Skip to main content

Machine-Learning of Atomic-Scale Properties Based on Physical Principles

  • Chapter
  • First Online:
Machine Learning Meets Quantum Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 968))

Abstract

We briefly summarize the kernel regression approach, as used recently in materials modelling, to fitting functions, particularly potential energy surfaces, and highlight how the linear algebra framework can be used to both predict and train from linear functionals of the potential energy, such as the total energy and atomic forces. We then give a detailed account of the smooth overlap of atomic positions (SOAP) representation and kernel, showing how it arises from an abstract representation of smooth atomic densities, and how it is related to several popular density-based representations of atomic structure. We also discuss recent generalizations that allow fine control of correlations between different atomic species, prediction and fitting of tensorial properties, and also how to construct structural kernels—applicable to comparing entire molecules or periodic systems—that go beyond an additive combination of local environments. (This chapter is adapted with permission from Ceriotti et al. (Handbook of materials modeling. Springer, Cham, 2019).)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Ceriotti, M.J. Willatt, G. Csányi, Machine-learning of atomic-scale properties based on physical principles, in Handbook of Materials Modeling, ed. by W. Andreoni, S. Yip (Springer, Cham, 2019)

    Google Scholar 

  2. M.W. Finnis, Interatomic Forces in Condensed Matter (Oxford University Press, Oxford, 2004)

    Google Scholar 

  3. D.W. Brenner, Phys. Status Solidi B 217, 23 (2000)

    Article  ADS  Google Scholar 

  4. B.J. Braams, J.M. Bowman, Int. Rev. Phys. Chem. 28(4), 577–606 (2009)

    Article  Google Scholar 

  5. M. Rupp, A. Tkatchenko, K.R. Müller, O.A. von Lilienfeld, Phys. Rev. Lett. 108, 058301 (2012)

    Article  ADS  Google Scholar 

  6. F. Faber, A. Lindmaa, O.A. von Lilienfeld, R. Armiento, Int. J. Quantum Chem. 115(16), 1094–1101 (2015)

    Article  Google Scholar 

  7. L. Zhang, J. Han, H. Wang, R. Car, E. Weinan, Phys. Rev. Lett. 120(14), 143001 (2018)

    Article  ADS  Google Scholar 

  8. C.M. Bishop, Pattern Recognition and Machine Learning (Springer, Berlin, 2016)

    MATH  Google Scholar 

  9. C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning (MIT Press, Cambridge, 2006)

    MATH  Google Scholar 

  10. B. Schölkopf, A.J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (MIT Press, Cambridge, 2002)

    Google Scholar 

  11. W.J. Szlachta, A.P. Bartók, G. Csányi, Phys. Rev. B Condens. Matter 90(10), 104108 (2014). https://doi.org/10.1103/PhysRevB.90.104108

    Article  ADS  Google Scholar 

  12. D. Dragoni, T.D. Daff, G. Csányi, N. Marzari, Phys. Rev. Mater. 2(1), 013808 (2018)

    Article  Google Scholar 

  13. N. Bernstein, J.R. Kermode, G. Csányi, Rep. Prog. Phys. 72(2), 026501 (2009). https://doi.org/10.1088/0034-4885/72/2/026501

    Article  ADS  Google Scholar 

  14. V.L. Deringer, G. Csányi, Phys. Rev. B 95(9), 094203 (2017). https://doi.org/10.1103/physrevb.95.094203

    Article  ADS  Google Scholar 

  15. S. Fujikake, V.L. Deringer, T.H. Lee, M. Krynski, S.R. Elliott, G. Csányi, J. Chem. Phys. 148, 241714 (2018)

    Article  ADS  Google Scholar 

  16. A.N. Tikhonov, A. Goncharsky, V.V. Stepanov, A.G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems (Kluwer Academic, Dordrecht, 1995)

    Book  MATH  Google Scholar 

  17. J.A. Hartigan, M.A. Wong, J. R. Stat. Soc. Ser. C Appl. Stat. 28(1), 100 (1979)

    Google Scholar 

  18. S. Prabhakaran, S. Raman, J.E. Vogt, V. Roth, Joint DAGM (German Association for Pattern Recognition) and OAGM Symposium (Springer, Berlin, 2012), pp. 458–467

    Google Scholar 

  19. E.V. Podryabinkin, A.V. Shapeev, Comput. Mater. Sci. 140, 171 (2017). https://doi.org/10.1016/j.commatsci.2017.08.031.

    Article  Google Scholar 

  20. B. Huang, O.A. von Lilienfeld (2017). arxiv:1707.04146 . http://arxiv.org/abs/1707.04146v3

  21. T.F. Gonzalez, Theor. Comput. Sci. 38, 293 (1985)

    Article  Google Scholar 

  22. M. Ceriotti, G.A. Tribello, M. Parrinello, J. Chem. Theory Comput. 9, 1521 (2013)

    Article  Google Scholar 

  23. A.A.P. Bartók, S. De, C. Poelking, N. Bernstein, J.R.J. Kermode, G. Csányi, M. Ceriotti, Sci. Adv. 3, e1701816 (2017)

    Article  ADS  Google Scholar 

  24. S. De, A.A.P. Bartók, G. Csányi, M. Ceriotti, Phys. Chem. Chem. Phys. 18, 13754 (2016)

    Article  Google Scholar 

  25. M.W. Mahoney, P. Drineas, Proc. Natl. Acad. Sci. USA 106, 697 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  26. G. Imbalzano, A. Anelli, D. Giofré, S. Klees, J. Behler, M. Ceriotti, J. Chem. Phys. 148, 241730 (2018)

    Article  ADS  Google Scholar 

  27. J.Q. Quinonero-Candela, C.E. Rasmussen, J. Mach. Learn. Res. 6, 1939–1959 (2005)

    Google Scholar 

  28. E. Snelson, Z. Ghahramani, Advances in Neural Information Processing Systems (2005)

    Google Scholar 

  29. E. Solak, C.E. Rasmussen, D.J. Leith, R. Murray-Smith, W.E. Leithead, Advances in Neural Information Processing Systems (2003)

    Google Scholar 

  30. A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Phys. Rev. Lett. 104(13), 136403 (2010)

    Article  ADS  Google Scholar 

  31. A.P. Bartók, M.J. Gillan, F.R. Manby, G. Csányi, Phys. Rev. B 88(5), 054104 (2013). https://doi.org/10.1103/PhysRevB.88.054104

    Article  ADS  Google Scholar 

  32. A.P. Bartók, G. Csányi, Int. J. Quant. Chem. 116(13), 1051 (2015). https://doi.org/10.1002/qua.24927

    Article  Google Scholar 

  33. S.T. John, G. Csányi, J. Phys. Chem. B 121(48), 10934 (2017). https://doi.org/10.1021/acs.jpcb.7b09636

    Article  Google Scholar 

  34. V.L. Deringer, C.J. Pickard, G. Csányi, Phys. Rev. Lett. 120(15), 156001 (2018). https://doi.org/10.1103/PhysRevLett.120.156001

    Article  ADS  Google Scholar 

  35. M.A. Caro, V.L. Deringer, J. Koskinen, T. Laurila, G. Csányi, Phys. Rev. Lett. 120(16), 166101 (2018). https://doi.org/10.1103/PhysRevLett.120.166101

    Article  ADS  Google Scholar 

  36. P. Rowe, G. Csányi, D. Alfè, A. Michaelides, Phys. Rev. B 97(5), 054303 (2018). https://doi.org/10.1103/PhysRevB.97.054303

    Article  ADS  Google Scholar 

  37. T.T. Nguyen, E. Szekely, G. Imbalzano, J. Behler, G. Csányi, M. Ceriotti, A.W. Götz, F. Paesani, J. Chem. Phys. 148, 241725 (2018)

    Article  ADS  Google Scholar 

  38. S. Chmiela, A. Tkatchenko, H.E. Sauceda, I. Poltavsky, K.T. Schütt, K.R. Müller, Sci. Adv. 3(5), e1603015 (2017). https://doi.org/10.1126/sciadv.1603015

