Skip to main content

Ice and Its Formation

  • Chapter
  • First Online:
Antifreeze Proteins Volume 1

Abstract

Ice formation is ubiquitous in nature, and plays a pivotal role in natural processes such as cloud formation and precipitation. Its occurrence in biological organisms is, however, usually problematic, and the main function of antifreeze proteins (AFPs) is to prevent freezing of organisms that inhabit at subzero temperatures. Understanding the physical processes that impact ice formation is, therefore, a prerequisite to elucidating how AFPs function in biological cells and organisms. The primary focus of this chapter is to provide a basic overview of ice and its formation. In particular, the structure of ice and its polymorphism, the thermodynamics and kinetics of ice formation from pure water and aqueous solutions, and the processes that result in the formation of amorphous glassy water will be discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that a vanishingly small fraction of such arrangements will have nonzero electrostatic dipole or quadrupole moments. Such structures will have a vanishingly small probability of emerging in a proton-disordered phase.

  2. 2.

    To be more precise, it is the number of nucleation events per unit time within an ensemble of independent nucleation experiments, e.g., isolated microdroplets, that is a Poisson process.

  3. 3.

    An alternative definition for the degree of supercooling is θ = T/Tm. See Gianetti et al. (2016) for discussion.

  4. 4.

    For strong liquids, D has an Arrhenius-like dependence on temperature. In fragile liquids, however, D drops much more abruptly as temperature decreases. Depending on the extent of supercooling water can be strong or fragile. In the nucleation-limited regime, i.e., at temperatures close to Tm, water behaves as a fragile liquid, while amorphous ices act as strong liquids. Therefore, it has been speculated that a fragile-to-strong transition occurs in the no man’s land.

  5. 5.

    Here, the kinetic freezing temperature refers to the highest temperature at which freezing occurs within the observation timescale of an experiment.

References

  • Abascal JLF, Sanz E, Fernández RG, Vega C (2005) A potential model for the study of ices and amorphous water: TIP4P/Ice. J Chem Phys 122:234511

    CAS  PubMed  Google Scholar 

  • Algara-Siller G, Lehtinen O, Wang F, Nair R, Kaiser U, Wu H, Geim A, Grigorieva I (2015) Square ice in graphene nanocapillaries. Nature 519:443

    CAS  PubMed  Google Scholar 

  • Allen PB (2010) Interpreting the 4-index notation for hexagonal systems. arXiv preprint arXiv:1006.2842

    Google Scholar 

  • Allen RJ, Frenkel D, ten Wolde PR (2006) Forward flux sampling type schemes for simulating rare events: efficiency analysis. J Chem Phys 124:194111

    PubMed  Google Scholar 

  • Amann-Winkel K, Böhmer R, Fujara F, Gainaru C, Geil B, Loerting T (2016) Colloquium: water’s controversial glass transitions. Rev Mod Phys 88:011002

    Google Scholar 

  • Amaya AJ, Pathak H, Modak VP, Laksmono H, Loh ND, Sellberg JA, Sierra RG, McQueen TA, Hayes MJ, Williams GJ et al (2017) How cubic can ice be? J Phys Chem Lett 8:3216–3222

    CAS  PubMed  Google Scholar 

  • Angell C (2002) Liquid fragility and the glass transition in water and aqueous solutions. Chem Rev 102(8):2627–2650

    CAS  PubMed  Google Scholar 

  • Angell CA (2008) Insights into phases of liquid water from study of its unusual glass-forming properties. Science 319:582–587

    CAS  PubMed  Google Scholar 

  • Angell C, Sare E (1970) Glass-forming composition regions and glass transition temperatures for aqueous electrolyte solutions. J Chem Phys 52:1058–1068

    CAS  Google Scholar 

  • Arbuckle W (1986) Development of the ice cream industry. In: Ice cream. Springer, Boston, MA, pp 1–8

    Google Scholar 

  • Atkinson JD, Murray BJ, Woodhouse MT, Whale TF, Baustian J, Carslaw KS, Dobbie S, O’Sullivan D, Malkin TL (2013) The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature 498:355–358

    CAS  PubMed  Google Scholar 

  • Bai J, Wang J, Zeng XC (2006) Multiwalled ice helixes and ice nanotubes. Proc Natl Acad Sci U S A 103:19664–19667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bai J, Angell CA, Zeng XC (2010) Guest-free monolayer clathrate and its coexistence with two-dimensional high-density ice. Proc Natl Acad Sci U S A 107:5718–5722

    PubMed  PubMed Central  Google Scholar 

  • Baker MB (1997) Cloud microphysics and climate. Science 276:1072–1078

    CAS  Google Scholar 

  • Ball P (2008) Water: water—an enduring mystery. Nature 452:291

    CAS  PubMed  Google Scholar 

  • Banhart F, Hernandez E, Terrones M (2003) Extreme superheating and supercooling of encapsulated metals in fullerene-like shells. Phys Rev Lett 90(18):185502

    CAS  PubMed  Google Scholar 

  • Baragiola R (2003) Water in confining geometries. Springer, Berlin, p 359

    Google Scholar 

  • Barati Farimani A, Aluru NR (2016) Existence of multiple phases of water at nanotube interfaces. J Phys Chem C 120:23763–23771

    CAS  Google Scholar 

  • Bartels-Rausch T (2013) Chemistry: ten things we need to know about ice and snow. Nature 494:27–29

    CAS  PubMed  Google Scholar 

  • Becker R, Döring W (1935) Kinetische behandlung der keimbildung in übersättigten dämpfen. Ann Phys 416:719–752

    Google Scholar 

  • Beltaos S, Prowse T (2009) River-ice hydrology in a shrinking cryosphere. Hydrol Process 23:122–144

    CAS  Google Scholar 

  • Bernal J, Fowler R (1933) A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J Chem Phys 1:515–548

    CAS  Google Scholar 

  • Bluhm H, Ogletree DF, Fadley CS, Hussain Z, Salmeron M (2002) The premelting of ice studied with photoelectron spectroscopy. J Phys Condens Matter 14:L227

    CAS  Google Scholar 

  • Bridgman PW (1912) Water, in the liquid and five solid forms, under pressure. Proc Am Acad Arts Sci 47:441–558

    Google Scholar 

  • Brovchenko I, Oleinikova A (2008) Multiple phases of liquid water. ChemPhysChem 9:2660–2675

    CAS  PubMed  Google Scholar 

  • Brukhno AV, Anwar J, Davidchack R, Hande R (2008) Challenges in molecular simulation of homogeneous ice nucleation. J Phys Condens Matter 20:494243

    Google Scholar 

  • Brygoo S, Henry E, Loubeyre P, Eggert J, Koenig M, Loupias B, Benuzzi-Mounaix A, Le Gloahec MR (2007) Laser-shock compression of diamond and evidence of a negative-slope melting curve. Nat Mater 6:274

