scholar 

  • Knight CA, Cheng C-HC, Devries AL (1991) Adsorption of helical antifreeze peptides on specific ice crystal surface planes. Biophys J 59:409–418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knight CA, Driggers E, Devries AL (1993) Adsorption of fish antifreeze glycopeptides to ice, and effects on ice crystal growth. Biophys J 64:252–259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kurlansky M (1997) Cod: a biography of the fish that changed the world. Penguin Books, New York

    Google Scholar 

  • Kurokawa T, Suzuki T (1995) Structure of the exocrine pancreas of flounder (Paralichthys olivaceus): immunological localization of zymogen granules in the digestive tract using anti-trypsinogen antibody. J Fish Biol 46:292–301

    CAS  Google Scholar 

  • Leim AH, Scott WB (1966) Fishes of the Atlantic Coast of Canada. Fish Research Board Canada, Ottawa

    Google Scholar 

  • Lin Y (1979) Environmental regulation of gene expression. J Biol Chem 254:1422–1426

    CAS  PubMed  Google Scholar 

  • Lin Y, Long DJ (1980) Purification and characterization of winter flounder antifreeze peptide messenger ribonucleic acid. Biochemistry 19:1111–1116

    CAS  PubMed  Google Scholar 

  • Littlepage JL (1965) Oceanographic investigations in McMurdo Sound, Antarctica. In: Llano GA (ed) Biology of the Antarctic Seas II. American Geophysical Union, Washington, DC

    Google Scholar 

  • Love MS, Elder N, Mecklenburg CW, Thorsteinson LK, Mecklenburg TA (2016) Alaska Arctic marine fish species accounts. In: Thorsteinson LK, Love MS (eds) Alaska Arctic marine fish ecology catalog: U.S. Geological Survey Scientific Investigations Report 2016-5038 (OCS study)

    Google Scholar 

  • Low WK, Miao M, Ewart KV, Yang DS, Fletcher GL, Hew CL (1998) Skin-type antifreeze protein from the shorthorn sculpin, Myoxocephalus scorpius: expression and characterization of Mr 9700 recombinant protein. J Biol Chem 273:23098–23103

    CAS  PubMed  Google Scholar 

  • Low WK, Lin Q, Stathakis C, Miao M, Fletcher GL, Hew CL (2001) Isolation and characterization of skin-type, type I antifreeze polypeptides from the longhorn sculpin, Myoxocephalus octodecemspinosus. J Biol Chem 276:11582–11589

    CAS  PubMed  Google Scholar 

  • Marshall CB, Fletcher GL, Davies PL (2004) Hyperactive antifreeze protein in a fish. Nature 429:153

    CAS  PubMed  Google Scholar 

  • Mazur P (1966) Physical and chemical basis of injury in single-celled micro-organisms subjected to freezing and thawing. In: Meryman HT (ed) Cryobiology. Academic, London

    Google Scholar 

  • Meister K, Strazdaite S, Devries AL, Lotze S, Olijve LLC, Voets IK, Bakker HJ (2014) Observation of ice-like water layers at an aqueous protein surface. Proc Natl Acad Sci U S A 111:17732–17736

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meister K, Devries AL, Bakker HJ, Drori R (2018) Antifreeze glycoproteins bind irreversibly to ice. J Am Chem Soc 140:9365–9368

    CAS  PubMed  Google Scholar 

  • Millero FJ (1978) Freezing point of seawater - eighth report of the joint panel of oceanographic tables and standards. In: UNESCO technical papers in marine science, vol 28. UNESCO, Paris

    Google Scholar 

  • Mochizuki K, Molinero V (2018) Antifreeze glycoproteins bind reversibly to ice via hydrophobic groups. J Am Chem Soc 140(14):4803–4811. https://doi.org/10.1021/jacs.7b1363

    Article  CAS  PubMed  Google Scholar 

  • Morris HR, Thompson MR, Osuga DT, Ahmed AI, Chan SM, Vandenheede JR, Feeney RE (1978) Antifreeze glycoproteins from the blood of an Antarctic fish: the structure of the proline containing glycopeptides. J Biol Chem 253:5155–5162

    CAS  PubMed  Google Scholar 

  • Murray HM, Hew CH, Fletcher GL (2003) Spatial expression patterns of skin-type antifreeze protein in winter flounder (Pseudopleuronectes americanus) epidermis following metamorphosis. J Morphol 257:78–86

    CAS  PubMed  Google Scholar 

  • Ng NFL, Hew CL (1992) Structure of an antifreeze polypeptide from the sea raven: disulfide bonds and similarity to lectin binding proteins. J Biol Chem 267:16069–16075

    CAS  PubMed  Google Scholar 

  • Nishimiya Y, Sato R, Takamichi M, Miura A, Tsuda S (2005) Co-operative effect of the isoforms of type III antifreeze protein expressed in notched-fin eelpout Zoarces elongatus (Kner). FEBS J 272:482–492

    CAS  PubMed  Google Scholar 

  • O’grady SM, Clarke A, Devries AL (1982a) Characterization of glycoprotein antifreeze biosynthesis in isolated hepatocytes from Pagothenia borchgrevinki. J Exp Zool 220:179–189

    PubMed  Google Scholar 

  • O’grady SM, Ellory JC, Devries AL (1982b) Protein and glycoprotein antifreezes in intestinal fluid of polar fishes. J Exp Biol 98:429–438

    PubMed  Google Scholar 

  • O’grady SM, Schrag JD, Raymond JA, Devries AL (1982c) Comparison of antifreeze glycopeptides from Arctic and Antarctic fishes. J Exp Zool 224:177–185

    Google Scholar 

  • Olla BL, Bejda AJ, Martin D (1975) Activity, movements, and feeding behavior of the cunner, Tautogolabrus adspersus, and comparison of food habits with young tautog, Tautoga onitus, off long Island, New York. Fish Bull Ill 733:895–900

    Google Scholar 

  • Pearcy WG (1961) Seasonal changes in osmotic pressure in flounder sera. Science 134:193–194

    CAS  PubMed  Google Scholar 

  • Petzel DH, Devries AL (1979) Renal handling of peptide antifreeze in northern fishes. Bull Mt Desert Isl Biol Lab 19:17–19

    Google Scholar 

  • Petzel DH, Devries AL (1980) Renal handling of anionic and cationic antifreeze peptides in the glomerular winter flounder. Bull Mt Desert Isl Biol Lab 20:17

    Google Scholar 

  • Petzel DH, Reisman HM, Devries AL (1980) Seasonal variation of antifreeze peptide in the winter flounder, Pseudopleuronectes americanus. J Exp Zool 211:63–69

    CAS  Google Scholar 

  • Praebel K, Ramløv H (2005) Antifreeze activity in the gastrointestinal fluids of Arctogadus glacialis (Peters 1874) is dependent upon food type. J Exp Biol 208:2609–2613

    PubMed  Google Scholar 

  • Praebel K, Hunt B, Hunt LH, Devries AL (2009) The presence and quantification of splenic ice in the McMurdo Sound Notothenioid fish, Pagothenia borchgrevinki (Boulenger, 1902). Comp Biochem Physiol 154A:564–569

    CAS  Google Scholar 

  • Ramlov H, Devries AL, Wilson PW (2005) Antifreeze glycoproteins from the Antarctic fish Dissostichus mawsoni studied by differential scanning calorimetry (DSC) in combination with nanolitre osmometry. CryoLetters 26:73–84

    CAS  PubMed  Google Scholar 

  • Raymond JA (1992) Glycerol is a colligative antifreeze in some northern fishes. J Exp Zool 262:347–352

    CAS  Google Scholar 

  • Raymond JA, Devries AL (1972) Freezing behavior of fish blood glycoproteins with antifreeze properties. Cryobiology 9:541–547