    Article  ADS  Google Scholar 

  39. A. Glielmo, C. Zeni, A.D. Vita, Phys. Rev. B 97(18) (2018). https://doi.org/10.1103/physrevb.97.184307

  40. C. Zeni, K. Rossi, A. Glielmo, A. Fekete, N. Gaston, F. Baletto, A. Dr Vita, J. Chem. Phys. 148(23), 234106 (2018)

    Article  Google Scholar 

  41. M.J. Willatt, F. Musil, M. Ceriotti, J. Chem. Phys. 150, 154110 (2019)

    Article  ADS  Google Scholar 

  42. A.P. Bartók, R. Kondor, G. Csányi, Phys. Rev. B 87, 184115 (2013)

    Article  ADS  Google Scholar 

  43. J. Behler, M. Parrinello, Phys. Rev. Lett. 98, 146401 (2007)

    Article  ADS  Google Scholar 

  44. S. Kajita, N. Ohba, R. Jinnouchi, R. Asahi, Sci. Rep. 7, 1 (2017)

    Article  Google Scholar 

  45. K.T. Schütt, H. Glawe, F. Brockherde, A. Sanna, K.R. Müller, E.K.U. Gross, Phys. Rev. B 89, 205118 (2014)

    Article  ADS  Google Scholar 

  46. W. Yang, Phys. Rev. Lett. 66, 1438 (1991)

    Article  ADS  Google Scholar 

  47. G. Galli, M. Parrinello, Phys. Rev. Lett. 69, 3547 (1992)

    Article  ADS  Google Scholar 

  48. S. Goedecker, Rev. Mod. Phys. 71, 1085 (1999)

    Article  ADS  Google Scholar 

  49. E. Prodan, W. Kohn, Proc. Natl. Acad. Sci. USA 102, 11635 (2005)

    Article  ADS  Google Scholar 

  50. H. Eshet, R.Z. Khaliullin, T.D. Kühne, J. Behler, M. Parrinello, Phys. Rev. Lett. 108, 115701 (2012)

    Article  ADS  Google Scholar 

  51. T. Morawietz, A. Singraber, C. Dellago, J. Behler, Proc. Natl. Acad. Sci. USA 113, 8368 (2016)

    Article  ADS  Google Scholar 

  52. B. Cheng, J. Behler, M. Ceriotti, J. Phys. Chem. Lett. 7, 2210 (2016)

    Article  Google Scholar 

  53. J.S. Smith, O. Isayev, A.E. Roitberg, Chem. Sci. 8, 3192 (2017)

    Article  Google Scholar 

  54. A.P. Thompson, L.P. Swiler, C.R. Trott, S.M. Foiles, G.J. Tucker, J. Comput. Phys. 285, 316 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  55. A. Haar, Ann. Math. 34, 147 (1933)

    Article  MathSciNet  Google Scholar 

  56. J. Tersoff, Phys. Rev. B 39, 5566 (1989)

    Article  ADS  Google Scholar 

  57. G.R. Medders, V. Babin, F. Paesani, J. Chem. Theory Comput. 10, 2906 (2014)

    Article  Google Scholar 

  58. J.A. Moriarty, Phys. Rev. B 42, 1609 (1990)

    Article  ADS  Google Scholar 

  59. R. Drautz, Phys. Rev. B 99, 014104 (2019)

    Article  ADS  Google Scholar 

  60. F.A. Faber, L. Hutchison, B. Huang, J. Gilmer, S.S. Schoenholz, G.E. Dahl, O. Vinyals, S. Kearnes, P.F. Riley, O.A. von Lilienfeld, J. Chem. Theory Comput. 13, 5255 (2017)

    Article  Google Scholar 

  61. M.J. Willatt, F. Musil, M. Ceriotti, Phys. Chem. Chem. Phys. 20, 29661 (2018)

    Article  Google Scholar 

  62. B. Huang, O.A. von Lilienfeld, J. Chem. Phys. 145(16), 161102 (2016). https://doi.org/10.1063/1.4964627

    Article  ADS  Google Scholar 

  63. F.A. Faber, A.S. Christensen, B. Huang, O.A. von Lilienfeld, J. Chem. Phys. 148, 241717 (2018)

    Article  ADS  Google Scholar 

  64. D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988)

    Book  Google Scholar 

  65. A. Glielmo, P. Sollich, A. De Vita, Phys. Rev. B 95, 214302 (2017)

    Article  ADS  Google Scholar 

  66. A. Grisafi, D.D.M. Wilkins, G. Csányi, M. Ceriotti, Phys. Rev. Lett. 120, 036002 (2018)

    Article  ADS  Google Scholar 

  67. D.M. Wilkins, A. Grisafi, Y. Yang, K.U. Lao, R.A. DiStasio, M. Ceriotti, Proc. Natl. Acad. Sci. USA 116, 3401 (2019)

    Article  Google Scholar 

  68. F.M. Paruzzo, A. Hofstetter, F. Musil, S. De, M. Ceriotti, L. Emsley, Nat. Commun. 9, 4501 (2018)

    Article  ADS  Google Scholar 

  69. M. Cuturi, in Advances in Neural Information Processing Systems, vol. 26, ed. by C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, K.Q. Weinberger (Curran Associates, Inc., Red Hook, 2013), pp. 2292–2300

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Ceriotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Csányi, G., Willatt, M.J., Ceriotti, M. (2020). Machine-Learning of Atomic-Scale Properties Based on Physical Principles. In: Schütt, K., Chmiela, S., von Lilienfeld, O., Tkatchenko, A., Tsuda, K., Müller, KR. (eds) Machine Learning Meets Quantum Physics. Lecture Notes in Physics, vol 968. Springer, Cham. https://doi.org/10.1007/978-3-030-40245-7_6

Download citation

Publish with us

Policies and ethics