Skip to main content

Low-Voltage DML

  • Chapter
  • First Online:
Dual Mode Logic
  • 329 Accesses

Abstract

This chapter examines DML performance, energy consumption, static noise margins, delay distribution, robustness, and other design metrics under low-voltage operation. It still focuses on the gate level and DML operations in subthreshold and near-threshold regions illustrated using the transregional model. Measurement results for fabricated test structures of a variety of DML benchmarks are presented, covering a wide range of operating conditions, supply voltages, etc. Whereas the last chapter mainly dealt with performance optimization of the DML dynamic mode, the main goal of this chapter is to provide an in-depth description of the superior performance of DML with regard to robustness and process variation immunity, and its operation at low voltages. The DML designs are compared to standard CMOS and (dynamic) domino to provide the reader with a better grasp of DML’s key features, compared to current alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    g was denoted by LE in the previous chapter. In this chapter, for conciseness, we use the original notations.

  2. 2.

    Note that domino logic in subthreshold voltages (e.g., 0.3 V) is not robust and does not function correctly under variations, as discussed below; therefore, we compare it here to a footed domino implementation to derive the LE parameters.

References

  1. A.P. Chandrakasan, S. Sheng, R.W. Brodersen, Low-power cmos digital design. IEICE Trans. Electron. 75(4), 371–382 (1992)

    Google Scholar 

  2. C. Piguet, Low-power Electronics Design (CRC Press, Boca Raton, 2018)

    Book  Google Scholar 

  3. P. Kalyani, P.S. Kumar, P.C. Sekhar, Design of subthreshold adiabatic logic based combinational and sequential circuits, in 2017 International Conference on Emerging Trends & Innovation in ICT (ICEI) (IEEE, Piscataway, 2017), pp. 9–14

    Google Scholar 

  4. S.B. Nasir, S. Sen, A. Raychowdhury, Switched-mode-control based hybrid ldo for fine-grain power management of digital load circuits. IEEE J. Solid-State Circuits 53(2), 569–581 (2017)

    Article  Google Scholar 

  5. S. Kim, S.-Y. Lee, S. Park, K.R. Kim, S. Kang, A logic synthesis methodology for low-power ternary logic circuits. IEEE Trans. Circ. Syst. I Regul. Pap. 67(9), 3138–3151 (2020)

    Article  Google Scholar 

  6. Y. Chen, H. Jiao, Standard cell optimization for ultra-low-voltage digital circuits, in 2019 International Conference on IC Design and Technology (ICICDT) (IEEE, Piscataway, 2019), pp. 1–4

    Google Scholar 

  7. J. Kwong, Y.K. Ramadass, N. Verma, A.P. Chandrakasan, A 65 nm sub-microcontroller with integrated sram and switched capacitor dc-dc converter. IEEE J. Solid-State Circuits 44(1), 115–126 (2009)

    Article  Google Scholar 

  8. D. Markovic, C.C. Wang, L.P. Alarcon, T.-T. Liu, J.M. Rabaey, Ultralow-power design in near-threshold region. Proc. IEEE 98(2), 237–252 (2010)

    Article  Google Scholar 

  9. G. Gammie, A. Wang, H. Mair, R. Lagerquist, M. Chau, P. Royannez, S. Gururajarao, U. Ko, Smartreflex power and performance management technologies for 90 nm, 65 nm, and 45 nm mobile application processors. Proc. IEEE 98(2), 144–159 (2010)

    Article  Google Scholar 

  10. B. Zhai, S. Hanson, D. Blaauw, D. Sylvester, Analysis and mitigation of variability in subthreshold design, in Proceedings of the 2005 International Symposium on Low Power Electronics and Design (ACM, New York, 2005), pp. 20–25

    Google Scholar 

  11. G. Gammie, A. Wang, M. Chau, S. Gururajarao, R. Pitts, F. Jumel, S. Engel, P. Royannez, R. Lagerquist, H. Mair et al., A 45nm 3.5 g baseband-and-multimedia application processor using adaptive body-bias and ultra-low-power techniques, in 2008 IEEE International Solid-State Circuits Conference-Digest of Technical Papers (IEEE, Piscataway, 2008), pp. 258–611

    Google Scholar 

  12. B.H. Calhoun, A.P. Chandrakasan, Ultra-dynamic voltage scaling (udvs) using sub-threshold operation and local voltage dithering. IEEE J. Solid-State Circuits 41(1), 238–245 (2006)

    Article  Google Scholar 

  13. M.-E. Hwang, K. Roy, Abrm: Adaptive-ratio modulation for process-tolerant ultradynamic voltage scaling. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 18(2), 281–290 (2010)

    Google Scholar 

  14. M.-A. LaCroix, H. Wong, Y.H. Liu, H. Ho, S. Lebedev, P. Krotnev, D.A. Nicolescu, D. Petrov, C. Carvalho, S. Alie et al., 6.2 a 60gb/s pam-4 adc-dsp transceiver in 7nm cmos with snr-based adaptive power scaling achieving 6.9 pj/b at 32db loss, in 2019 IEEE International Solid-State Circuits Conference-(ISSCC) (IEEE, Piscataway, 2019), pp. 114–116

    Google Scholar 

  15. G. Papadimitriou, A. Chatzidimitriou, D. Gizopoulos, Adaptive voltage/frequency scaling and core allocation for balanced energy and performance on multicore cpus, in 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA) (IEEE, Piscataway, 2019), pp. 133–146

    Google Scholar 

  16. M. Pons, C.T. Müller, D. Ruffieux, J.-L. Nagel, S. Emery, A. Burg, S. Tanahashi, Y. Tanaka, A. Takeuchi, A 0.5 v 2.5 μw/mhz microcontroller with analog-assisted adaptive body bias pvt compensation with 3.13 nw/kb sram retention in 55nm deeply-depleted channel cmos, in 2019 IEEE Custom Integrated Circuits Conference (CICC) (IEEE, Piscataway, 2019), pp. 1–4

    Google Scholar 

  17. H. Soeleman, K. Roy, B. Paul, Sub-domino logic: ultra-low power dynamic sub-threshold digital logic, in Fourteenth International Conference on VLSI Design, 2001 (IEEE, Piscataway, 2001), pp. 211–214

    Google Scholar 

  18. I.E. Sutherland, R.F. Sproull, D.F. Harris, Logical Effort: Designing Fast CMOS Circuits (Morgan Kaufmann, Boston, 1999)

    Google Scholar 

  19. J. Keane, H. Eom, T.-H. Kim, S. Sapatnekar, C. Kim, Subthreshold logical effort: a systematic framework for optimal subthreshold device sizing, in Proceedings of the 43rd Annual Design Automation Conference (ACM, New York, 2006), pp. 425–428

    Google Scholar 

  20. D.M. Harris, B. Keller, J. Karl, S. Keller, A transregional model for near-threshold circuits with application to minimum-energy operation, in 2010 International Conference on Microelectronics (IEEE, Piscataway, 2010), pp. 64–67

    Google Scholar 

  21. A. Kaizerman, S. Fisher, A. Fish, Subthreshold dual mode logic. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(5), 979–983 (2013)

    Google Scholar 

  22. C.-H. Chang, J. Gu, M. Zhang, A review of 0.18-/spl mu/m full adder performances for tree structured arithmetic circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 13(6), 686–695 (2005)

    Google Scholar 

  23. J. Kwong, A.P. Chandrakasan, Variation-driven device sizing for minimum energy sub-threshold circuits, in Proceedings of the 2006 International Symposium on Low Power Electronics and Design (ACM, New York, 2006), pp. 8–13

    Google Scholar 

  24. B.H. Calhoun, A. Wang, A. Chandrakasan, Modeling and sizing for minimum energy operation in subthreshold circuits. IEEE J. Solid-State Circuits 40(9), 1778–1786 (2005)

    Article  Google Scholar 

  25. S. Hanson, B. Zhai, K. Bernstein, D. Blaauw, A. Bryant, L. Chang, K.K. Das, W. Haensch, E.J. Nowak, D.M. Sylvester, Ultralow-voltage, minimum-energy cmos. IBM J. Res. Dev. 50(4.5), 469–490 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Levi, I., Fish, A. (2021). Low-Voltage DML. In: Dual Mode Logic. Springer, Cham. https://doi.org/10.1007/978-3-030-40786-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40786-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40785-8

  • Online ISBN: 978-3-030-40786-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics