Skip to main content

Heat Flow and Lithospheric Thermal Structure

  • Chapter
  • First Online:
Geodynamic Evolution of the Indian Shield: Geophysical Aspects

Part of the book series: Society of Earth Scientists Series ((SESS))

  • 239 Accesses

Abstract

The nature of crustal and lithospheric mantle deformation due to sustained intraplate geodynamic activity beneath a unique Archean shield terrain like India, has been a subject of considerable interest. So far, heat flow is evaluated for over 170 locations over this terrain, which regionally varies from a low of 23.0 mW/m2 to as high as 107.0 mW/m2. Their distribution conforms well with the nature of underlying crust and mantle inhomogeneities. Among various cratons, the Archaean Dharwar craton is characterised by lower heat flow, compared to remobilised Sighbhum, Bastar and Aravalli cratons. Similarly, lithospheric thickness also varied from as low as 45 km in north Cambay graben to 185 km below western Dharwar craton, with a mean of about 100 km. These findings re-affirm that the Indian crust, as well as mantle, is quite warm due to rise of isotherms at shallow level. Thinning of the Indian lithosphere may be due to the combination of both, Deccan volcanic event and continued lithospheric remobilization since Midproterozoic period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul Azeez KK, Veeraswamy K, Gupta AK, Babu N, Chandrapuri S, Harinarayana T (2015) The electrical resistivity structure of lithosphere across the Dharwar craton nucleus and Coorg block of South Indian shield: evidence of collision and modified and preserved lithosphere. J Geophys Res Solid Earth 120:6698–6721. https://doi.org/10.1002/2014JB011854

    Article  Google Scholar 

  • Acharya SK (1997) Evolutionary characters of the Gondwanic Indian crust. Indian Miner 51:1–24

    Google Scholar 

  • Agrawal PK, Pandey OP (2004) Unusual lithospheric structure and evolutionary pattern of the cratonic segments of the South Indian shield. Earth Planets Space 56:139–150

    Article  Google Scholar 

  • Annual report (1969–70) National Geophysical Research Institute, Hyderabad (India)

    Google Scholar 

  • Artemieva IM, Mooney WD (2001) Thermal thickness and evolution of Precambrian lithosphere: a global study. J Geophys Res 106:16387–16414

    Google Scholar 

  • Balling N (1979) Subsurface temperatures and heat flow estimates in Denmark. In: Cermak V, Rybach L (eds) Terrestrial heat flow in Europe. Springer-Verlag, Berlin Heidelberg, pp 161–171

    Chapter  Google Scholar 

  • Beck AE (1957) A steady state method for the rapid measurement of the thermal conductivity of rocks. J Sci Instrum 34:186–189

    Article  Google Scholar 

  • Beck AE (1965) Techniques of measuring heat flow on land. In: Lee WHK (ed) Terrestrial heat flow. Geophysical monograph 8. American Geophysical Union, Washington, D.C., pp 24–57

    Google Scholar 

  • Beck AE, Jaeger JC, Newstead GN (1956) The measurement of the thermal conductivities of rocks by observations in boreholes. Aust J Phys 9:286–296

    Article  Google Scholar 

  • Benfield AE (1939) Terrestrial heat flow in Great Britain. Proc R Soc Lond A I73:428–450

    Google Scholar 

  • Bhattacharya SN, Suresh G, Mitra S (2009) Lithospheric S-wave velocity structure of the Bastar craton, Indian peninsula, from surface-wave phase-velocity measurements. Bull Seismol Soc Am 99:2502–2508

    Article  Google Scholar 

  • Birch F (1954) Heat from radioactivity. In: Faul H (ed) Nuclear geology. Wiley, New York, pp 148–175

    Google Scholar 

  • Blackwell JH (1956) The axial flow error in the thermal conductivity probe. Can J Phys 34:412–417

    Google Scholar 

  • Blackwell D, Richards M, Stepp P (2010) Final report, Texas geothermal assessment for the 135 Corridor East, for Texas State Energy Conservation Office contract CM709. SMU Geothermal Laboratory, Dallas, Texas, USA, 78 pp