    CAS  PubMed  Google Scholar 

  • Burton E, Oliver W (1935) X-ray diffraction patterns of ice. Nature 135:505

    CAS  Google Scholar 

  • Cantrell W, Robinson C (2006) Heterogeneous freezing of ammonium sulfate and sodium chloride solutions by long chain alcohols. Geophys Res Lett 33:L07802

    Google Scholar 

  • Carslaw KS, Harrison RG, Kirkby J (2002) Cosmic rays, clouds, and climate. Science 298:1732–1737

    CAS  PubMed  Google Scholar 

  • Celik Y, Graham LA, Mok Y-F, Bar M, Davies PL, Braslavsky I (2010) Superheating of ice crystals in antifreeze protein solutions. Proc Natl Acad Sci U S A 107:5423–5428

    Article  CAS  Google Scholar 

  • Chamberlain EJ, Gow AJ (1979) Effect of freezing and thawing on the permeability and structure of soils. Eng Geol 13:73–92

    Google Scholar 

  • Chen T, Chiu M-S, Weng C-N (2006) Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids. J Appl Phys 100(7):074308

    Google Scholar 

  • Chen J-P, Hazra A, Levin Z (2008) Parameterizing ice nucleation rates using contact angle and activation energy derived from laboratory data. Atmos Chem Phys 8:7431–7449

    CAS  Google Scholar 

  • Chen J, Schusteritsch G, Pickard CJ, Salzmann CG, Michaelides A (2016) Two dimensional ice from first principles: structures and phase transitions. Phys Rev Lett 116:025501

    PubMed  Google Scholar 

  • Chen J, Schusteritsch G, Pickard CJ, Salzmann CG, Michaelides A (2017) Double-layer ice from first principles. Phys Rev B 95:094121

    Google Scholar 

  • Cobo A, Kuwayama M, Pérez S, Ruiz A, Pellicer A, Remohí J (2008) Comparison of concomitant outcome achieved with fresh and cryopreserved donor oocytes vitrified by the cryotop method. Fertil Steril 89:1657–1664

    PubMed  Google Scholar 

  • Cockburn A, Cockburn E, Reyman TA (1998) Mummies, disease and ancient cultures. Cambridge University Press, London

    Google Scholar 

  • Corsetti F, Matthews P, Artacho E (2016) Structural and configurational properties of nanoconfined monolayer ice from first principles. Sci Rep 6:18651

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cziko PA, DeVries AL, Evans CW, Cheng C-HC (2014) Antifreeze protein-induced superheating of ice inside Antarctic notothenioid fishes inhibits melting during summer warming. Proc Natl Acad Sci USA 111:14583–14588

    CAS  PubMed  Google Scholar 

  • Damasceno PF, Engel M, Glotzer SC (2012) Predictive self-assembly of polyhedra into complex structures. Science 337:453–457

    CAS  PubMed  Google Scholar 

  • Dash J, Fu H, Wettlaufer J (1995) The premelting of ice and its environmental consequences. Rep Prog Phys 58(1):115

    CAS  Google Scholar 

  • Debenedetti PG (1996) Metastable liquids: concepts and principles. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Debenedetti PG (2003) Supercooled and glassy water. J Phys Condens Matter 15:R1669

    CAS  Google Scholar 

  • del Rosso L, Celli M, Ulivi L (2016a) New porous water ice metastable at atmospheric pressure obtained by emptying a hydrogen-filled ice. Nat Commun 7:13394

    PubMed  PubMed Central  Google Scholar 

  • del Rosso L, Grazzi F, Celli M, Colognesi D, Garcia-Sakai V, Ulivi L (2016b) Refined structure of metastable ice XVII from neutron diffraction measurements. J Phys Chem C 120(47):26955–26959

    Google Scholar 

  • Djikaev Y, Tabazadeh A, Hamill P, Reiss H (2002) Thermodynamic conditions for the surface-stimulated crystallization of atmospheric droplets. J Phys Chem A 106(43):10247–10253

    CAS  Google Scholar 

  • Dolev MB, Braslavsky I, Davies PL (2016) Ice-binding proteins and their function. Annu Rev Biochem 85:515–542

    PubMed  Google Scholar 

  • Dowell LG, Rinfret AP (1960) Low-temperature forms of ice as studied by X-ray diffraction. Nature 188:1144

    CAS  Google Scholar 

  • Dubochet J, Adrian M, Chang J-J, Homo J-C, Lepault J, McDowall AW, Schultz P (1988) Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21:129–228

    CAS  PubMed  Google Scholar 

  • Engel EA, Monserrat B, Needs RJ (2015) Anharmonic nuclear motion and the relative stability of hexagonal and cubic ice. Phys Rev X 5:021033

    Google Scholar 

  • Errington JR, Debenedetti PG (2001) Relationship between structural order and the anomalies of liquid water. Nature 409(6818):318

    CAS  PubMed  Google Scholar 

  • Fahy GM, MacFarlane D, Angell C, Meryman H (1984) Vitrification as an approach to cryopreservation. Cryobiology 21(4):407–426

    CAS  PubMed  Google Scholar 

  • Falenty A, Hansen TC, Kuhs WF (2014) Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate. Nature 516:231

    CAS  PubMed  Google Scholar 

  • Findenegg GH, Jähnert S, Akcakayiran D, Schreiber A (2008) Freezing and melting of water confined in silica nanopores. ChemPhysChem 9:2651–2659

    CAS  PubMed  Google Scholar 

  • Finger EB, Bischof JC (2018) Cryopreservation by vitrification: a promising approach for transplant organ banking. Curr Opin Organ Tran 23(3):353–360

    CAS  Google Scholar 

  • Finney J, Bowron D, Soper A, Loerting T, Mayer E, Hallbrucker A (2002a) Structure of a new dense amorphous ice. Phys Rev Lett 89(20):205503

    CAS  PubMed  Google Scholar 

  • Finney J, Hallbrucker A, Kohl I, Soper A, Bowron D (2002b) Structures of high and low density amorphous ice by neutron diffraction. Phys Rev Lett 88(22):225503

    CAS  PubMed  Google Scholar 

  • Finney J, Hallbrucker A, Kohl I, Loerting T, Soper A (2006) The local and intermediate range structures of the five amorphous ices at 80 K and ambient pressure: a Faber-Ziman and Bhatia-Thornton analysis. J Chem Phys 125:194502

    PubMed  Google Scholar 

  • Fletcher NH (1970) Other forms of ice. In: Cambridge monographs on physics. Cambridge University Press, Cambridge, pp 49–72

