Skip to main content

Part of the book series: Society of Earth Scientists Series ((SESS))

  • 202 Accesses

Abstract

Perceptions about the nature of the Earth’s crust in general and the continental crust in particular, is of critical importance to our understanding of its time-bound evolution, as well as interpretation of acquired geological and geophysical data. Structural fabric and composition of the crust have undergone considerable changes since Archean era. Almost 5 to 20 km thick upper portion of the crust is eroded away from several Archean-Proterozoic terrains of India and possibly other global shields and platforms as well. The bulk of the continental crust in stable shields now appear to be made up of mainly metamorphic-grade rocks. Based on recent geological, geophysical and borehole petrophysical studies, Indian crust can be sub-divided into as many as seven distinct layers e.g., (i) sediments, (ii) upper crust, (iii) middle crust, (iv) lower crust, (v) lowermost high velocity crust, (vi) magmatic lower crust and (vii) Differentiated mantle magma layer over the normal ultramafic mantle. These seven layers are characterized by Vp of <5.70, 5.7–6.3, 6.3–6.6, 6.6–6.9, 6.9–7.0, 7.0–7.6 and 7.6–8.0 km/s respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Chandrakala K, Pandey OP, Sesha Sai VV, Vasanthi A, Satish Kumar K (2017) Seismically derived Gondwana and proterozoic sediments East of Cuddapah basin, South Indian shield and its possible geotectonic implications. Pure Appl Geophys 174:2601–2619

    Google Scholar 

  • Chaudhuri T, Wan Y, Mazumder R, Ma M, Liu D (2018) Evidence of enriched, Hadean mantle reservoir from 4.2 to 4.0 Ga zircon xenocrysts from Paleoarchean TTGs of the Singhbhum craton, Eastern India. Nat. Sci. Rep. 8:7069. https://doi.org/10.1038/s41598-018-25494-6

  • Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: a global view. J Geophys Res 100:9761–9788

    Article  Google Scholar 

  • Cogley JG (1984) Continental margins and the extent and number of the continents. Rev Geophys 22:101–122

    Article  Google Scholar 

  • Desai AG, Markwick A, Vaselli O, Downess H (2004) Granulite and pyroxenite xenoliths from the Deccan traps: insight into the nature and composition of the lower lithosphere beneath central India. Lithos 78:263–290

    Article  Google Scholar 

  • Gao S, Zhang B-R, Jin Z-M, Kern H, Luo T-C, Zhao Z-D (1998) How mafic is the lower continental crust? Earth planet. Sci Lett 106:101–117

    Google Scholar 

  • Grevemeyer I, Ranero CR, Ivandic M (2018) Structure of oceanic crust and serpentinization at subduction trenches. Geosphere 14:395–418

    Article  Google Scholar 

  • Gupta HK, Srinivasan R, Rao RUM, Rao GV, Reddy GK, Roy S, Jafri J, Dayal AM, Zachariah J, Parthasarathy G, Puranchandra Rao GVS, Gowd TN, Srirama Rao SV, Dwivedy KK, Banerjee DC, Mohanthy R, Sathyasardhi YR, Katti VJ, Prasad AR, Ramanujam CGK, Reddy PR, Shukla M (2003) Borehole investigations in the surface rupture zone of the 1993 Latur SCR earthquake, Maharashtra, India: overview of results. Mem Geol Soc India 54:1–22

    Google Scholar 

  • Gupta H, Rao NP, Roy S, Arora K, Tiwari VM, Patro PK, Satyanarayana HVS, Shashidhar D, Mallika K, Akkiraju VV, Goswami D, Vyas D, Ravi G, Srinivas KNSSS, Srihari M, Mishra S, Dubey CP, Raju DCV, Borah U, Reddy KC, Babu N, Rohilla S, Dhar U, Sen M, Bhaskar Rao YJ, Bansal BK, Nayak S (2015) Investigations related to scientific deep drilling to study reservoir triggered earthquakes at Koyna, India. Int J Earth Sci 104:1511–1522. http://dx.doi.org/10.1007/s00531-014-1128-0

  • Gupta S, Rai SS (2005) Structure and evolution of south Indian crust using teleseismic waveform modelling. Himalyan Geol. 26:109–123

    Google Scholar 

  • Hacker BR, Kelemen PB, Behn MD (2011) Differentiation of the continental crust by relamination. Earth Planet Sci Lett 307:501–516

    Article  Google Scholar 

  • Hacker BR, Kelemen PB, Behen MD (2015) Continental lower crust. Ann Rev Earth Planet Sci 43:167–205

    Article  Google Scholar 

  • Holbrook S, Mooney WD, Christensen NI (1992) The seismic velocity structure of the deep continental crust. Dev Geotecton 23:1–43

    Google Scholar 

  • Huang Y, Chubakov V, Mantovani F, Rudnick RL, McDonough WF (2013) A reference Earth model for the heat-producing elements and associated geoneutrino flux. Geochem Geophys Geosyst 14:2003–2029. https://doi.org/10.1002/ggge.20129

    Article  Google Scholar 

  • Julia J, Jagadeesh S, Rai SS, Owens TJ (2009) Deep crustal structure of the Indian shield from joint inversion of P wave receiver functions and Rayleigh wave group velocities: implications for Precambrian crustal evolution. J Geophys Res 114:B10313. https://doi.org/10.1029/2008JB006261

    Article  Google Scholar 

  • Karmalkar NR, Rege S (2002) Cryptic metasomatism in the upper mantle beneath Kutch: evidence from spinel lherzolite xenoliths. Curr Sci 82:1157–1165

    Google Scholar 

  • Krishna VG (2006) INVSP gathers of local earthquake seismograms: an approach for modeling the upper crustal P and S velocity structure. Geophys J Int 166:148–154

    Article  Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrology 27:745–750

    Article  Google Scholar 

  • Mandal P, Pandey OP (2011) Seismogenesis of the lower crustal intraplate earthquakes occurring in Kachchh, Gujarat, India. J Asian Earth Sci 42:479–491

    Article  Google Scholar 

  • Misra S, Bartakke V, Athavale G, Akkiraju VV, Goswami D, Roy S (2017) Granite-gneiss basement below Deccan traps in the Koyna region, western India: outcome from scientific drilling. J Geol Soc India 90:776–782

    Article  Google Scholar 

  • Mooney WD, Prodehl C, Pavlenkova I (2002) Seismic velocity structure of the continental lithosphere from controlled source data. Int Handb Earthq Eng Seism 81A:887–910

    Google Scholar 

  • Murty ASN, Tewari HC, Reddy PR (2004) 2D-crustal velocity structure along Hirapur-Mandla profile in central India: an update. Pure Appl Geophys 161:165–184

    Article  Google Scholar 

  • Murty ASN, Sain K, Tewari HC, Rajendra Prasad B (2008) Crustal velocity inhomogeneities along the Hirapur-Mandla profile, central India and its tectonic implications. J Asian Earth Sci 31:533–545

    Article  Google Scholar 

  • Negi JG, Pandey OP, Agrawal PK (1986) Super mobility of hot Indian lithosphere. Tectonophysics 131:147–156

    Google Scholar 

  • Pandey OP (2008) Deccan trap volcanic eruption affected the Archean Dharwar craton of Southern India: seismic evidences. J Geol Soc India 72:510–514

    Google Scholar 

  • Pandey OP (2016) Deep Scientific drilling results from Koyna and Killari earthquake regions reveal why Indian shield lithosphere is unusual, thin and warm. Geosci Frontiers 7:851–858

    Article  Google Scholar 

  • Pandey OP, Negi JG (1987) Signals of degeneration of the subcrustal part of Indian lithosphere since the breakup of Gondwanaland. Phys Earth Planet Int 48:1–4

    Article  Google Scholar 

  • Pandey OP, Vedanti N, Srivastava RP, Uma V (2013) Was Archean Dharwar craton ever stable? A seismic perspective. J Geol Soc Ind 81:774–780