    Google Scholar 

  • Bullard EC (1939) Heat flow in South Africa. Proc R Soc Lond A 173:474–502

    Article  Google Scholar 

  • Bullard EC (1947) The time necessary for a borehole to attain temperature equilibrium. Mon Not R Astron Soc Geophys Suppl 5:127–130

    Article  Google Scholar 

  • Cao S, Hermanrudl C (1988) Formation temperature estimation by inversion of borehole measurements. Geophysics 53:979–988

    Article  Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford University Press, London, 510 pp

    Google Scholar 

  • Chalapathi Rao NV, Lehmann B (2011) Kimberlites, flood basalts and mantle plumes: new insights from the Deccan large igneous province. Earth Sci Rev 107:315–324

    Article  Google Scholar 

  • Chandrasekharam D, Chandrasekhar V (2015) Geothermal energy resources, India: country update. In: Proceedings world geothermal congress, Melbourne, Australia, 19–25 Apr 2015, pp 1–8

    Google Scholar 

  • Chapman DS, Pollack HN (1974) “Cold spot” in West Africa: anchoring the African plate. Nature 250:477–478

    Article  Google Scholar 

  • Chapman DS, Pollack HN (1977) Regional geotherms and lithospheric thickness. Geology 5:265–268

    Article  Google Scholar 

  • Chatterjee S, Guven N, Yoshinobu A, Donofrio R (2006) Shiva structure: a possible KT boundary impact crater on the western shelf of India. Special Publications, Museum Texas Tech University, Lubbock, TX, pp 1–39

    Google Scholar 

  • Davies JH, Davies DR (2010) Earth’s surface heat flux. Solid Earth 1:5–24

    Article  Google Scholar 

  • Dongre A, Chalapathi Rao NV, Viljoen KS, Lehmann B (2017) Petrology, genesis and geodynamic implication of the Mesoproterozoic–Late Cretaceous Timmasamudram kimberlite cluster, Wajrakarur field, Eastern Dharwar craton, southern India. Geosci Front 8:541–553

    Article  Google Scholar 

  • Furlong KP, Chapman DS (2013) Heat flow, heat generation, and the thermal state of the lithosphere. Ann Rev Earth Planet Sci 41:385–410

    Article  Google Scholar 

  • Ganguly J, Bhattacharya PK (1987) Xenoliths in Proterozoic kimberlites from southern India: petrology and geophysical implications. In: Nixon PH (ed) Mantle xenoliths. Wiley, New York, pp 249–265

    Google Scholar 

  • Gass IG, Chapman DS, Pollack HN, Thorpe RS (1978) Geological and geophysical parameters of mid-plate volcanism. Philos Trans R Soc A 288:581–597

    Article  Google Scholar 

  • Gokarn SG, Gupta G, Rao CK (2004) Geoelectric structure of the Dharwar craton from magnetotelluric studies: Archean suture identified along the Chitradurga-Gadag schist belt. Geophys J Int 158:712–728

    Google Scholar 

  • Gupta ML (1981) Surface heat flow and igneous intrusion in the Cambay basin, India. J Volcanol Geotherm Res 10:279–292

    Article  Google Scholar 

  • Gupta ML (1993) Is the Indian shield hotter than other Gondwana shields? Earth Planet Sci Lett 115:275–285

    Article  Google Scholar 

  • Gupta ML (1994) Thermal regime of the Indian shield. In: Gupta ML, Makoto J (eds) Terrestrial heat flow and geothermal energy in Asia. Oxford and IBH Publ. Co. Pvt. Ltd., Delhi (India), pp 63–81

    Google Scholar 

  • Gupta HK (2017) Koyna, India, an ideal site for near field earthquake observations. J Geol Soc India 90:645–652

    Article  Google Scholar 

  • Gupta ML, Gaur VK (1984) Surface heat flow and probable evolution of Deccan volcanism. Tectonophysics 105:309–318

    Article  Google Scholar 

  • Gupta ML, Rao GV (1970) Heat flow studies under upper mantle project. In: NGRI’s contribution to the upper mantle project. Bull Natl Geophys Res Inst 8:87–112

    Google Scholar 

  • Gupta ML, Sharma SR, Sundar A, Singh SB (1987) Geothermal studies in the Hyderabad granitic region and the crustal thermal structure of the southern Indian shield. Tectonophysics 140:257–264

    Article  Google Scholar 

  • Gupta ML, Sharma SR, Sundar A (1988) Geothermal gradients and terrestrial heat flow in various metallogenic and energy resources provinces of India. In: Proceedings of 5th international bureau of mining thermophysics, New Delhi, India, Feb 1988, pp 127–133

    Google Scholar 

  • Gupta ML, Sundar A, Sharma SR (1991) Heat flow and heat generation in the Archean Dharwar cratons and implications for the southern Indian shield geotherm and lithospheric thickness. Tectonophysics 194:107–122

    Article  Google Scholar 

  • Gupta ML, Sundar A, Sharma SR, Singh SB (1993) Heat flow in the Bastar craton, central Indian shield: implications for thermal characteristics of Proterozoic cratons. Phys Earth Planet Inter 78:23–31

    Article  Google Scholar 

  • Gupta S, Rai SS, Prakasam KS, Srinagesh D, Chadha RK, Priestley K, Gaur VK (2003) First evidence for anomalous thick crust beneath mid-Archean western Dharwar craton. Curr Sci 84:1219–1226

    Google Scholar 

  • Gupta H, Rao NP, Roy S, Arora K, Tiwari VM, Patro PK, Satyanarayana HVS, Shashidhar D, Mallika K, Akkiraju VV, Goswami D, Vyas D, Ravi G, Srinivas KNSSS, Srihari M, Mishra S, Dubey CP, Raju DCV, Borah U, Reddy KC, Babu N, Rohilla S, Dhar U, Sen M, Bhaskar Rao YJ, Bansa BK, Nayak S (2015) Investigations related to scientific deep drilling to study reservoir triggered earthquakes at Koyna, India. Int J Earth Sci 104:1511–1522. https://doi.org/10.1007/s00531-014-1128-0

  • Harinarayana T, Singh SB, Sarma SVS, Verma RK (1988) Electrical structure across Tatapani hot spring from telluric field investigations. In: Workshop on deep electromagnetic exploration, NGRI, Hyderabad, India, pp V-4

    Google Scholar 

  • Holmes A (1915) Radioactivity in the earth and the earth’s thermal history. Geol Mag 2:60–71, 102–112

    Google Scholar 

  • Holmes A (1916) Radioactivity in the earth’s thermal history. Geol Mag 3:265–274

    Article  Google Scholar 

  • Horai K, Baldridge S (1972) Thermal conductivity of nineteen igneous rocks, II estimation of the thermal conductivity of rock from the mineral and chemical compositions. Phys Earth Planet Inter 5:I57–166

    Google Scholar 

  • Ingersoll LR, Zobel OJ, Ingersoll AC (1954) Heat conduction with engineering, geological, and other applications. The University of Wisconsin Press, 325 pp

    Google Scholar 

  • Iyer HM, Gaur VK, Rai SS, Ramesh DS, Rao CVR, Srinagesh D, Suryaprakasam K (1989) High velocity anomaly beneath the Deccan volcanic province: evidence from seismic tomography. Proc Indian Acad Sci Earth Planet Sci 98:31–60

    Google Scholar 

  • Jaeger JC (1956) Conduction of heat in an infinite region bounded internally by a circular cylinder of a perfect conductor. Aust J Phys 9:167–179

    Article  Google Scholar 

  • Jaeger JC (1965) Application to the theory of heat conduction to geothermal measurements. In: Lee WHK (ed) Terrestrial heat flow. Geophysical monograph 8. American Geophysical Union, Washington, D.C., pp 7–23

    Google Scholar 

  • Jaeger JC, Sass JH (1964) A line source method for measuring the thermal conductivity and diffusivity of cylindrical specimens of rock and other poor conductors. Br J Appl Phys 5:1–8

    Google Scholar 

  • Jagadeesh S, Rai SS (2008) Thickness, composition, and evolution of the Indian Precambrian crust inferred from broadband seismological measurements. Precambrian Res 162:4–15

    Article  Google Scholar 

  • Jurdy DM, Gordon RG (1984) Global plate motions relative to the hotspots 64 to 56 Ma. J Geophys Res 89:9927–9936

    Article  Google Scholar 

  • Kappelmeyer O, Haenel R (1974) Geothermics with special reference to application. Grebruder Borntraeger, Berlin, Stuttgart, p 238

    Google Scholar 

  • Kosarev GL, Oreshin SI, Vinnik LP, Kiselev SG, Dattatrayam RS, Suresh G, Baidya PR (2013) Heterogeneous lithosphere and the underlying mantle of the Indian subcontinent. Tectonophysics 592:175–186

    Article  Google Scholar 

  • Kumar P, Yuan X, Ravi Kumar M, Kind R, Li X, Chadha RK (2007) The rapid drift of the Indian tectonic plate. Nature 449:894–897

    Article  Google Scholar 

  • Kumar P, Ravi Kumar M, Srijayanthi G, Arora K, Srinagesh D, Chadha RK, Sen MK (2013) Imaging the lithosphere-asthenosphere boundary of the Indian plate using converted wave techniques. J Geophys Res Solid Earth 118:1–13. https://doi.org/10.1002/jgrb.50366

    Article  Google Scholar 

  • Kumar N, Zeyen H, Singh AP (2014) 3D lithosphere density structure of southern Indian shield from joint inversion of gravity, geoid and topography data. J Asian Earth Sci 89(2014):98–107

    Article  Google Scholar 

  • Lachenbruch AH (1968) Preliminary geothermal model of the Sierra Nevada. J Geophys Res 73:6977–6989

    Article  Google Scholar 

  • Lachenbruch AH (1970) Crustal temperature and heat production: implications of the linear heat flow relation. J Geophys Res 75:3291–3300

    Article  Google Scholar 

  • Lehmann B, Burgess R, Frei D, Belyatsky B, Mainkar D, Rao NVC, Heaman LM (2010) Diamondiferous kimberlites in central India synchronous with Deccan flood basalts. Earth Planet Sci Lett 290:142–149

    Article  Google Scholar 

  • Malleswari D, Veeraswamy K, Abdul Azeez KK, Gupta AK, Babu N, Patro PK, Harinarayana T (2019) Magnetotelluric investigation of lithospheric electrical structure beneath the Dharwar craton in south India: evidence for mantle suture and plume-continental interaction. Geosci Front 10:1915–1930

    Google Scholar 

  • Mandal P (2017) Lithospheric thinning in the eastern Indian craton: evidence for lithospheric delamination below the Archean Singhbhum craton? Tectonophysics 698:91–108

    Article  Google Scholar 

  • Mandal P, Pandey OP (2011) Seismogenesis of the lower crustal intraplate earthquakes occurring in Kachchh, Gujarat, India. J Asian Earth Sci 42:479–491

    Article  Google Scholar 

  • Mitra S, Priestley K, Gaur VK, Rai SS (2006) Shear-wave structure of the south Indian lithosphere from Rayleigh wave phase-velocity measurements. Bull Seismol Soc Am 96:1551–1559

    Article  Google Scholar 

  • Nagaraju P, Ray L, Ravi G, Vyasulu VA, Roy S (2012) Geothermal investigations in the upper Vindhyan sedimentary rocks of Shivpuri area, central India. J Geol Soc India 80:39–47

    Article  Google Scholar 

  • Nagaraju P, Ray L, Singh SP, Roy S (2017) Heat flow, heat production, and crustal temperatures in the Archaean Bundelkhand craton, north-central India: implications for thermal regime beneath the Indian shield. J Geophys Res Solid Earth 122:5766–5788

    Article  Google Scholar 

  • Naqvi SM, Rogers JJW (1987) Precambrian geology of India. Oxford University Press, New York, p 223

    Google Scholar 

  • Negi JG, Pandey OP, Agrawal PK (1986) Super mobility of hot Indian lithosphere Tectonophysics 131:147–156

    Google Scholar 

  • Negi JG, Agrawal PK, Pandey OP (1987) Large variation of Curie-depth and lithospheric thickness in Indian sub-continent and a case for magnetothermometry. Geophys J R Astron Soc 88:763–775

    Article  Google Scholar 

  • Negi JG, Agrawal PK, Pandey OP, Singh AP (1993) A possible K/T boundary bolide impact site offshore near Bombay and triggering of rapid Deccan volcanism. Phys Earth Planet Inter 76:189–197

    Article  Google Scholar 

  • Nicolaysen LO, Hart RJ, Gale NH (1981) The Vredefort radioelement profile extended to supracrustal strata at Carletonville, with implications for continental heat flow. J Geophys Res 86(B11):10653–10661

    Google Scholar 

  • Nyblade AA, Birt C, Langston CA, Owens TJ, Last RJ (1996) Seismic experiment reveals rifting of craton in Tanzania. EOS Trans Am Geophys Union 77:517–521

    Article  Google Scholar 

  • Oreshin SI, Vinnik LP, Kiselev SG, Rai SS, Prakasam KS, Treussov AV (2011) Deep seismic structure of the Indian shield, western Himalaya, Ladakh and Tibet. Earth Planet Sci Lett 307:415–429

    Article  Google Scholar 

  • Pandey OP (1981) Terrestrial heat flow in New Zealand. Ph.D. thesis, Victoria University of Wellington, New Zealand, 194 pp

    Google Scholar 

  • Pandey OP (1996) Global geothermal energy utilisation and its relevance to India. Geol Surv India Spec Publ 45:11–23

    Google Scholar 

  • Pandey OP (2008) Deccan trap volcanic eruption affected the Archean Dharwar craton of southern India: seismic evidences. J Geol Soc India 72:510–514

    Google Scholar 

  • Pandey OP (2016) Deep scientific drilling results from Koyna and Killari earthquake regions reveal why Indian shield lithosphere is unusual, thin and warm. Geosci Front 7:851–858

    Article  Google Scholar 

  • Pandey OP, Negi JG (1987) Signals of degeneration of the subcrustal part of Indian lithosphere since the breakup of Gondwanaland. Phys Earth Planet Inter 48:1–4

    Article  Google Scholar 

  • Pandey OP, Negi JG (1995) Geothermal fields of India: a latest update. In: Proceedings of world geothermal congress-1995, Florence (Italy), vol 1, pp 163–171

    Google Scholar 

  • Pandey OP, Agrawal PK (1999) Lithospheric mantle deformation beneath the Indian cratons. J Geol 107:683–692

    Article  Google Scholar 

  • Pandey OP, Agrawal PK (2000) Thermal regime, hydrocarbon maturation and geodynamic events along the western margin of India since late Cretaceous. J Geodyn 30:439–459

    Article  Google Scholar 

  • Pandey OP, Agrawal PK, Negi JG (1996) Evidence of low density sub-crustal underplating beneath western continental region of India and adjacent Arabian Sea: geodynamical implications. J Geodyn 21:365–377

    Article  Google Scholar 

  • Pandey OP, Vedanti N, Srivastava RP, Uma V (2013) Was Archean Dharwar craton ever stable? A seismic perspective. J Geol Soc India 81:774–780

    Article  Google Scholar 

  • Pandey OP, Srivastava RP, Vedanti N, Dutta S, Dimri VP (2014a) Anomalous crustal and lithospheric mantle structure of southern part of the Vindhyan basin and its geodynamic implications. J Asian Earth Sci 91:316–328

    Article  Google Scholar 

  • Pandey OP, Tripathi P, Parthasarathy G, Rajagopalan V, Sreedhar B (2014b). Geochemical and mineralogical studies of chlorine-rich amphibole and biotite from the 2.5 Ga mid-crustal basement beneath the 1993 Killari earthquake region, Maharashtra, India: evidence for mantle metasomatism beneath the Deccan traps? J Geol Soc India 83:599–612

    Google Scholar 

  • Pandey OP, Tripathi P, Vedanti N, Srinivasa Sarma D (2016) Anomalous seismic velocity drop in iron and biotite rich amphibolite to granulite facies transitional rocks from Deccan volcanic covered 1993 Killari earthquake region, Maharashtra (India): A case study. Pure Appl Geophys 173:2455–2471

