Skip to main content

DML Control

  • Chapter
  • First Online:
Dual Mode Logic
  • 322 Accesses

Abstract

This chapter focuses on the granularity of the DML mode control. First, we describe a coarse-grain data-dependent controller that controls DML at the block level. We show that the operation mode of DML can be selected by critical path prediction architectures that considerably enhance performance. Then, we present a design example of a fine-grain, data-dependent controller that operates at the logic path level. The main goal of this chapter is to show that DML primitives can be utilized to make improvements at numerous abstraction levels even though these are more often associated with the gate level. We provide several examples illustrating how primitives can be controlled as a function of gate, path, block, and architecture level requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Kim, M.S. Gupta, G.-Y. Wei, D. Brooks, System level analysis of fast, per-core DVFS using on-chip switching regulators, in 2008 IEEE 14th International Symposium on High Performance Computer Architecture (IEEE, Piscataway, 2008), pp. 123–134

    Google Scholar 

  2. B.R. Zeydel, D. Baran, V.G. Oklobdzija, Energy-efficient design methodologies: high-performance VLSI adders. IEEE J. Solid State Circuits 45(6), 1220–1233 (2010)

    Article  Google Scholar 

  3. H.Q. Dao, B.R. Zeydel, V.G. Oklobdzija, Energy optimization of pipelined digital systems using circuit sizing and supply scaling. IEEE Trans. Very Large Scale Integr. Syst. 14(2), 122 (2006)

    Google Scholar 

  4. W. Shen, Y. Cai, X. Hong, J. Hu, An effective gated clock tree design based on activity and register aware placement.IEEE Trans. Very Large Scale Integr. Syst. 18(12), 1639–1648 (2010)

    Google Scholar 

  5. J. Shinde, S. Salankar, Clock gating—a power optimizing technique for VLSI circuits, in 2011 Annual IEEE India Conference (IEEE, Piscataway, 2011), pp. 1–4

    Book  Google Scholar 

  6. K. Roy, S.C. Prasad, Low-Power CMOS VLSI Circuit Design (Wiley, London, 2009)

    Google Scholar 

  7. M. Alioto, Ultra-low power VLSI circuit design demystified and explained: a tutorial. IEEE Trans. Circuits Syst. I: Reg. Papers 59(1), 3–29 (2012)

    Article  MathSciNet  Google Scholar 

  8. D. Bol et al., Robust and energy-efficient ultra-low-voltage circuit design under timing constraints in 65/45 nm CMOS. J. Low Power Electron. Appl. 1(1), 1–19 (2011)

    Article  Google Scholar 

  9. H. Zhang, J. Rabaey, Low-swing interconnect interface circuits, in Proceedings of the 1998 International Symposium on Low power Electronics and Design (ACM, New York, 1998), pp. 161–166

    Google Scholar 

  10. J.-S. Seo, H. Kaul, R. Krishnamurthy, D. Sylvester, D. Blaauw, A robust edge encoding technique for energy-efficient multi-cycle interconnect. IEEE Trans. Very Large Scale Integr. Syst. 19(2), 264–273 (2011)

    Article  Google Scholar 

  11. S.J. Wilton, S.-S. Ang, W. Luk, The impact of pipelining on energy per operation in field-programmable gate arrays, in International Conference on Field Programmable Logic and Applications (Springer, Berlin, 2004), pp. 719–728

    Google Scholar 

  12. S. Kiamehr, M. Ebrahimi, M.S. Golanbari, M.B. Tahoori, Temperature-aware dynamic voltage scaling to improve energy efficiency of near-threshold computing. IEEE Trans. Very Large Scale Integr. Syst. 25(7), 2017–2026 (2017)

    Article  Google Scholar 

  13. S. Höppner, Y. Yan, B. Vogginger, A. Dixius, J. Partzsch, F. Neumärker, S. Hartmann, S. Schiefer, S. Scholze, G. Ellguth et al., Dynamic voltage and frequency scaling for neuromorphic many-core systems, in 2017 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, Piscataway, 2017), pp. 1–4

    Google Scholar 

  14. F. ur Rahman, V. Sathe, Quasi-resonant clocking: continuous voltage-frequency scalable resonant clocking system for dynamic voltage-frequency scaling systems. IEEE J. Solid State Circuits 53(3), 924–935 (2018)

