Skip to main content

Hexapod External Fixation for Fractures and Nonunions

  • Chapter
  • First Online:
Hexapod External Fixator Systems

Abstract

The technique of circular external fixation has been widely applied to treat an array of orthopaedic pathologies, including acute fractures and fracture nonunions. The evolution of this technology has led to many exciting new applications and designs: the hexapod—a highly sophisticated frame with six adjustable struts attached to rings that relies on the principle of projective geometry. The hexapods are currently used in acute fracture management and several indications for the use in complex clinical scenarios (open fractures, bone deficiencies, difficult fracture reductions and soft-tissue deficits) do exist. Furthermore, a key role for hexapods is in fracture nonunion management: hypertrophic, atrophic and infected nonunions all have very diverse aetiologies but all may be effectively managed with the hexapod frame. We present a number of complex cases that were treated surgically by the Limb Lengthening and Complex Reconstruction Service in our institution. The wide variation of challenging scenarios that may be treated effectively with the hexapod frame demonstrates the versatility and efficacy of this technology in current orthopaedic practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HA:

hydroxyapatite

IM:

intramedullary

N/mm:

Newton/millimeter, unit of measurement of rigidity

TSF:

Taylor Spatial Frame

References

  1. Hernigou P. History of external fixation for treatment of fractures. Int Orthop. 2017;41(4):845–53.

    Article  PubMed  Google Scholar 

  2. Lowenberg DW, Githens M, Boone C. Principles of tibial fracture management with circular external fixation. Orthop Clin North Am. 2014;45(2):191–206.

    Article  PubMed  Google Scholar 

  3. Seide K, Wolter D, Kortmann HR. Fracture reduction and deformity correction with the hexapod Ilizarov fixator. Clin Orthop Relat Res. 1999;363:186–95.

    Article  Google Scholar 

  4. Keshet D, Eidelman M. Clinical utility of the Taylor spatial frame for limb deformities. Orthop Res Rev. 2017;9:51–61.

    PubMed  PubMed Central  Google Scholar 

  5. Stewart D. A platform with six degrees of freedom. Proc Inst Mech Eng. 1965;180:371–8.

    Article  Google Scholar 

  6. Seide K, Wolnack J, Weinrich N, Jurgens C. [Theory and software of the hexapod external fixator]. Biomed Tech (Berl). 2002;47(12):326–33.

    Google Scholar 

  7. Ferreira N, Birkholtz F. Radiographic analysis of hexapod external fixators: fundamental differences between the Taylor Spatial Frame and TrueLok-Hex. J Med Eng Technol. 2015;39(3):173–6.

    Article  PubMed  Google Scholar 

  8. Heidari N, Hughes A, Atkins RM. Intra-operative correction of Taylor Spatial Frame without a computer. J Orthop Trauma. 2013;27(2):e42–4.

    Article  PubMed  Google Scholar 

  9. Yin P, Ji Q, Li T, Li J, Li Z, Liu J, et al. A systematic review and meta-analysis of Ilizarov methods in the treatment of infected nonunion of tibia and femur. PLoS One. 2015;10(11):e0141973.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Henderson DJ, Rushbrook JL, Harwood PJ, Stewart TD. What are the biomechanical properties of the Taylor Spatial Frame? Clin Orthop Relat Res. 2017;475(5):1472–82.

    Article  PubMed  Google Scholar 

  11. Bliven EK, Greinwald M, Hackl S, Augat P. External fixation of the lower extremities: biomechanical perspective and recent innovations. Injury. 2019;50(Suppl 1):S10–S7.

    Article  PubMed  Google Scholar 

  12. Menakaya CU, Rigby AS, Hadland Y, Barron E, Sharma H. Fracture healing following high energy tibial trauma: Ilizarov versus Taylor Spatial Frame. Ann R Coll Surg Engl. 2014;96(2):106–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fragomen AT, Rozbruch SR. The mechanics of external fixation. HSS J. 2007;3(1):13–29.

    Article  PubMed  Google Scholar 

  14. Shore BJ, DiMauro JP, Spence DD, Miller PE, Glotzbecker MP, Spencer S, et al. Uniplanar versus Taylor Spatial Frame external fixation for pediatric diaphyseal tibia fractures: a comparison of cost and complications. J Pediatr Orthop. 2016;36(8):821–8.

    Article  PubMed  Google Scholar 

  15. Sala F, Elbatrawy Y, Thabet AM, Zayed M, Capitani D. Taylor spatial frame fixation in patients with multiple traumatic injuries: study of 57 long-bone fractures. J Orthop Trauma. 2013;27(8):442–50.

    Article  PubMed  Google Scholar 

  16. Piza G, Caja VL, Gonzalez-Viejo MA, Navarro A. Hydroxyapatite-coated external-fixation pins. The effect on pin loosening and pin-track infection in leg lengthening for short stature. J Bone Joint Surg Br. 2004;86(6):892–7.

    Article  CAS  PubMed  Google Scholar 

  17. Moroni A, Pegreffi F, Cadossi M, Hoang-Kim A, Lio V, Giannini S. Hydroxyapatite-coated external fixation pins. Expert Rev Med Devices. 2005;2(4):465–71.