    Article  Google Scholar 

  • Pandey OP, Vedanti N, Srivastava RP (2017) Complexity in elucidating crustal thermal regime in geodynamically affected areas: a case study from the Deccan large igneous province (western India). J Geol Soc India 90:289–300

    Article  Google Scholar 

  • Polet J, Anderson DL (1995) Depth extent of cratons as inferred from tomographic studies. Geology 23:205–208

    Article  Google Scholar 

  • Pollack HN, Chapman DS (1977) On the regional variation of heat flow, geotherms, and lithospheric thickness. Tectonophysics 38:279–296

    Article  Google Scholar 

  • Pollack HN, Hurter SJ, Johnson JR (1993) Heat flow from the earth’s interior: analysis of the global data set. Rev Geophys 31:267–280

    Article  Google Scholar 

  • Priestley K, Mckenzie D (2006) The thermal structure of the lithosphere from shear wave velocities. Earth Planet Sci Lett 244:285–301

    Article  Google Scholar 

  • Priestley K, Gaur VK, Rai SS, Bonner JL, Lewkowicz JF (2001) Broadband seismic studies in southern Asia. In: 23rd seismic research review: world wide monitoring of nuclear explosions, 2–5 Oct 2001, pp 100–109

    Google Scholar 

  • Priestley K, Debayle E, Mckenzie D, Pilidou S (2006) Upper mantle structure of eastern Asia from multimode surface waveform tomography. J Geophys Res 111:B10304. https://doi.org/10.1029/2005JB004082

    Article  Google Scholar 

  • Rai SS, Ramesh DS, Srinagesh D, Suryaprakasam K, Mohan G, Rajagopala Sarma PVSS, Satyanarayana Y (1992) Seismic tomography of the south Indian shield. Curr Sci 62:213–226

    Google Scholar 

  • Ramesh DS, Rai SS, Srinagesh D, Gaur VK (1990) Seismological evidence for a decoupled lithospheric segment in south Indian shield. Geophys J Int 102:113–120

    Article  Google Scholar 

  • Ramesh DS, Srinagesh D, Rai SS, Prakasam KS, Gaur VK (1993) High-velocity anomaly under the Deccan volcanic province. Phys Earth Planet Inter 77:285–296

    Article  Google Scholar 

  • Ramesh DS, Bharthur RN, Prakasam KS, Srinagesh D, Rai SS, Gaur VK (1996) Predominance of plate motion-related strain in the south Indian shield. Curr Sci 70:843–847

    Google Scholar 

  • Rao RUM (1970) Heat flow studies in Kolar schist belt, Singhbhum thrust zone and Godavari valley, India. Ph.D. thesis, Andhra University, Waltair

    Google Scholar 

  • Rao RUM, Jessop AM (1975) A comparison of the thermal characters of shields. Can J Earth Sci 12:347–360

    Google Scholar 

  • Rao GV, Rao RUM (1980) A geothermal study of the Jharia Gondwana basin (India): heat flow results from several holes and heat production of basement rocks. Earth Planet Sci Lett 48:397–405

    Article  Google Scholar 

  • Rao GV, Rao RUM (1983) Heat flow in Indian Gondwana basins and heat production of their basement rocks. Tectonophysics 91:105–117

    Article  Google Scholar 

  • Rao RUM, Verma RK, Rao GV, Hamza VM, Panda PK, Gupta ML (1970) Heat flow studies in the Godavari valley (India). Tectonophysics 10:165–181

    Article  Google Scholar 

  • Rao RUM, Rao GV, Narain H (1976) Radioactive heat generation and heat flow in the Indian shield. Earth Planet Sci Lett 30:57–64

    Google Scholar 

  • Rao GV, Rao RUM, Narain H (1979) Geothermal regime of Gondwana basins of peninsular India. In: Proceedings of 4th international Gondwana symposium, vol 2, pp 850–865

    Google Scholar 

  • Ravi Kumar M, Mohan G (2005) Mantle discontinuities beneath the Deccan volcanic province. Earth Planet Sci Lett 237:252–263

    Article  Google Scholar 

  • Ravi Kumar M, Saikia D, Singh A, Srinagesh D, Baidya PR, Dattatrayam RS (2013) Low shear velocities in the sub-lithospheric mantle beneath the Indian shield? J Geophys Res Solid Earth 118:1–14. https://doi.org/10.1002/jgrb.50114

  • Ravi Shankar, Guha SK, Seth NN, Muthuraman K, Pitale UL, Jangi BL, Prakash G, Bandopadhyay AK, Sinha RK (1991) Geothermal atlas of India. Special publication No. 19. Geological Survey of India, 144 pp

    Google Scholar 

  • Ray L, Senthil Kumar P, Reddy GK, Roy S, Rao GV, Srinivasan R, Rao RUM (2003) High mantle heat flow in a Precambrian granulite province: evidence from southern India. J Geophys Res 108(B2):2084. https://doi.org/10.1029/2001jb000688

  • Revelle R, Maxwell A (1952) Heat flow through the ocean floor. Nature 170:199–200

    Google Scholar 

  • Rogers JJW (1993) A history of the earth. Cambridge University Press, New York, p 312

    Google Scholar 

  • Rogers JJW, Callahan EJ (1987) Radioactivity, heat flow and rifting of the Indian continental crust. J Geol 95:829–836

    Article  Google Scholar 

  • Roy S, Rao RUM (1999) Geothermal investigations in the 1993 Latur earthquake area, Deccan volcanic province, India. Tectonophysics 306:237–252

    Article  Google Scholar 

  • Roy S, Rao RUM (2000) Heat flow in the Indian shield. J Geophys Res 105:25587–25604

    Google Scholar 

  • Roy S, Rao RUM (2003) Towards a crustal thermal model for the Archean-Dharwar craton, southern India. Phys Chem Earth 28:361–373

    Article  Google Scholar 

  • Roy RF, Blackwell DD, Birch F (1968) Heat generation of plutonic rocks and continental heat flow provinces. Earth Planet Sci Lett 5:1–12

    Article  Google Scholar 

  • Roy S, Ray L, Senthil Kumar P, Reddy GK, Srinivasan R (2003) Heat flow and heat production in the Precambrian gneiss-granulite province of southern India. Mem Geol Soc India 50:177–191

    Google Scholar 

  • Roy S, Ray L, Bhattacharya A, Srinivasan R (2007) New heat flow data from deep boreholes in the greenstones-granite-gneiss and gneiss-granulite provinces of south India. DCS-DST News Lett 17(1):8–11

    Google Scholar 

  • Roy S, Ray L, Bhattacharya A, Srinivasan R (2008) Heat flow and crustal thermal structure in the late Archean Closepet granite batholith, south India. Int J Earth Sci 97:245–256

    Google Scholar 

  • Rudnick RL, Fountain DN (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33(3):267–309

    Google Scholar 

  • Sass JH, Munroe RJ, Lachenbruch AH (1968) Measurement of geothermal flux through poorly consolidated sediments. Earth Planet Sci Lett 4:293–298

    Article  Google Scholar 

  • Schroder J (1963) Apparatus for determining the thermal conductivity of solids in the temperature range from 20 to 200°C. Rev Sci Instrum 34:615–621

    Article  Google Scholar 

  • Sclater JG, Jaupart C, Galson D (1980) The heat flow through oceanic and continental crust and the heat loss of the earth. Rev Geophys Space Phys 18:269–311

    Article  Google Scholar 

  • Senthil Kumar P, Reddy GK (2004) Radio elements and heat production of an exposed Archean crustal cross-section, Dharwar craton, south India. Earth Planet Sci Lett 224:309–324

    Article  Google Scholar 

  • Senthil Kumar P, Menon R, Koti Reddy G (2007) Crustal geotherm in southern Deccan basalt province, India: the Moho is as cold as adjoining cratons. In: Foulger GR, Jurdy DM (eds) Plates, plumes and planetary processes. Geological Society of America Special Paper 430, pp 275–284