    Article  Google Scholar 

  • Pandey OP, Tripathi P, Parthasarathy G, Rajagopalan V, Sreedhar B (2014a) Geochemical and mineralogical studies of chlorine-rich amphibole and biotite from the 2.5 Ga mid-crustal basement beneath the 1993 Killari earthquake region, Maharashtra, India: evidence for mantle metasomatism beneath the Deccan Traps? J Geol Soc India 83:599–612

    Article  Google Scholar 

  • Pandey OP, Srivastava RP, Vedanti N, Dutta S, Dimri VP (2014b) Anomalous crustal and lithospheric mantle structure of southern part of the Vindhyan Basin and its geodynamic implications. J Asian Earth Sci 91:316–328

    Article  Google Scholar 

  • Pandey OP, Tripathi P, Vedanti N, Srinivasa Sarma D (2016) Anomalous seismic velocity drop in iron and biotite rich amphibolite to granulite facies transitional rocks from Deccan volcanic covered 1993 Killari earthquake region, Maharashtra (India): a case study. Pure Appl Geophys 173:2455–2471

    Google Scholar 

  • Pandey OP, Vedanti N, Srivastava RP (2017) Complexity in elucidating crustal thermal regime in geodynamically affected areas: a case study from the Deccan large igneous province (western India). J Geol Soc India 90:289–300

    Article  Google Scholar 

  • Ray L, Senthil Kumar P, Reddy GK, Roy S, Rao GV, Srinivasan R, Rao RUM (2003) High mantle heat flow in a Precambrian granulite province: evidence from southern India. J Geophys Res 108:B2:2084. COI: https://doi.org/10.1029/2001jb000688

  • Rudnick RL, Fountain DN (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33(3):267–309

    Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. Treatise Geochem 3:1–64, Elsevier Ltd

    Google Scholar 

  • Rudnick RL, Gao S (2014) Composition of the continental crust. Treatise Geochem 4:1–51

    Google Scholar 

  • Sen G, Bizimis M, Das R, Paul DK, Ray A, Biswas S (2009) Deccan plume, lithospheric rifting, and volcanism in Kutch India. Earth Planet Science Lett 277:101–111

    Article  Google Scholar 

  • Stern RJ (2002) Subduction zones. Rev Geophys 40:4. https://doi.org/10.1029/2001RG000108

    Article  Google Scholar 

  • Taylor SR, McLennan MC (1985) The continental crust: its composition and evolution. Blackwell, Cambridge, Mass, p 312

    Google Scholar 

  • Tewari HC, Dixit MM, Sarkar D, Kaila KL (1991) A crustal density model across the Cambay basin, India, and its relationship with the Aravallis. Tectonophysics 194:123–130

    Google Scholar 

  • Tewari HC, Krishna VG, Dixit MM, Mall DM, Murty ASN, Prakash Kumar, Sridhar AR, Rao GSP (2002) Seismic structure of the crust and sub-crustal lithosphere across the Narmada zone, project completion report. NGRI-2002-LITHOS-352, p. 1–30

    Google Scholar 

  • Tripathi P (2015) Nature and composition of crystalline basement below Deccan volcanic covered 1993 Latur-Killari earthquake region, Maharashtra (India). Ph.D. thesis, Osmania University, pp 164

    Google Scholar 

  • Tripathi P, Parthasarathy G, Ahmad SM, Pandey OP (2012) Mantle derived fluids in the basement of the Deccan traps: evidence from stable carbon and oxygen isotopes of carbonates from the Killari borehole basement, Maharashtra, India. Int J Earth Sci 101:1385–1395

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, O.P. (2020). Indian Crust. In: Geodynamic Evolution of the Indian Shield: Geophysical Aspects. Society of Earth Scientists Series. Springer, Cham. https://doi.org/10.1007/978-3-030-40597-7_10

Download citation

Publish with us

Policies and ethics