    Google Scholar 

  15. S.B. Nasir, S. Sen, A. Raychowdhury, Switched-mode-control based hybrid LDO for fine-grain power management of digital load circuits. IEEE J. Solid State Circuits 53(2), 569–581 (2017)

    Article  Google Scholar 

  16. S. Bang, W. Lim, C. Augustine, A. Malavasi, M. Khellah, J. Tschanz, V. De, 25.1 a fully synthesizable distributed and scalable all-digital LDO in 10 nm CMOS, in 2020 IEEE International Solid-State Circuits Conference-(ISSCC) (IEEE, Piscataway, 2020), pp. 380–382

    Google Scholar 

  17. F. Atallah, K. Bowman, H. Nguyen, J. Jeong, D. Yingling, Y. Sun, B. Appel, A. Polomik, M. Harinath, J. Morelli et al., 19.3 a 7 nm all-digital unified voltage and frequency regulator based on a high-bandwidth 2-phase buck converter with package inductors, in 2019 IEEE International Solid-State Circuits Conference-(ISSCC) (IEEE, Piscataway, 2019), pp. 316–318

    Google Scholar 

  18. S. Wimer, A. Albeck, I. Koren, A low energy dual-mode adder. Comput. Electr. Eng. 40(5), 1524–1537 (2014)

    Article  Google Scholar 

  19. A. Kaizerman, S. Fisher, A. Fish, Subthreshold dual mode logic. IEEE Trans. Very Large Scale Integr. Syst. 21(5), 979–983 (2013)

    Article  Google Scholar 

  20. I. Levi, A. Belenky, A. Fish, Logical effort for CMOS-based dual mode logic gates. IEEE Trans. Very Large Scale Integr. Syst. 22(5), 1042–1053 (2014)

    Article  Google Scholar 

  21. I. Levi, A. Fish, Dual mode logic—design for energy efficiency and high performance. IEEE Access 1, 258–265 (2013)

    Article  Google Scholar 

  22. I. Levi, O. Bass, A. Kaizerman, A. Belenky, A. Fish, High speed dual mode logic carry look ahead adder, in 2012 IEEE International Symposium on Circuits and Systems (IEEE, Piscataway, 2012), pp. 3037–3040

    Book  Google Scholar 

  23. I. Levi, A. Kaizerman, A. Fish, Low voltage dual mode logic: model analysis and parameter extraction. Microelectron. J. 44(6), 553–560 (2013)

    Article  Google Scholar 

  24. P. Behrooz, Computer Arithmetic: Algorithms and Hardware Designs, vol. 19 (Oxford University Press, 2000), pp. 512583–512585

    Google Scholar 

  25. K.C. Yeager, The Mips R10000 superscalar microprocessor. IEEE Micro 16(2), 28–41 (1996)

    Article  Google Scholar 

  26. N.H.E. Weste, D.M. Harris, CMOS VLSI Design: A Circuit and System Perspective, 4th edn. (Pearson Education India, 2015)

    Google Scholar 

  27. R.P. Brent, H.-T. Kung, A regular layout for parallel adders. IEEE Trans. Comput. 3, 260–264 (1982)

    Article  MathSciNet  Google Scholar 

  28. J.L. Hennessy, D.A. Patterson, Computer Architecture: A Quantitative Approach (Elsevier, Amsterdam, 2011)

    MATH  Google Scholar 

  29. M.A. Franklin, T. Pan, Performance comparison of asynchronous adders, in Proceedings of 1994 IEEE Symposium on Advanced Research in Asynchronous Circuits and Systems (IEEE, 1994)

    Google Scholar 

  30. F.-C. Cheng, S.H. Unger, M. Theobald, Self-timed carry-lookahead adders. IEEE Trans. Comput. 49(7), 659–672 (2000)

    Article  Google Scholar 

  31. C.R. Kime, M. Morris Mano, Logic and computer design fundamentals (Prentice Hall, 2003)

    Google Scholar 

  32. I. Flores, The logic of computer arithmetic (1963)

    Google Scholar 

  33. A. De Gloria, M. Olivieri, Statistical carry lookahead adders. IEEE Trans. Comput. 45(3), 340–347 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Levi, I., Fish, A. (2021). DML Control. In: Dual Mode Logic. Springer, Cham. https://doi.org/10.1007/978-3-030-40786-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40786-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40785-8

  • Online ISBN: 978-3-030-40786-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics