Skip to main content

Physical Extrapolation of Quantum Observables by Generalization with Gaussian Processes

  • Chapter
  • First Online:
Machine Learning Meets Quantum Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 968))

Abstract

For applications in chemistry and physics, machine learning is generally used to solve one of three problems: interpolation, classification or clustering. These problems use information about physical systems in a certain range of parameters or variables in order to make predictions at unknown values of these variables within the same range. The present work illustrates the application of machine learning to prediction of physical properties outside the range of the training parameters. We define ‘physical extrapolation’ to refer to accurate predictions y(x ) of a given physical property at a point \(\boldsymbol x^\ast = \left [ x^\ast _1, \ldots , x^\ast _{\mathcal {D}} \right ]\) in the \(\mathcal {D}\)-dimensional space, if, at least, one of the variables \(x^\ast _i \in \left [ x^\ast _1, \ldots , x^\ast _{\mathcal {D}} \right ]\) is outside of the range covering the training data. We show that Gaussian processes can be used to build machine learning models capable of physical extrapolation of quantum properties of complex systems across quantum phase transitions. The approach is based on training Gaussian process models of variable complexity by the evolution of the physical functions. We show that, as the complexity of the models increases, they become capable of predicting new transitions. We also show that, where the evolution of the physical functions is analytic and relatively simple (one example considered here is a + bx + cx 3), Gaussian process models with simple kernels already yield accurate generalization results, allowing for accurate predictions of quantum properties in a different quantum phase. For more complex problems, it is necessary to build models with complex kernels. The complexity of the kernels is increased using the Bayesian Information Criterion (BIC). We illustrate the importance of the BIC by comparing the results with random kernels of various complexity. We discuss strategies to minimize overfitting and illustrate a method to obtain meaningful extrapolation results without direct validation in the extrapolated region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.N. Murrell, S. Carter, S.C. Farantos, P. Huxley, A.J.C. Varandas, Molecular Potential Energy Functions (Wiley, Chichester, 1984)

    Google Scholar 

  2. T. Hollebeek, T.-S. Ho, H. Rabitz, Annu. Rev. Phys. Chem. 50, 537 (1999)

    Article  ADS  Google Scholar 

  3. B.J. Braams, J.M. Bowman, Int. Rev. Phys. Chem. 28, 577 (2009)

    Article  Google Scholar 

  4. M.A. Collins, Theor. Chem. Acc. 108, 313 (2002)

    Article  Google Scholar 

  5. C.M. Handley, P.L.A. Popelier, J. Phys. Chem. A 114, 3371 (2010)

    Article  Google Scholar 

  6. S. Manzhos, T. Carrington Jr., J. Chem. Phys. 125, 194105 (2006)

    Article  ADS  Google Scholar 

  7. J. Cui, R.V. Krems, Phys. Rev. Lett. 115, 073202 (2015)

    Article  ADS  Google Scholar 

  8. J. Cui, R.V. Krems, J. Phys. B 49, 224001 (2016)

    Article  ADS  Google Scholar 

  9. R.A. Vargas-Hernández, Y. Guan, D.H. Zhang, R.V. Krems, New J. Phys. 21, 022001 (2019)

    Article  ADS  Google Scholar 

  10. A. Kamath, R.A. Vargas-Hernández, R.V. Krems, T. Carrington Jr., S. Manzhos, J. Chem. Phys. 148, 241702 (2018)

    Article  ADS  Google Scholar 

  11. C. Qu, Q. Yu, B.L. Van Hoozen Jr., J.M. Bowman, R.A. Vargas-Hernández, J. Chem. Theory Comp. 14, 3381 (2018)

    Article  Google Scholar 

  12. L. Wang, Phys. Rev. B 94, 195105 (2016)

    Article  ADS  Google Scholar 

  13. J. Carrasquilla, R.G. Melko, Nat. Phys. 13, 431 (2017)

    Article  Google Scholar 

  14. E.P.L. van Nieuwenburg, Y.-H. Liu, S.D. Huber, Nat. Phys. 13, 435 (2017)

    Article  Google Scholar 

  15. P. Broecker, F. Assaad, S. Trebst, (2017). arXiv:1707.00663

    Google Scholar 

  16. S.J. Wetzel, M. Scherzer, Phys. Rev. B 96, 184410 (2017)

    Article  ADS  Google Scholar 

  17. S.J. Wetzel, Phys. Rev. E 96, 022140 (2017)

    Article  ADS  Google Scholar 

  18. Y.-H. Liu, E.P.L. van Nieuwenburg, Phys. Rev. Lett. 120, 176401 (2018)

    Article  ADS  Google Scholar 

  19. K. Chang, J. Carrasquilla, R.G. Melko, E. Khatami, Phys. Rev. X 7, 031038 (2017)

    Google Scholar 

  20. P. Broecker, J. Carrasquilla, R.G. Melko, S. Trebst, Sci. Rep. 7, 8823 (2017)

    Article  ADS  Google Scholar 

  21. F. Schindler, N. Regnault, T. Neupert, Phys. Rev. B 95, 245134 (2017)

    Article  ADS  Google Scholar 

  22. T. Ohtsuki, T. Ohtsuki, J. Phys. Soc. Jpn 85, 123706 (2016)

    Article  ADS  Google Scholar 

  23. L.-F. Arsenault, A. Lopez-Bezanilla, O.A. von Lilienfeld, A.J. Millis, Phys. Rev. B 90, 155136 (2014)

    Article  ADS  Google Scholar 

  24. L.-F. Arsenault, O.A. von Lilienfeld, A.J. Millis, (2015). arXiv:1506.08858

    Google Scholar 

  25. M.J. Beach, A. Golubeva, R.G. Melko, Phys. Rev. B 97, 045207 (2018)

    Article  ADS  Google Scholar 

  26. E. van Nieuwenburg, E. Bairey, G. Refael, Phys. Rev. B 98, 060301(R) (2018)

    Google Scholar 

  27. N. Yoshioka, Y. Akagi, H. Katsura, Phys. Rev. B 97, 205110 (2018)

    Article  ADS  Google Scholar 

  28. J. Venderley, V. Khemani, E.-A. Kim, Phys. Rev. Lett. 120, 257204 (2018)

    Article  ADS  Google Scholar 

  29. G. Carleo, M. Troyer, Science 355, 602 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  30. M. Schmitt, M. Heyl, SciPost Phys. 4, 013 (2018)

    Article  ADS  Google Scholar 

  31. Z. Cai, J. Liu, Phys. Rev. B 97, 035116 (2017)

    Article  ADS  Google Scholar 

  32. Y. Huang, J.E. Moore, (2017). arXiv:1701.06246

    Google Scholar 

  33. D.-L. Deng, X. Li, S.D. Sarma, Phys. Rev. B 96, 195145 (2017)

    Article  ADS  Google Scholar 

  34. Y. Nomura, A. Darmawan, Y. Yamaji, M. Imada, Phys. Rev. B 96, 205152 (2017)

    Article  ADS  Google Scholar 

  35. D.-L. Deng, X. Li, S.D. Sarma, Phys. Rev. X 7, 021021 (2017)

    Google Scholar 

  36. X. Gao, L.-M. Duan, Nat. Commun. 8, 662 (2017)

    Article  ADS  Google Scholar 

  37. G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko, G. Carleo, Nat. Phys. 14, 447 (2018)

    Article  Google Scholar 

  38. T. Hazan, T. Jaakkola, (2015). arXiv:1508.05133

    Google Scholar 

  39. A. Daniely, R. Frostig, Y. Singer, NIPS 29, 2253 (2016)

    Google Scholar 

  40. J. Lee, Y. Bahri, R. Novak, S.S. Schoenholz, J. Pennington, J. Sohl-Dickstein, Deep neural networks as Gaussian processes, in ICLR (2018)

    Google Scholar 

  41. K.T. Schütt, H. Glawe, F. Brockherde, A. Sanna, K.R. Müller, E.K.U. Gross, Phys. Rev. B 89, 205118 (2014)

    Article  ADS  Google Scholar 

  42. L.M. Ghiringhelli, J. Vybiral, S.V. Levchenko, C. Draxl, M. Scheffler, Phys. Rev. Lett. 114, 105503 (2015)

    Article  ADS  Google Scholar 

  43. F.A. Faber, A. Lindmaa, O.A, von Lilienfeld, R. Armient, Int. J. Quantum Chem. 115, 1094 (2015)

    Google Scholar 

  44. F.A. Faber, A. Lindmaa, O.A, von Lilienfeld, R. Armient, Phys. Rev. Lett. 117, 135502 (2016)

    Google Scholar 

  45. R.A. Vargas-Hernández, J. Sous, M. Berciu, R.V. Krems, Phys. Rev. Lett. 121, 255702 (2018)

    Article  ADS  Google Scholar 

  46. D.J.J. Marchand, G. De Filippis, V. Cataudella, M. Berciu, N. Nagaosa, N.V. Prokof’ev, A.S. Mishchenko, P.C.E. Stamp, Phys. Rev. Lett. 105, 266605 (2010)

    Article  ADS  Google Scholar 

  47. B. Lau, M. Berciu, G.A. Sawatzky, Phys. Rev. B 76, 174305 (2007)

    Article  ADS  Google Scholar 

  48. F. Herrera, K.W. Madison, R.V. Krems, M. Berciu, Phys. Rev. Lett. 110, 223002 (2013)

    Article  ADS  Google Scholar 

  49. B. Gerlach, H. Löwen, Rev. Mod. Phys. 63, 63 (1991)

    Article  ADS  Google Scholar 

  50. P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  51. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 1999)

    MATH  Google Scholar 

  52. C.E. Rasmussen, C.K.I. Williams, Gaussian Process for Machine Learning (MIT Press, Cambridge, 2006)

    MATH  Google Scholar 

  53. G. Schwarz, Ann. Stat. 6(2), 461 (1978)

    Article  Google Scholar 

  54. D.K. Duvenaud, H. Nickisch, C.E. Rasmussen, Adv. Neural Inf. Proces. Syst. 24, 226 (2011)

    Google Scholar 

  55. D.K. Duvenaud, J. Lloyd, R. Grosse, J.B. Tenenbaum, Z. Ghahramani, Proceedings of the 30th International Conference on Machine Learning Research, vol. 28 (2013), p. 1166

    Google Scholar 

  56. R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction (MIT Press, Cambridge, 2016)

    MATH  Google Scholar 

  57. J. Dai, R.V. Krems, J. Chem. Theory Comput. 16(3), 1386–1395 (2020). arXiv:1907.08717

    Google Scholar 

  58. A. Christianen, T. Karman, R.A. Vargas-Hernández, G.C. Groenenboom, R.V. Krems, J. Chem. Phys. 150, 064106 (2019)

    Article  ADS  Google Scholar 

  59. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, J. Mach. Learn. Res. 15, 1929 (2014)

    MathSciNet  Google Scholar 

  60. R.V. Krems, Bayesian machine learning for quantum molecular dynamics. Phys. Chem. Chem. Phys. 21, 13392 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Mona Berciu for the quantum results used for training and verifying the ML models for the polaron problem. We thank John Sous and Mona Berciu for the ideas that had led to work published in Ref. [45] and for enlightening discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Vargas-Hernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vargas-Hernández, R.A., Krems, R.V. (2020). Physical Extrapolation of Quantum Observables by Generalization with Gaussian Processes. In: Schütt, K., Chmiela, S., von Lilienfeld, O., Tkatchenko, A., Tsuda, K., Müller, KR. (eds) Machine Learning Meets Quantum Physics. Lecture Notes in Physics, vol 968. Springer, Cham. https://doi.org/10.1007/978-3-030-40245-7_9

Download citation

Publish with us

Policies and ethics