    Article  CAS  PubMed  Google Scholar 

  18. Moroni A, Cadossi M, Romagnoli M, Faldini C, Giannini S. A biomechanical and histological analysis of standard versus hydroxyapatite-coated pins for external fixation. J Biomed Mater Res B Appl Biomater. 2008;86(2):417–21.

    Article  PubMed  CAS  Google Scholar 

  19. Antoci V, Roberts CS, Antoci V Jr, Voor MJ. The effect of transfixion wire number and spacing between two levels of fixation on the stiffness of proximal tibial external fixation. J Orthop Trauma. 2005 Mar 1;19(3):180–6.

    Article  PubMed  Google Scholar 

  20. Glatt V, Tepic S, Evans C. Reverse dynamization: a novel approach to bone healing. J Am Acad Orthop Surg. 2016;24(7):e60–1.

    Article  PubMed  Google Scholar 

  21. Glatt V, Miller M, Ivkovic A, Liu F, Parry N, Griffin D, Vrahas M, Evans C. Improved healing of large segmental defects in the rat femur by reverse dynamization in the presence of bone morphogenetic protein-2. J Bone Joint Surg Am. 2012;94(22):2063.

    Article  PubMed  PubMed Central  Google Scholar 

  22. O’Toole RV, Gary JL, Reider L, Bosse MJ, Gordon WT, Hutson J, et al. A prospective randomized trial to assess fixation strategies for severe open tibia fractures: modern ring external fixators versus internal fixation (FIXIT study). J Orthop Trauma. 2017;31(Suppl 1):S10–S7.

    Article  PubMed  Google Scholar 

  23. Paley D, Herzenberg JE. Applications of external fixation to foot and ankle reconstruction. In: Myerson M, editor. Foot and ankle disorders, vol. 34. 2nd ed. Philadelphia: WB Saunders; 1984. p. 131–8. (2000. p. 1135–88).

    Google Scholar 

  24. Robbins CA. Case 27: induced angular deformity and acute shortening for primary wound closure in a IIIB open proximal tibial fracture. In: Rozbruch SR, editor. Limb lengthening and reconstruction surgery case atlas. New York: Springer; 2015.

    Google Scholar 

  25. Al-Sayyad MJ. Taylor Spatial Frame in the treatment of pediatric and adolescent tibial shaft fractures. J Pediatr Orthop. 2006;26(2):164–70.

    Article  PubMed  Google Scholar 

  26. Zenios M. The use of the Taylor spatial frame for the treatment of unstable tibial fractures in children. J Orthop Trauma. 2013;27(10):563–8.

    Article  PubMed  Google Scholar 

  27. Al-Sayyad MJ. Taylor spatial frame in the treatment of neglected fractures. J Child Orthop. 2011;5(2):135–41.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ge Q, Wan C, Shao X, Zhang T, Jia P, Mei X, et al. [Application of Taylor spatial frame combined with computer-assisted closed reduction in the treatment of tibiofibular fractures]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2019;33(2):144–8.

    Google Scholar 

  29. Seide K, Faschingbauer M, Wenzl ME, Weinrich N, Juergens C. A hexapod robot external fixator for computer assisted fracture reduction and deformity correction. Int J Med Robot. 2004;1(1):64–9.

    Article  CAS  PubMed  Google Scholar 

  30. Du H, Hu L, Li C, Wang T, Zhao L, Li Y, et al. Advancing computer-assisted orthopaedic surgery using a hexapod device for closed diaphyseal fracture reduction. Int J Med Robot. 2015;11(3):348–59.

    Article  PubMed  Google Scholar 

  31. Tellisi N, Ilizarov S, Rozbruch SR. Tibial diaphyseal fractures. In: Limb lengthening and reconstruction surgery. Boca Raton: CRC Press; 2006. p. 123–34.

    Google Scholar 

  32. Lowenberg DW, Nork S, Abruzzo FM. Correlation of shear to compression for progressive fracture obliquity. Clin Orthop Relat Res. 2008;466(12):2947–54.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Masquelet AC. Induced membrane technique: pearls and pitfalls. J Orthop Trauma. 2017;31(Suppl 5):S36–S8.

    Article  PubMed  Google Scholar 

  34. Mauffrey C, Hake ME, Chadayammuri V, Masquelet AC. Reconstruction of long bone infections using the induced membrane technique: tips and tricks. J Orthop Trauma. 2016;30(6):e188–93.

    PubMed  Google Scholar 

  35. Masquelet AC, Kishi T, Benko PE. Very long-term results of post-traumatic bone defect reconstruction by the induced membrane technique. Orthop Traumatol Surg Res. 2019;105(1):159–66.

    Article  PubMed  Google Scholar 

  36. Pannier S, Pejin Z, Dana C, Masquelet AC, Glorion C. Induced membrane technique for the treatment of congenital pseudarthrosis of the tibia: preliminary results of five cases. J Child Orthop. 2013;7(6):477–85.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sala F, Thabet AM, Capitani P, Bove F, Abdelgawad AA, Lovisetti G. Open supracondylar-intercondylar fractures of the femur treatment with Taylor Spatial Frame. J Orthop Trauma. 2017;31(10):546–53.