    Google Scholar 

  • Fowler LD, Randall DA, Rutledge SA (1996) Liquid and ice cloud microphysics in the CSU general circulation model. Part 1: Model description and simulated microphysical processes. J Clim 9:489–529

    Google Scholar 

  • Fuentes-Landete V, Mitterdorfer C, Handle P, Ruiz G, Bernard J, Bogdan A, Seidl M, Amann-Winkel K, Stern J, Fuhrmann S et al (2015) Crystalline and amorphous ices. In: Proceedings of the International School of Physics “Enrico Fermi”, vol 187, pp 173–208

    Google Scholar 

  • Fukazawa H, Ikeda S, Mae S (1998) Incoherent inelastic neutron scattering measurements on ice XI; the proton-ordered phase of ice Ih doped with KoH. Chem Phys Lett 282:215–218

    CAS  Google Scholar 

  • Gainaru C, Vynokur E, Köster K, Fuentes-Landete V, Spettel N, Zollner J, Loerting T, Böhmer R (2018) Dynamic signatures of the transition from stacking disordered to hexagonal ice: dielectric and nuclear magnetic resonance studies. J Chem Phys 148:134502

    CAS  PubMed  Google Scholar 

  • Gallo P, Amann-Winkel K, Angell CA, Anisimov MA, Caupin F, Chakravarty C, Lascaris E, Loerting T, Panagiotopoulos AZ, Russo J et al (2016) Water: a tale of two liquids. Chem Rev 116:7463–7500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gavish M, Popovitz-Biro R, Lahav M, Leiserowitz L (1990) Ice nucleation by alcohols arranged in monolayers at the surface of water drops. Science 250:973–975

    CAS  PubMed  Google Scholar 

  • Gianetti MM, Haji-Akbari A, Longinotti MP, Debenedetti PG (2016) Computational investigation of structure, dynamics and nucleation kinetics of a family of modified stillinger–weber model fluids in bulk and freestanding thin films. Phys Chem Chem Phys 18(5):4102–4111

    CAS  PubMed  Google Scholar 

  • Goncharov AF, Goldman N, Fried LE, Crowhurst JC, Kuo I-FW, Mundy CJ, Zaug JM (2005) Dynamic ionization of water under extreme conditions. Phys Rev Lett 94(12):125508

    PubMed  Google Scholar 

  • Goncharov AF, Sanloup C, Goldman N, Crowhurst JC, Bastea S, Howard W, Fried LE, Guignot N, Mezouar M, Meng Y (2009) Dissociative melting of ice vii at high pressure. J Chem Phys 130:124514

    PubMed  Google Scholar 

  • Gŕańasy L, Pusztai T, James PF (2002) Interfacial properties deduced from nucleation experiments: a Cahn–Hilliard analysis. J Chem Phys 117:6157

    Google Scholar 

  • Green JL, Angell CA (1989) Phase relations and vitrification in saccharide-water solutions and the trehalose anomaly. J Phys Chem 93:2880–2882

    CAS  Google Scholar 

  • Gross EK, Dreizler RM (2013) Density functional theory, vol 337. Springer Science & Business Media, Berlin

    Google Scholar 

  • Guillot B (2002) A reappraisal of what we have learnt during three decades of computer simulations on water. J Mol Liq 101:219–260

    CAS  Google Scholar 

  • Guloy AM, Ramlau R, Tang Z, Schnelle W, Baitinger M, Grin Y (2006) A guest-free germanium clathrate. Nature 443:320

    CAS  PubMed  Google Scholar 

  • Haji-Akbari A (2016) Rating antifreeze proteins: not a breeze. Proc Natl Acad Sci U S A 113:3714–3716

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haji-Akbari A (2018) Forward-flux sampling with jumpy order parameters. J Chem Phys 149(7):072303

    PubMed  Google Scholar 

  • Haji-Akbari A, Debenedetti PG (2015) Direct calculation of ice homogeneous nucleation rate for a molecular model of water. Proc Natl Acad Sci U S A 112:10582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haji-Akbari A, Debenedetti PG (2017a) Computational investigation of surface freezing in a molecular model of water. Proc Natl Acad Sci U S A 114:3316–3321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haji-Akbari A, Debenedetti PG (2017b) Perspective: surface freezing in water: a nexus of experiments and simulations. J Chem Phys 147:060901

    PubMed  Google Scholar 

  • Haji-Akbari A, DeFever RS, Sarupria S, Debenedetti PG (2014) Suppression of sub-surface freezing in free-standing thin films of monoatomic water. Phys Chem Chem Phys 16:25916–25927

    CAS  PubMed  Google Scholar 

  • Hales TC (2006) Historical overview of the Kepler conjecture. Discret Comput Geom 36:5–20

    Google Scholar 

  • Handa YP, Klug D, Whalley E (1986) Difference in energy between cubic and hexagonal ice. J Chem Phys 84:7009–7010

    CAS  Google Scholar 

  • Hemley R, Jephcoat A, Mao H, Zha C, Finger L, Cox D (1987) Static compression of H2O-ice to 128 GPa (1.28 Mbar). Nature 330(6150):737

    CAS  Google Scholar 

  • Hemley R, Chen L, Mao H (1989) New transformations between crystalline and amorphous ice. Nature 338:638

    CAS  Google Scholar 

  • Herbert RJ, Murray BJ, Dobbie SJ, Koop T (2015) Sensitivity of liquid clouds to homogenous freezing parameterizations. Geophys Res Lett 42:1599–1605

    PubMed  PubMed Central  Google Scholar 

  • Hermann A, Ashcroft N, Hoffmann R (2012) High pressure ices. Proc Natl Acad Sci U S A 109:745–750

    CAS  PubMed  Google Scholar 

  • Hirsch K, Holzapfel W (1984) Symmetric hydrogen bonds in ice X. Phys Lett A 101:142–144

    Google Scholar 

  • Hoose C, Möhler O (2012) Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments. Atmos Chem Phys 12:9817–9854

    CAS  Google Scholar 

  • Hoose C, Kristjánsson JE, Chen J-P, Hazra A (2010) A classical theory-based parameterization of heterogeneous ice nucleation by mineral dust, soot, and biological particles in a global climate model. J Atmos Sci 67:2483–2503

    Google Scholar 

  • Iglev H, Schmeisser M, Simeonidis K, Thaller A, Laubereau A (2006) Ultrafast superheating and melting of bulk ice. Nature 439:183

    CAS  PubMed  Google Scholar 

  • Isachenko V, Isachenko E, Katkov II, Montag M, Dessole S, Nawroth F, van der Ven H (2004) Cryoprotectant-free cryopreservation of human spermatozoa by vitrification and freezing in vapor: effect on motility, dna integrity, and fertilization ability. Biol Reprod 71:1167–1173

    CAS  PubMed  Google Scholar 

  • Jackson CL, McKenna GB (1990) The melting behavior of organic materials confined in porous solids. J Chem Phys 93:9002–9011

    CAS  Google Scholar 

  • Jayaraman A, Klement W Jr, Kennedy G (1963) Melting and polymorphism at high pressures in some group IV elements and III-V compounds with the diamond/zincblende structure. Phys Rev 130:540

    CAS  Google Scholar 

  • Jensen EJ, Toon OB (1997) The potential impact of soot particles from aircraft exhaust on cirrus clouds. Geophys Res Lett 24:249–252

    CAS  Google Scholar 

  • Johari G (1997) The Gibbs–Thomson effect and intergranular melting in ice emulsions: interpreting the anomalous heat capacity and volume of super cooled water. J Chem Phys 107:10154–10165

    CAS  Google Scholar 

  • Johari G (1998) Liquid state of low-density pressure-amorphized ice above its Tg. J Phys Chem B 102:4711–4714

    CAS  Google Scholar 

  • Johari G (2005) Water’s size-dependent freezing to cubic ice. J Chem Phys 122:194504

    CAS  PubMed  Google Scholar 

  • Johari G, Hallbrucker A, Mayer E (1996) Two calorimetrically distinct states of liquid water below 150 kelvin. Science 273:90–92

    CAS  PubMed  Google Scholar 

  • Johnson CA (1965) Generalization of the Gibbs-Thomson equation. Surf Sci 3:429–444

    Google Scholar 

  • Johnston JC, Molinero V (2012) Crystallization, melting, and structure of water nanoparticles at atmospherically relevant temperatures. J Am Chem Soc 134:6650–6659

    CAS  PubMed  Google Scholar 

  • Johnston JC, Kastelowitz N, Molinero V (2010) Liquid to quasicrystal transition in bilayer water. J Chem Phys 133:154516

    PubMed  Google Scholar 

  • Joly M, Attard E, Sancelme M, Deguillaume L, Guilbaud C, Morris CE, Amato P, Delort A-M (2013) Ice nucleation activity of bacteria isolated from cloud water. Atmos Environ 70:392–400

    CAS  Google Scholar 

  • Jones D (1974) The free energies of solid-liquid interfaces. J Mater Sci 9:1–17

    CAS  Google Scholar 

  • Jones EB, Stevanovíc V (2017) Polymorphism in elemental silicon: probabilistic interpretation of the realizability of metastable structures. Phys Rev B 96:184101

    Google Scholar 

  • Kamb B (1964) Ice. II. A proton-ordered form of ice. Acta Crystallogr 17:1437–1449

    CAS  Google Scholar 

  • Kamb B, Davis BL (1964) Ice VII, the densest form of ice. Proc Natl Acad Sci U S A 52:1433–1439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko T, Bai J, Yasuoka K, Mitsutake A, Zeng XC (2013) New computational approach to determine liquid–solid phase equilibria of water confined to slit nanopores. J Chem Theory Comput 9(8):3299–3310

    CAS  PubMed  Google Scholar 

  • Kanno H, Angell CA (1977) Homogeneous nucleation and glass formation in aqueous alkali halide solutions at high pressures. J Phys Chem 81:2639–2643

    CAS  Google Scholar 

  • Kastelowitz N, Johnston JC, Molinero V (2010) The anomalously high melting temperature of bilayer ice. J Chem Phys 132(12):124511

    PubMed  Google Scholar 

  • Kauzmann W, Eisenberg D (1969) The structure and properties of water. Clarendon Press, Oxford

    Google Scholar 

  • Kiselev A, Bachmann F, Pedevilla P, Cox SJ, Michaelides A, Gerthsen D, Leisner T (2017) Active sites in heterogeneous ice nucleation—the example of K-rich feldspars. Science 355:367–371

    CAS  PubMed  Google Scholar 

  • Klotz S, Strässle T, Saitta A, Rousse G, Hamel G, Nelmes R, Loveday J, Guthrie M (2005) In situ neutron diffraction studies of high density amorphous ice under pressure. J Phys Condens Matter 17:S967

    CAS  Google Scholar 

  • Knight C, DeVries A (1989) Melting inhibition and superheating of ice by an antifreeze glycopeptide. Science 245:505–507

    CAS  PubMed  Google Scholar 

  • Knight CA, De Vries AL, Oolman LD (1984) Fish antifreeze protein and the freezing and recrystallization of ice. Nature 308:295

    CAS  PubMed  Google Scholar 

  • Knopf DA, Alpert PA (2013) A water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets. Faraday Discuss 165:513–534

    CAS  PubMed  Google Scholar 

  • Knopf DA, Rigg YJ (2011) Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates. J Phys Chem A 115(5):762–773

    CAS  PubMed  Google Scholar 

  • Knopf DA, Alpert PA, Wang B, Aller JY (2011) Stimulation of ice nucleation by marine diatoms. Nat Geosci 4(2):88–90

    CAS  Google Scholar 

  • Knott BC, Molinero V, Doherty MF, Peters B (2012) Homogeneous nucleation of methane hydrates: unrealistic under realistic conditions. J Am Chem Soc 134:19544–19547

    CAS  PubMed  Google Scholar 

  • Koga K, Zeng XC, Tanaka H (1997) Freezing of confined water: a bilayer ice phase in hydrophobic nanopores. Phys Rev Lett 79:5262

    CAS  Google Scholar 

  • Koga K, Gao G, Tanaka H, Zeng XC (2001) Formation of ordered ice nanotubes inside carbon nanotubes. Nature 412:802

    CAS  PubMed  Google Scholar 

  • Kohl I, Mayer E, Hallbrucker A (2000) The glassy water–cubic ice system: a comparative study by X-ray diffraction and differential scanning calorimetry. Phys Chem Chem Phys 2:1579–1586

    CAS  Google Scholar 

  • Kolafa J (2014) Residual entropy of ices and clathrates from Monte Carlo simulation. J Chem Phys 140:204507

    PubMed  Google Scholar 

  • König H (1943) Eine kubische eismodifikation. Z Kristallogr 105:279–286

    Google Scholar 

  • Koop T (2004) Homogeneous ice nucleation in water and aqueous solutions. Z Phys Chem 218:1231–1258

    CAS  Google Scholar 

  • Koop T, Luo B, Tsias A, Peter T (2000) Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature 406:611–614

    CAS  PubMed  Google Scholar 

  • Kristensen J, Cotterill R (1977) On the existence of pre-melting and after melting effects a neutron scattering investigation. Philos Mag 36:437–452

    CAS  Google Scholar 

  • Kuhn T, Earle ME, Khalizov AF, Sloan JJ (2011) Size dependence of volume and surface nucleation rates for homogeneous freezing of supercooled water droplets. Atmos Chem Phys 11:2853–2861

    CAS  Google Scholar 

  • Kumar P, Buldyrev SV, Starr FW, Giovambattista N, Stanley HE (2005) Thermodynamics, structure, and dynamics of water confined between hydrophobic plates. Phys Rev E 72:051503

    Google Scholar 

  • Kuwayama M, Vajta G, Kato O, Leibo SP (2005) Highly efficient vitrification method for cryopreservation of human oocytes. Reprod BioMed Online 11(3):300–308

    PubMed  Google Scholar 

  • Laksmono H, McQueen TA, Sellberg JA, Loh ND, Huang C, Schlesinger D, Sierra RG, Hampton CY, Nordlund D, Beye M, Martin AV, Barty A, Seibert MM, Messerschmidt M, Williams GJ, Boutet S, Amann-Winkel K, Loerting T, Pettersson LGM, Bogan MJ, Nilsson A (2015) Anomalous behavior of the homogeneous ice nucleation rate in “no-man’s land”. J Phys Chem Lett 6:2826–2832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lemke S, Handle PH, Plaga LJ, Stern JN, Seidl M, Fuentes-Landete V, Amann-Winkel K, Köster KW, Gainaru C, Loerting T et al (2017) Relaxation dynamics and transformation kinetics of deeply super cooled water: temperature, pressure, doping, and proton/deuteron isotope effects. J Chem Phys 147(3):034506

    PubMed  Google Scholar 

  • Li J, Chen H, Stone HA (2013a) Ice lubrication for moving heavy stones to the forbidden city in 15th- and 16th-century China. Proc Natl Acad Sci U S A 110:20023–20027

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Donadio D, Galli G (2013b) Ice nucleation at the nanoscale probes no man’s land of water. Nat Commun 4:1887

    PubMed  Google Scholar 

  • Lindemann F (1910) Fa lindemann. Phys Z 11:609

    CAS  Google Scholar 

  • Loerting T, Salzmann C, Kohl I, Mayer E, Hallbrucker A (2001) A second distinct structural “state” of high-density amorphous ice at 77 k and 1 bar. Phys Chem Chem Phys 3:5355–5357

    CAS  Google Scholar 

  • Lupi L, Hudait A, Peters B, Grünwald M, Mullen RG, Nguyen AH, Molinero V (2017) Role of stacking disorder in ice nucleation. Nature 551:218–222

    CAS  PubMed  Google Scholar 

  • Malkin TL, Murray BJ, Brukhno AV, Anwar J, Salzmann CG (2012) Structure of ice crystallized from supercooled water. Proc Natl Acad Sci U S A 109:1041–1045

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malkin TL, Murray BJ, Salzmann CG, Molinero V, Pickering SJ, Whale TF (2015) Stacking disorder in ice I. Phys Chem Chem Phys 17:60–76

    CAS  PubMed  Google Scholar 

  • Maslin M, Owen M, Betts R, Day S, Jones TD, Ridgwell A (2010) Gas hydrates: past and future geohazard? Philos Trans R Soc A 368:2369–2393

    CAS  Google Scholar 

  • Mayer E (1985) New method for vitrifying water and other liquids by rapid cooling of their aerosols. J Appl Phys 58:663–667

    CAS  Google Scholar 

  • Mayer E, Hallbrucker A (1987) Cubic ice from liquid water. Nature 325:601

    CAS  Google Scholar 

  • Mayer E, Pletzer R (1986) Astrophysical implications of amorphous ice—a microporous solid. Nature 319:298

    CAS  Google Scholar 

  • Mercury L, Vieillard P, Tardy Y (2001) Thermodynamics of ice polymorphs and ‘ice-like’ water in hydrates and hydroxides. Appl Geochem 16:161–181

    CAS  Google Scholar 

  • Meryman HT (1956) Mechanics of freezing in living cells and tissues. Science 124:515–521

    CAS  PubMed  Google Scholar 

  • Millot M, Coppari F, Rygg JR, Barrios AC, Hamel S, Swift DC, Eggert JH (2019) Nanosecond X-ray diffraction of shock-compressed superionic water ice. Nature 569:251

    CAS  PubMed  Google Scholar 

  • Mishima O, Calvert LD, Whalley E (1984) Melting ice’ I at 77 K and 10 kbar: a new method of making amorphous solids. Nature 310:393–395

    CAS  Google Scholar 

  • Mishima O, Calvert L, Whalley E (1985) An apparently first-order transition between two amorphous phases of ice induced by pressure. Nature 314:76

    CAS  Google Scholar 

  • Mitchell EH, Raut U, Teolis BD, Baragiola RA (2017) Porosity effects on crystallization kinetics of amorphous solid water: implications for cold icy objects in the outer solar system. Icarus 285:291–299

    CAS  Google Scholar 

  • Mochizuki K, Matsumoto M, Ohmine I (2013) Defect pair separation as the controlling step in homogeneous ice melting. Nature 498:350

    CAS  PubMed  Google Scholar 

  • Molinero V, Moore EB (2009) Water modeled as an intermediate element between carbon and silicon. J Phys Chem B 113:4008–4016

    CAS  PubMed  Google Scholar 

  • Moore EB, Molinero V (2010) Ice crystallization in water’s “no-man’s land”. J Chem Phys 132:244504

    PubMed  Google Scholar 

  • Moore EB, Molinero V (2011a) Is it cubic? Ice crystallization from deeply supercooled water. Phys Chem Chem Phys 13:20008–20016

    CAS  PubMed  Google Scholar 

  • Moore EB, Molinero V (2011b) Structural transformation in supercooled water controls the crystallization rate of ice. Nature 479:506–508

    CAS  PubMed  Google Scholar 

  • Moore EB, Allen JT, Molinero V (2012) Liquid-ice coexistence below the melting temperature for water confined in hydrophilic and hydrophobic nanopores. J Phys Chem C 116:7507–7514

    CAS  Google Scholar 

  • Morishige K, Uematsu H (2005) The proper structure of cubic ice confined in mesopores. J Chem Phys 122:044711

    Google Scholar 

  • Morishige K, Yasunaga H, Uematsu H (2009) Stability of cubic ice in mesopores. J Phys Chem C 113:3056–3061

    CAS  Google Scholar 

  • Muldrew K, McGann LE (1990) Mechanisms of intracellular ice formation. Biophys J 57(3):525–532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muldrew K, McGann LE (1994) The osmotic rupture hypothesis of intracellular freezing injury. Biophys J 66:532–541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mullen RG, Shea J-E, Peters B (2015) Easy transition path sampling methods: flexible-length aimless shooting and permutation shooting. J Chem Theory Comput 11:2421–2428

    CAS  PubMed  Google Scholar 

  • Murray BJ (2008) Enhanced formation of cubic ice in aqueous organic acid droplets. Environ Res Lett 3(2):025008

    Google Scholar 

  • Murray BJ, Bertram AK (2007) Strong dependence of cubic ice formation on aqueous droplet ammonium to sulphate ratio. In: O’Dowd CD, Wagner PE (eds) Nucleation and atmospheric aerosols. Springer, Dordrecht, pp 432–435

    Google Scholar 

  • Murray BJ, Knopf DA, Bertram AK (2005) The formation of cubic ice under conditions relevant to earth’s atmosphere. Nature 434:202–205

    CAS  PubMed  Google Scholar 

  • Murray BJ, O’Sullivan D, Atkinson JD, Webb ME (2012) Ice nucleation by particles immersed in supercooled cloud droplets. Chem Soc Rev 41:6519–6554

    CAS  PubMed  Google Scholar 

  • O’Sullivan D, Murray BJ, Ross JF, Whale TF, Price HC, Atkinson JD, Umo NS, Webb ME (2015) The relevance of nanoscale biological fragments for ice nucleation in clouds. Sci Rep 5:8082

    PubMed  PubMed Central  Google Scholar 

  • Olijve LLC, Meister K, Devries AL, Duman JG, Guo S, Bakker HJ, Voets IK (2016) Blocking rapid ice crystal growth through non-basal plane adsorption of antifreeze proteins. Proc Natl Acad Sci U S A 113:3740–3745

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oxtoby DW (1992) Homogeneous nucleation: theory and experiment. J Phys Condens Matter 4:7627

    Google Scholar 

  • Padayachee K, Watt MP, Edwards N, Mycock DJ (2009) Cryopreservation as a tool for the conservation of Eucalyptus genetic variability: concepts and challenges. South Forests 71:165–170

    Google Scholar 

  • Palmer JC, Martelli F, Liu Y, Car R, Panagiotopoulos AZ, Debenedetti PG (2014) Metastable liquid–liquid transition in a molecular model of water. Nature 510:385–388

    CAS  PubMed  Google Scholar 

  • Palmer JC, Haji-Akbari A, Singh RS, Martelli F, Car R, Panagiotopoulos AZ, Debenedetti PG (2018a) Comment on “The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water” [I and II: J. Chem. Phys. 135, 134503 (2011); J. Chem. Phys. 138, 214504 (2013)]. J Chem Phys 148:137101

    PubMed  Google Scholar 

  • Palmer JC, Poole PH, Sciortino F, Debenedetti PG (2018b) Advances in computational studies of the liquid–liquid transition in water and water-like models. Chem Rev 118:9129–9151

    CAS  PubMed  Google Scholar 

  • Petrenko VF (1993) Structure of ordinary Ice Ih. Part 1: Ideal structure of ice. Technical report, Thayer School of Engineering, Hanover NH

    Google Scholar 

  • Petrenko VF, Whitworth RW (1999) Physics of ice. Oxford University Press, Oxford

    Google Scholar 

  • Pluhárová E, Vrbka L, Jungwirth P (2010) Effect of surface pollution on homogeneous ice nucleation: a molecular dynamics study. J Phys Chem C 114:7831–7838

    Google Scholar 

  • Poole PH, Sciortino F, Essmann U, Stanley E (1992) Phase behaviour of metastable water. Nature 360:324–328

    CAS  Google Scholar 

  • Popovitz-Biro R, Wang J, Majewski J, Shavit E, Leiserowitz L, Lahav L (1994) Induced freezing of supercooled water into ice by self-assembled crystalline monolayers of amphiphilic alcohols at the air-water interface. J Am Chem Soc 116:1179–1191

    CAS  Google Scholar 

  • Potapczuk MG (2013) Aircraft icing research at NASA Glenn Research Center. J Aerosp Eng 26:260–276

    Google Scholar 

  • Privalov PL (1990) Cold denaturation of protein. Crit Rev Biochem Mol 25:281–306

    CAS  Google Scholar 

  • Rall W (1987) Factors affecting the survival of mouse embryos cryopreserved by vitrification. Cryobiology 24:387–402

    CAS  PubMed  Google Scholar 

  • Rall WF, Fahy GM (1985) Ice-free cryopreservation of mouse embryos at −196°c by vitrification. Nature 313(6003):573

    CAS  PubMed  Google Scholar 

  • Reinhardt A, Doye JPK (2012) Free energy landscapes for homogeneous nucleation of ice for a monatomic water model. J Chem Phys 136:054501

    PubMed  Google Scholar 

  • Reinhardt A, Doye JPK, Noya EG, Vega C (2012) Local order parameters for use in driving homogeneous ice nucleation with all-atom models of water. J Chem Phys 137:194504

    PubMed  Google Scholar 

  • Ronchi C, Hiernaut J (1996) Experimental measurement of pre-melting and melting of thorium dioxide. J Alloys Compd 240:179–185

    CAS  Google Scholar 

  • Rosinski J (1980) Heterogeneous nucleation of ice on surfaces of liquids. J Phys Chem 84:1829–1832

    CAS  Google Scholar 

  • Rosinski J, Lecinski A (1981) Further studies of heterogeneous nucleation of ice at the liquid-liquid interface. J Phys Chem 85:2993–2997

    CAS  Google Scholar 

  • Rosinski J, Kopcewicz B, Sandoval N (1990) Heterogeneous nucleation of ice at the liquid-liquid interface. J Aerosol Sci 21(1):87–96

    Google Scholar 

  • Rozmanov D, Kusalik PG (2012) Anisotropy in the crystal growth of hexagonal ice, I-h. J Chem Phys 137:094702

    PubMed  Google Scholar 

  • Russo J, Romano F, Tanaka H (2014) New metastable form of ice and its role in the homogeneous crystallization of water. Nat Mater 13:733–739

    CAS  PubMed  Google Scholar 

  • Saika-Voivod I, Sciortino F, Poole PH (2000) Computer simulations of liquid silica: equation of state and liquid–liquid phase transition. Phys Rev E 63(1):011202

    Google Scholar 

  • Salzmann CG, Radaelli PG, Mayer E, Finney JL (2009) Ice XV: a new thermodynamically stable phase of ice. Phys Rev Lett 103:105701

    PubMed  Google Scholar 

  • Samanta A, Tuckerman ME, Yu T-Q, Weinan E (2014) Microscopic mechanisms of equilibrium melting of a solid. Science 346:729–732

    CAS  PubMed  Google Scholar 

  • Sánchez MA, Kling T, Ishiyama T, van Zadel M-J, Bisson PJ, Mezger M, Jochum MN, Cyran JD, Smit WJ, Bakker HJ et al (2017) Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice. Proc Natl Acad Sci U S A 114:227–232

    PubMed  Google Scholar 

  • Sanz E, Vega C, Espinosa JR, Caballero-Bernal R, Abascal JLF, Valeriani C (2013) Homogeneous ice nucleation at moderate supercooling from molecular simulation. J Am Chem Soc 135:15008–15017

    CAS  PubMed  Google Scholar 

  • Sastry S, Angell CA (2003) Liquid–liquid phase transition in supercooled silicon. Nat Mater 2:739

    CAS  PubMed  Google Scholar 

  • Sastry S, Debenedetti PG, Sciortino F, Stanley HE (1996) Singularity free interpretation of the thermodynamics of supercooled water. Phys Rev E 53:6144

    CAS  Google Scholar 

  • Schumann U, Weinzierl B, Reitebuch O, Schlager H, Minikin A, Forster C, Baumann R, Sailer T, Graf K, Mannstein H, Voigt C, Rahm S, Simmet R, Scheibe M, Lichtenstern M, Stock P, Rüba H, Schäuble D, Tafferner A, Rautenhaus M, Gerz T, Ziereis H, Krautstrunk M, Mallaun C, Gayet J-F, Lieke K, Kandler K, Ebert M, Weinbruch S, Stohl A, Gasteiger J, Grob S, Freudenthaler V, Wiegner M, Ansmann A, Tesche M, Olafsson H, Sturm K (2011) Airborne observations of the Eyjafjalla Volcano ash cloud over Europe during air space closure in April and May 2010. Atmos Chem Phys 11:2245–2279

    CAS  Google Scholar 

  • Schwager B, Chudinovskikh L, Gavriliuk A, Boehler R (2004) Melting curve of H2O to 90 gpa measured in a laser-heated diamond cell. J Phys Condens Matter 16:S1177

    CAS  Google Scholar 

  • Seeley L, Seidler G (2001) Two-dimensional nucleation of ice from super cooled water. Phys Rev Lett 87:055702

    CAS  PubMed  Google Scholar 

  • Seidl M, Amann-Winkel K, Handle PH, Zifferer G, Loerting T (2013) From parallel to single crystallization kinetics in high-density amorphous ice. Phys Rev B 88:174105

    Google Scholar 

  • Sellberg JA, Huang C, McQueen TA, Loh ND, Laksmono H, Schlesinger D, Sierra RG, Nordlund D, Hampton CY, Starodub D, DePonte DP, Beye M, Chen C, Martin AV, Barty A, Wikfeldt KT, Weiss TM, Caronna C, Feldkamp J, Skinner LB, Seibert MM, Messerschmidt M, Williams GJ, Boutet S, Pettersson LGM, Bogan MJ, Nilsson A (2014) Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature. Nature 510:381–384

    CAS  PubMed  Google Scholar 

  • Seo M, Jang E, Kim K, Choi S, Kim JS (2012) Understanding anisotropic growth behavior of hexagonal ice on a molecular scale: a molecular dynamics simulation study. J Chem Phys 137:154503

    PubMed  Google Scholar 

  • Shilling J, Tolbert M, Toon O, Jensen E, Murray BJ, Bertram AK (2006) Measurements of the vapor pressure of cubic ice and their implications for atmospheric ice clouds. Geophys Res Lett 33:L17801

    Google Scholar 

  • Shultz MJ, Brumberg A, Bisson PJ, Shultz R (2015) Producing desired ice faces. Proc Natl Acad Sci U S A 112:E6096–E6100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sigurbjörnsson OF, Signorell R (2008) Volume versus surface nucleation in freezing aerosols. Phys Rev E 77:051601

    Google Scholar 

  • Sliwinska-Bartkowiak M, Jazdzewska M, Huang L, Gubbins KE (2008) Melting behavior of water in cylindrical pores: carbon nanotubes and silica glasses. Phys Chem Chem Phys 10:4909–4919

    CAS  PubMed  Google Scholar 

  • Smallenburg F, Filion L, Sciortino F (2014) Erasing no-man’s land by thermodynamically stabilizing the liquid–liquid transition in tetrahedral particles. Nat Phys 10:653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song M, Yamawaki H, Fujihisa H, Sakashita M, Aoki K (2003) Infrared investigation on ice VIII and the phase diagram of dense ices. Phys Rev B 68:014106

    Google Scholar 

  • Speedy RJ (1982) Limiting forms of the thermodynamic divergences at the conjectured stability limits in superheated and supercooled water. J Phys Chem 86:3002–3005

    CAS  Google Scholar 

  • Stanley HE, Teixeira J (1980) Interpretation of the unusual behavior of H2O and D2O at low temperatures: tests of a percolation model. J Chem Phys 73:3404–3422

    CAS  Google Scholar 

  • Stanley HE, Teixeira J, Geiger A, Blumberg R (1981) Interpretation of the unusual behavior of H2O and D2O at low temperature: are concepts of percolation relevant to the “puzzle of liquid water”? Physica A 106:260–277

    Google Scholar 

  • Steytler D, Dore J, Wright C (1983) Neutron diffraction study of cubic ice nucleation in a porous silica network. J Phys Chem 87:2458–2459

    CAS  Google Scholar 

  • Stokely K, Mazza MG, Stanley HE, Franzese G (2009) Effect of hydrogen bond cooperativity on the behavior of water. Proc Natl Acad Sci U S A 107:1301–1306

    Google Scholar 

  • Strobel TA, Somayazulu M, Sinogeikin SV, Dera P, Hemley RJ (2016) Hydrogen-stuffed, quartz-like water ice. J Am Chem Soc 138:13786–13789

    CAS  PubMed  Google Scholar 

  • Swanson BD (2009) How well does water activity determine homogeneous ice nucleation temperature in aqueous sulfuric acid and ammonium sulfate droplets? J Atmos Sci 66:741–754

    Google Scholar 

  • Tabazadeh A, Djikaev YS, Reiss H (2002) Surface crystallization of supercooled water in clouds. Proc Natl Acad Sci U S A 99:15873–15878

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi T (1982) On the role of cubic structure in ice nucleation. J Cryst Growth 59:441–449

    CAS  Google Scholar 

  • Takaiwa D, Hatano I, Koga K, Tanaka H (2008) Phase diagram of water in carbon nanotubes. Proc Natl Acad Sci U S A 105:39–43

    CAS  PubMed  Google Scholar 

  • ten Wolde PR, Frenkel D (1999) Homogeneous nucleation and the Ostwald step rule. Phys Chem Chem Phys 1:2191–2196

    Google Scholar 

  • ten Wolde PR, Ruiz-Montero MJ, Frenkel D (1996) Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling. J Chem Phys 104:9932–9947

    Google Scholar 

  • Thomson W (1872) 4. On the equilibrium of vapour at a curved surface of liquid. Proc R Soc Edin 7:63–68

    Google Scholar 

  • Turnbull D (1950) Kinetics of heterogeneous nucleation. J Chem Phys 18:198–203

    CAS  Google Scholar 

  • Van Santen R (1984) The Ostwald step rule. J Phys Chem 88:5768–5769

    Google Scholar 

  • Varshney D, Singh M (2015) History of lyophilization. In: Varshney D, Singh M (eds) Lyophilized biologics and vaccines. Springer, New York, pp 3–10

    Google Scholar 

  • Vega C, Abascal JLF (2011) Simulating water with rigid non-polarizable models: a general perspective. Phys Chem Chem Phys 13:19663–19688

    CAS  PubMed  Google Scholar 

  • Volmer M, Flood H (1934) Tröpfchenbildung in dämpfen. Z Phys Chem 170:273–285

    Google Scholar 

  • Voorhees PW (1985) The theory of Ostwald ripening. J Stat Phys 38:231–252

    Google Scholar 

  • Vrbka L, Jungwirth P (2006) Homogeneous freezing of water starts in the subsurface. J Phys Chem B 110:18126–18129

    CAS  PubMed  Google Scholar 

  • Wang Z, Wang F, Peng Y, Zheng Z, Han Y (2012) Imaging the homogeneous nucleation during the melting of superheated colloidal crystals. Science 338:87–90

    CAS  PubMed  Google Scholar 

  • Wang Z, Wang F, Peng Y, Han Y (2015) Direct observation of liquid nucleus growth in homogeneous melting of colloidal crystals. Nat Commun 6:6942

    PubMed  PubMed Central  Google Scholar 

  • Weertman J (1957) On the sliding of glaciers. J Glaciol 3(21):33–38

    Google Scholar 

  • Wilson DR, Ballard SP (1999) A microphysically based precipitation scheme for the UK Meteorological Office unified model. Q J R Meteor Soc 125:1607–1636

    Google Scholar 

  • Wilson PW, Haymet ADJ (2009) Effect of solutes on the heterogeneous nucleation temperature of supercooled water: an experimental determination. Phys Chem Chem Phys 11:2679–2682

    CAS  Google Scholar 

  • Wilson TW, Ladino LA, Alpert PA, Breckels MN, Brooks IM, Browse J, Burrows SM, Carslaw KS, Huffman JA, Judd C, Kilthau WP, Mason RH, McFiggans G, Miller LA, Nájera JJ, Polishchuk E, Rae S, Schiller CL, Si M, Temprado JV, Whale TF, Wong JPS, Wurl O, Yakobi-Hancock JD, Abbatt JPD, Aller JY, Bertram AK, Knopf DA, Murray BJ (2015) A marine biogenic source of atmospheric ice-nucleating particles. Nature 525:234–238

    CAS  PubMed  Google Scholar 

  • Winkel K, Elsaesser MS, Mayer E, Loerting T (2008) Water polyamorphism: reversibility and (dis)continuity. J Chem Phys 128:044510

    PubMed  Google Scholar 

  • Xu L, Kumar P, Buldyrev SV, Chen S-H, Poole PH, Sciortino F, Stanley HE (2005) Relation between the widom line and the dynamic crossover in systems with a liquid–liquid phase transition. Proc Natl Acad Sci U S A 102:16558–16562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Q, Sharp I, Yuan C, Yi D, Liao C, Glaeser AM, Minor A, Beeman J, Ridgway MC, Kluth P et al (2006) Large melting-point hysteresis of Ge nanocrystals embedded in SiO2. Phys Rev Lett 97:155701

    CAS  PubMed  Google Scholar 

  • Yang WJ, Mochizuki S (2003) Low temperature and cryogenic applications in medicine and surgery. In: Kakac S, Smirnov H, Avelino MR (eds) Low temperature and cryogenic refrigeration, NATO Science Series II: Mathematics, physics and chemistry. Springer, Dordrecht, pp 295–308

    Google Scholar 

  • Ye Z, Wu J, Ferradi NE, Shi X (2013) Anti-icing for key highway locations: fixed automated spray technology. Can J Civ Eng 40:11–18

    Google Scholar 

  • Yen F, Chi Z (2015) Proton ordering dynamics of H2O ice. Phys Chem Chem Phys 17(19):12458–12461

    PubMed  Google Scholar 

  • Zangi R, Mark AE (2003) Monolayer ice. Phys Rev Lett 91:025502

    PubMed  Google Scholar 

  • Zeng Q, Li K, Fen-Chong T (2015) Heterogeneous nucleation of ice from supercooled NaCl solution confined in porous cement paste. J Cryst Growth 409:1–9

    Google Scholar 

  • Zhang X, Sun P, Yan T, Huang Y, Ma Z, Zou B, Zheng W, Zhou J, Gong Y, Sun CQ (2015) Water’s phase diagram: from the notion of thermodynamics to hydrogen-bond cooperativity. Prog Solid State Ch 43:71–81

    Google Scholar 

  • Zhao W-H, Bai J, Yuan L-F, Yang J, Zeng XC (2014a) Ferroelectric hexagonal and rhombic monolayer ice phases. Chem Sci 5:1757–1764

    CAS  Google Scholar 

  • Zhao W-H, Wang L, Bai J, Yuan L-F, Yang J, Zeng XC (2014b) Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates. Acc Chem Res 47:2505–2513

    CAS  PubMed  Google Scholar 

  • Zheligovskaya EA, Malenkov GG (2006) Crystalline water ices. Russ Chem Rev 75:57

    CAS  Google Scholar 

  • Zhu W, Zhao W-H, Wang L, Yin D, Jia M, Yang J, Zeng XC, Yuan L-F (2016) Two-dimensional interlocked pentagonal bilayer ice: how do water molecules form a hydrogen bonding network? Phys Chem Chem Phys 18:14216–14221

    CAS  PubMed  Google Scholar 

  • Zimmermann F, Weinbruch S, Schütz L, Hofmann H, Ebert M, Kandler K, Worringen A (2008) Ice nucleation properties of the most abundant mineral dust phases. J Geophys Res 113:D23204

    Google Scholar 

  • Zobrist B, Marcolli C, Peter T, Koop T (2008) Heterogeneous ice nucleation in aqueous solutions: the role of water activity. J Phys Chem A 112:3965–3975

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

A.H.-A. gratefully acknowledges the support of the National Science Foundation CAREER Award (Grant No. CBET-1751971).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Haji-Akbari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haji-Akbari, A. (2020). Ice and Its Formation. In: Ramløv, H., Friis, D. (eds) Antifreeze Proteins Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-030-41929-5_3

Download citation

Publish with us

Policies and ethics