    CAS  PubMed  Google Scholar 

  • Raymond JA, Devries AL (1977) Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci U S A 74:2589–2593

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond JA, Lin Y, Devries AL (1975) Glycoprotein and protein antifreezes in two Alaskan fishes. J Exp Zool 193:125–130

    CAS  PubMed  Google Scholar 

  • Raymond JA, Wilson PW, Devries AL (1989) Inhibition of growth of non-basal planes in ice by fish antifreeze. Proc Natl Acad Sci U S A 86:881–885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reisman HM, Kao MH, Fletcher GL (1984) Antifreeze glycoprotein in a southern population of Atlantic tomcod, Microgadus tomcod. Comp Biochem Physiol A 78A:445–447

    CAS  Google Scholar 

  • Schauperl M, Podewitz M, Ortner TS, Waibl F, Thoeny A, Loerting T, Liedl KR (2017) Balance between hydration enthalpy and entropy is important for ice binding surfaces in antifreeze proteins. Sci Rep 7:11901

    PubMed  PubMed Central  Google Scholar 

  • Scholander PF, Van Dam L, Kanwisher JW, Hammel HT, Gordon MS (1957) Supercooling and osmoregulation in Arctic fish. J Cell Comp Physiol 49:5–24

    CAS  Google Scholar 

  • Schrag JD, Devries AL (1982) The effects of freezing rate on the cooperativity of antifreeze glycopeptides. Comp Biochem Physiol 74A:381–385

    Google Scholar 

  • Schrag JD, O’grady SM, Devries AL (1982) Relationship of amino acid composition and molecular weight of antifreeze glycopeptides to non-colligative freezing point depression. Biochim Biophys Acta 717:322–326

    CAS  PubMed  Google Scholar 

  • Schrag JD, Cheng C-HC, Panico M, Morris HR, Devries AL (1987) Primary and secondary structure of antifreeze peptides from arctic and Antarctic zoarcid fishes. Biochim Biophys Acta 915:357–370

    CAS  PubMed  Google Scholar 

  • Shier WT, Devries AL (1975) Carbohydrate of antifreeze glycoproteins from an Antarctic fish. FEBS Lett 54:135–138

    CAS  PubMed  Google Scholar 

  • Shier WT, Lin Y, Devries AL (1972) Structure and mode of action of glycoproteins from Antarctic fishes. Biochim Biophys Acta 263:406–413

    CAS  PubMed  Google Scholar 

  • Slaughter D, Fletcher GL, Ananthanarayanan VS, Hew CH (1981) Antifreeze proteins from the sea raven, Hemitripterus americanus. J Biol Chem 256:2022–2026

    CAS  PubMed  Google Scholar 

  • Somero GN, Lockwood BL, Tomanek L (2017) Biochemical adaptation: response to environmental challenges from life’s origins to the anthropocene. Oxford University Press, Oxford

    Google Scholar 

  • Sonawane ND, Thiagarajay JH, Verkman AS (2002) Chloride concentration in endosomes measured using a ratioable fluorescent Cl indicator. J Biol Chem 227:5506–5513

    Google Scholar 

  • Sonnichsen FD, Deluca CI, Davies PL, Sykes BD (1996) Refined solution structure of type III antifreeze protein: hydrophobic groups may be involved in the energetics of the protein-ice interaction. Structure 4:1325–1337

    CAS  PubMed  Google Scholar 

  • Sørensen TF, Ramløv H (2001) Variations in antifreeze activity and serum inorganic ions in the eelpout Zoarces viviparus: antifreeze activity in the embryonic state. Comp Biochem Physiol 130A:123–132

    Google Scholar 

  • Sørensen TF, Ramløv H (2002) Maternal-fetal relations in antifreeze production in the eelpout Zoarces viviparus. CryoLetters 23:183–190

    PubMed  Google Scholar 

  • Tachibana Y, Fletcher GL, Fujitani N, Tsuda S, Monde K, Nishimura SI (2004) Antifreeze glycoproteins: elucidation of the structural motifs that are essential for antifreeze activity. Angew Chem Int Ed 43:856–862

    CAS  Google Scholar 

  • Takamichi M, Nishimiya Y, Miura A, Tsuda S (2007) Effect of annealing time of an ice crystal on the activity of type III antifreeze protein. FEBS J 274:6469–6476

    CAS  PubMed  Google Scholar 

  • Takamichi M, Nishimiya Y, Miura A, Tsuda S (2009) Fully active QAE isoform confers thermal hysteresis activity on a defective SP isoform of type III antifreeze protein. FEBS J 276:1471–1479

    CAS  PubMed  Google Scholar 

  • Tien R (1995) Freezing avoidance and the presence of ice in shallow water Antarctic fishes. PhD Thesis, University of Illinois, Urbana-Champaign

    Google Scholar 

  • Turner JD, Schrag JD, Devries AL (1985) Ocular freezing avoidance in Antarctic fishes. J Exp Biol 118:121–132

    Google Scholar 

  • Valerio PF, Kao MH, Fletcher GL (1990) Thermal hysteresis activity in the skin of the cunner, Tautogolabrus adspersus. Can J Zool 68:1065–1067

    Google Scholar 

  • Valerio PF, Goddard SV, Kao MH, Fletcher GL (1992a) Survival of northern Atlantic cod (Gadus morhua) eggs and larvae when exposed to ice and low temperature. Can J Fish Aquat Sci 49:2588–2595

    Google Scholar 

  • Valerio PF, Kao MH, Fletcher GL (1992b) Fish skin: an effective barrier to ice crystal propagation. J Exp Biol 164:135–151

    Google Scholar 

  • Van Voorhies WV, Raymond JA, Devries AL (1978) Glycoproteins as biological antifreeze agents in the cod Gadus ogac (Richardson). Physiol Zool 51:347–353

    Google Scholar 

  • Wang X, Devries AL, Cheng C-HC (1995a) Antifreeze peptide heterogeneity in an Antarctic eel pout includes an unusually large major variant comprised of two 7 kDa type III AFPs linked in tandem. Biochim Biophys Acta 1247:163–172

    PubMed  Google Scholar 

  • Wang X, Devries AL, Cheng C-HC (1995b) Genomic basis for antifreeze peptide heterogeneity and abundance in an Antarctic eel pout: gene structures and organization. Mol Mar Biol Biotechnol 4:135–147

    CAS  PubMed  Google Scholar 

  • Wen D, Laursen RA (1992) Structure-function relationships in an antifreeze polypeptide. The role of neutral, polar amino acids. J Biol Chem 267:14102

    CAS  PubMed  Google Scholar 

  • Wilson PW (1993) Explaining thermal hysteresis by the Kelvin effect. CryoLetters 14:31–36

    Google Scholar 

  • Wilson PW, Gould M, Devries AL (2002) Hexagonal shaped spicules in frozen fish antifreeze solutions. Cryobiology 44:240–250

    CAS  PubMed  Google Scholar 

  • Yang DS, Hon W, Bubanko S, Xue Y, Seetharaman J, Hew CL, Sicheri F (1998) Identification of the ice-binding surface on a type III antifreeze protein with a “flatness function” algorithm. Biophys J 74:2142–2151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zdzitowiecke K (1998) Diversity of digenea, parasites of fishes in various areas of the Antarctic. In: Fishes of Antarctica. Springer, Milan

    Google Scholar 

  • Zuang X, Yang C, Murphy KR, Cheng C-HC (2019) Molecular mechanism and history of non-sense to sense evolution of antifreeze glycoprotein gene in northern gadids. Proc Natl Acad Sci USA 116:4400–4405

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur L. DeVries .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

DeVries, A.L. (2020). Fish Antifreeze Proteins. In: Ramløv, H., Friis, D. (eds) Antifreeze Proteins Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-030-41929-5_5

Download citation

Publish with us

Policies and ethics