    Google Scholar 

  • Shalivahan, Bhattacharya BB, Chalapathi Rao NV, Maurya VP (2014) Thin lithosphere–asthenosphere boundary beneath eastern Indian craton. Tectonophysics 612–613:128–133

    Google Scholar 

  • Sharma SR, Sundar A, Rao VK, Ramana DV (1991) Surface heat flow and Pn velocity distribution in peninsular India. J Geodyn 13:67–76

    Article  Google Scholar 

  • Singh RN, Negi JG (1982) High Moho temperature in the Indian shield. Tectonophysics 82:299–306

    Article  Google Scholar 

  • Singh AP, Meissner R (1995) Crustal configuration of the Narmada-Tapti region (India) from gravity studies. J Geodyn 20:111–127

    Article  Google Scholar 

  • Singh AP, Kumar N, Zeyen H (2015) Three-dimensional lithospheric mapping of the eastern Indian shield: a multi-parametric inversion approach. Tectonophysics 665:164–176

    Google Scholar 

  • Srinagesh D, Rai SS, Ramesh DS, Gaur VK, Rao CVR (1989) Evidence for thick continental roots beneath south Indian shield. Geophys Res Lett 16:1055–1058

    Article  Google Scholar 

  • Storey BC (1995) The role of mantle plumes in continental breakup: case histories from Gondwanaland. Nature 377:301–308

    Article  Google Scholar 

  • Sundar A, Gupta ML, Sharma SR (1990) Heat flow in the trans-Aravalli igneous suit, Tusham, India. J Geodyn 12:89–100

    Article  Google Scholar 

  • Suresh G, Jain S, Bhattacharya SN (2008) Lithosphere of Indus blocks in the northwest Indian subcontinent through genetic algorithm inversion of surface wave dispersion. Bull Seismol Soc Am 98:1750–1755

    Article  Google Scholar 

  • Tripathi P, Parthasarathy G, Ahmad SM, Pandey OP (2012) Mantle derived fluids in the basement of the Deccan traps: evidence from stable carbon and oxygen isotopes of carbonates from the Killari borehole basement, Maharashtra, India. Int J Earth Sci 101:1385–1395

    Article  Google Scholar 

  • Vedanti N, Srivastava RP, Pandey OP, Dimri VP (2011a) Fractal behavior in continental crustal heat production. Nonlinear Process Geophys 18:119–124

    Article  Google Scholar 

  • Vedanti N, Pandey OP, Srivastava RP, Mandal P, Kumar S, Dimri VP (2011b) Predicting heat flow in the 2001 Bhuj earthquake (Mw 7.7) region of Kachchh (western India), using an inverse recurrence method. Nonlinear Process Geophys 18:611–625

    Article  Google Scholar 

  • Veeraswamy K, Raval U (2004) Chipping of cratons and breakup along mobile belts of a supercontinent. Earth Planets Space 56:491–500

    Google Scholar 

  • Verma RK, Gupta ML (1975) Present status of heat flow studies in India. Geophys Res Bull 13:247–255

    Google Scholar 

  • Verma RK, Rao RUM, Gupta ML, Rao GV, Hamza VM (1969) Terrestrial heat flow in various parts of India. Bull Volcanol 33:69–88

    Article  Google Scholar 

  • Vinnik LP, Makeyeva LI, Milev A, Usenko AY (1992) Global patterns of azimuthal anisotropy and deformations in the continental mantle. Geophys J Int 111:433–447

    Article  Google Scholar 

  • Vinnik LP, Green RWE, Nieolaysen LO (1995) Recent deformations of the deep continental root beneath southern Africa. Nature 375:50–52

    Article  Google Scholar 

  • Von Herzen RP, Maxwell AE (1959) The measurement of thermal conductivity of deep sea sediments by a needle probe method. J Geophys Res 64:1557–1563

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, O.P. (2020). Heat Flow and Lithospheric Thermal Structure. In: Geodynamic Evolution of the Indian Shield: Geophysical Aspects. Society of Earth Scientists Series. Springer, Cham. https://doi.org/10.1007/978-3-030-40597-7_9

Download citation

Publish with us

Policies and ethics