    Article  PubMed  Google Scholar 

  38. Murray CK, Hsu JR, Solomkin JS, Keeling JJ, Andersen RC, Ficke JR, et al. Prevention and management of infections associated with combat-related extremity injuries. J Trauma. 2008;64(3 Suppl):S239–51.

    PubMed  Google Scholar 

  39. Gustilo RB, Anderson JT. Prevention of infection in the treatment of one thousand and twenty-five open fractures of long bones: retrospective and prospective analyses. J Bone Joint Surg Am. 1976;58(4):453–8.

    Article  CAS  PubMed  Google Scholar 

  40. Gustilo RB, Mendoza RM, Williams DN. Problems in the management of type III (severe) open fractures: a new classification of type III open fractures. J Trauma. 1984;24(8):742–6.

    Article  CAS  PubMed  Google Scholar 

  41. British Orthopaedic Association. 2020. https://www.boa.ac.uk/standards-guidance/boasts.html.

  42. Pierrie SN, Hsu JR. Shortening and angulation strategies to address composite bone and soft tissue defects. J Orthop Trauma. 2017;31(Suppl 5):S32–S5.

    Article  PubMed  Google Scholar 

  43. Lahoti O, Findlay I, Shetty S, Abhishetty N. Intentional deformation and closure of soft tissue defect in open tibial fractures with a Taylor spatial frame--a simple technique. J Orthop Trauma. 2013;27(8):451–6.

    Article  PubMed  Google Scholar 

  44. O’Farrell P, Barnard AC, Birkholtz F. The tibial bayonet method of wound closure. Strategies Trauma Limb Reconstr. 2018;13(2):103–8.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rozbruch SR, Pugsley JS, Fragomen AT, Ilizarov S. Repair of tibial nonunions and bone defects with the Taylor Spatial Frame. J Orthop Trauma. 2008;22(2):88–95.

    Article  PubMed  Google Scholar 

  46. Hutson JJ. Case 37: hypertrophic nonunion distal periarticular tibia. Treatment with callus distraction using a spatial frame. In: Rozbruch S, Hamdy R, editors. Limb lengthening and reconstruction surgery case atlas. Cham: Springer; 2015.

    Google Scholar 

  47. Perren SM. Evolution of the internal fixation of long bone fractures: the scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg Br. 2002;84(8):1093–110.

    Article  PubMed  Google Scholar 

  48. Ferreira N, Marais LC. Femoral locking plate failure salvaged with hexapod circular external fixation: a report of two cases. Strategies Trauma Limb Reconstr. 2016;11(2):123–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ferreira N, Marais LC, Aldous C. Hexapod external fixator closed distraction in the management of stiff hypertrophic tibial nonunions. Bone Joint J. 2015;97-B(10):1417–22.

    Article  CAS  PubMed  Google Scholar 

  50. Bernstein M, Rozbruch SR. Case 19: hypertrophic Tibial nonunion with oblique plane deformity treated with TSF. In: Rozbruch S, Hamdy R, editors. Limb lengthening and reconstruction surgery case atlas. Cham: Springer; 2015.

    Google Scholar 

  51. Seybold D, Gessmann J, Ozokyay L, et al. [Deformity correction of post-traumatic tibial non-unions using the Taylor spatial frame]. Zeitschrift fur Orthopadie und Unfallchirurgie. 2009;147(1):26–31. https://doi.org/10.1055/s-2008-1038978.

  52. Siebenburger G, Grabein B, Schenck T, Kammerlander C, Bocker W, Zeckey C. Eradication of Acinetobacter baumannii/Enterobacter cloacae complex in an open proximal tibial fracture and closed drop foot correction with a multidisciplinary approach using the Taylor Spatial Frame((R)): a case report. Eur J Med Res. 2019;24(1):2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Calhoun JH, Sullivan AC. Case 10: infected nonunion of the tibia. In: Rozbruch S, Hamdy R, editors. Limb lengthening and reconstruction surgery case atlas. Cham: Springer; 2015.

    Google Scholar 

  54. Bernstein M, Rozbruch SR. Case 29: infected nonunion tibia with bone and soft-tissue defect: treatment with TSF, intentional temporary deformation and bone transport. In: Rozbruch S, Hamdy R, editors. Limb lengthening and reconstruction surgery case atlas. Cham: Springer; 2015.

    Google Scholar 

  55. Antonova E, Le TK, Burge R, Mershon J. Tibia shaft fractures: costly burden of nonunions. BMC Musculoskelet Disord. 2013;14:42.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Khunda A, Al-Maiyah M, Eardley WG, Montgomery R. The management of tibial fracture non-union using the Taylor Spatial Frame. J Orthop. 2016;13(4):360–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard A. Sheridan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sheridan, G.A., Fragomen, A.T., Rozbruch, S.R. (2021). Hexapod External Fixation for Fractures and Nonunions. In: Massobrio, M., Mora, R. (eds) Hexapod External Fixator Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-40667-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40667-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40666-0

  • Online ISBN: 978-3-030-40667-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics