Skip to main content

Building Nonparametric n-Body Force Fields Using Gaussian Process Regression

  • Chapter
  • First Online:
Machine Learning Meets Quantum Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 968))

Abstract

Constructing a classical potential suited to simulate a given atomic system is a remarkably difficult task. This chapter presents a framework under which this problem can be tackled, based on the Bayesian construction of nonparametric force fields of a given order using Gaussian process (GP) priors. The formalism of GP regression is first reviewed, particularly in relation to its application in learning local atomic energies and forces. For accurate regression, it is fundamental to incorporate prior knowledge into the GP kernel function. To this end, this chapter details how properties of smoothness, invariance and interaction order of a force field can be encoded into corresponding kernel properties. A range of kernels is then proposed, possessing all the required properties and an adjustable parameter n governing the interaction order modelled. The order n best suited to describe a given system can be found automatically within the Bayesian framework by maximisation of the marginal likelihood. The procedure is first tested on a toy model of known interaction and later applied to two real materials described at the DFT level of accuracy. The models automatically selected for the two materials were found to be in agreement with physical intuition. More in general, it was found that lower order (simpler) models should be chosen when the data are not sufficient to resolve more complex interactions. Low n GPs can be further sped up by orders of magnitude by constructing the corresponding tabulated force field, here named “MFF”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Choosing a squared error function \(L=(\bar {\epsilon }(\rho )- \epsilon )^2\), the expected error under the posterior distribution reads \( \langle L \rangle = \int d\epsilon \, p(\epsilon \mid \rho , \mathcal {D}) (\bar {\epsilon }(\rho )- \epsilon )^2. \) Minimising this quantity with respect to the unknown optimal prediction \(\bar {\epsilon }(\rho )\) can be done by equating the functional derivative \(\delta \langle L \rangle / \delta \bar {\epsilon }(\rho )\) to zero, yielding the condition \( (\bar {\epsilon }(\rho ) - \langle \epsilon \rangle ) = 0, \) proving that the optimal estimate corresponds to the mean \(\hat {\epsilon }(\rho )\) of the predictive distribution in Eq. (5.5). One can show that choosing an absolute error function \(L=\left | \bar {\epsilon }(\rho )- \epsilon \right |\) makes the mode of the predictive distribution the optimal estimate, this however coincides with the mean in the case of Gaussian distributions.

  2. 2.

    The model evidence is conventionally defined as the integral over the hyperparameter space of the marginal likelihood times the hyperprior (cf. [35]). We here simplify the analysis by jointly considering the model and its hyperparameters.

  3. 3.

    The n-body toy model used was set up as a hierarchy of two-body interactions defined via the negative Gaussian function \( \epsilon ^g(d) = - e^{-\frac {(d-1)^2}{2}}. \) This pairwise interaction, depending only on the distance d between two particles, was then used to generate n-body local energies as \(\epsilon _n(\rho ) = \sum _{i_1\neq \dots \neq i_{n-1}} \epsilon ^g(x_{i_1}) \epsilon ^g(x_{i_{2}}-x_{i_{1}}) \dots \epsilon ^g(x_{i_{n-2}}-x_{i_{n-1}})\) where \(x_{i_1},\dots , x_{i_n-1}\) are the positions, relative to the central atom, of n − 1 surrounding neighbours.

References

  1. D.H. Wolpert, Neural Comput. 8(7), 1341 (1996)

    Article  Google Scholar 

  2. A.J. Skinner, J.Q. Broughton, Modell. Simul. Mater. Sci. Eng. 3(3), 371 (1995)

    Article  ADS  Google Scholar 

  3. J. Behler, M. Parrinello, Phys. Rev. Lett. 98(14), 146401 (2007)

    Article  ADS  Google Scholar 

  4. R. Kondor (2018). Preprint. arXiv:1803.01588

    Google Scholar 

  5. M. Gastegger, P. Marquetand, J. Chem. Theory Comput. 11(5), 2187 (2015)

    Article  Google Scholar 

  6. S. Manzhos, R. Dawes, T. Carrington, Int. J. Quantum Chem. 115(16), 1012 (2014)

    Article  Google Scholar 

  7. P. Geiger, C. Dellago, J. Chem. Phys. 139(16), 164105 (2013)

    Article  ADS  Google Scholar 

  8. N. Kuritz, G. Gordon, A. Natan, Phys. Rev. B 98(9), 094109 (2018)

    Article  ADS  Google Scholar 

  9. K.T. Schütt, F. Arbabzadah, S. Chmiela, K.R. Müller, A. Tkatchenko, Nat. Commun. 8, 13890 (2017)

    Article  ADS  Google Scholar 

  10. N. Lubbers, J.S. Smith, K. Barros, J. Chem. Phys. 148(24), 241715 (2018)

    Article  ADS  Google Scholar 

  11. K.T. Schütt, H.E. Sauceda, P.J. Kindermans, A. Tkatchenko, K.R. Müller, J. Chem. Phys. 148(24), 241722 (2018)

    Article  ADS  Google Scholar 

  12. A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Phys. Rev. Lett. 104(13), 136403 (2010)

    Article  ADS  Google Scholar 

  13. Z. Li, J.R. Kermode, A. De Vita, Phys. Rev. Lett. 114(9), 096405 (2015)

    Article  ADS  Google Scholar 

  14. A. Glielmo, P. Sollich, A. De Vita, Phys. Rev. B 95(21), 214302 (2017)

    Article  ADS  Google Scholar 

  15. A. Glielmo, C. Zeni, A. De Vita, Phys. Rev. B 97(18), 1 (2018)

    Article  Google Scholar 

  16. C. Zeni, K. Rossi, A. Glielmo, Á. Fekete, N. Gaston, F. Baletto, A. De Vita, J. Chem. Phys. 148(24), 241739 (2018)

    Article  ADS  Google Scholar 

  17. W.J. Szlachta, A.P. Bartók, G. Csányi, Phys. Rev. B 90(10), 104108 (2014)

    Article  ADS  Google Scholar 

  18. A.P. Thompson, L.P. Swiler, C.R. Trott, S.M. Foiles, G.J. Tucker, J. Comput. Phys. 285(C), 316 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  19. A.V. Shapeev, Multiscale Model. Simul. 14(3), 1153 (2016)

    Article  MathSciNet  Google Scholar 

  20. A. Takahashi, A. Seko, I. Tanaka, J. Chem. Phys. 148(23), 234106 (2018)

    Article  ADS  Google Scholar 

  21. A.P. Bartók, R. Kondor, G. Csányi, Phys. Rev. B 87(18), 184115 (2013)

    Article  ADS  Google Scholar 

  22. W.H. Jefferys, J.O. Berger, Am. Sci. 80(1), 64 (1992)

    ADS  Google Scholar 

  23. C.E. Rasmussen, Z. Ghahramani, in Proceedings of the 13th International Conference on Neural Information Processing Systems (NIPS’00) (MIT Press, Cambridge, 2000), pp. 276–282

    Google Scholar 

  24. Z. Ghahramani, Nature 521(7553), 452 (2015)

    Article  ADS  Google Scholar 

  25. V.N. Vapnik, A.Y. Chervonenkis, in Measures of Complexity (Springer, Cham, 2015), pp. 11–30

    MATH  Google Scholar 

  26. V.N. Vapnik, Statistical Learning Theory (Wiley, Hoboken, 1998)

    MATH  Google Scholar 

  27. M.J. Kearns, U.V. Vazirani, An Introduction to Computational Learning Theory (MIT Press, Cambridge, 1994)

    Book  Google Scholar 

  28. T. Suzuki, in Proceedings of the 25th Annual Conference on Learning Theory, ed. by S. Mannor, N. Srebro, R.C. Williamson. Proceedings of Machine Learning Research, vol. 23 (PMLR, Edinburgh, 2012), pp. 8.1–8.20

    Google Scholar 

  29. C. Zeni, F. Ádám, A. Glielmo, MFF: a Python package for building nonparametric force fields from machine learning (2018). https://doi.org/10.5281/zenodo.1475959

  30. R.P. Feynman, Phys. Rev. 56(4), 340 (1939)

    Article  ADS  Google Scholar 

  31. V. Botu, R. Ramprasad, Phys. Rev. B 92(9), 094306 (2015)

    Article  ADS  Google Scholar 

  32. I. Kruglov, O. Sergeev, A. Yanilkin, A.R. Oganov, Sci. Rep. 7(1), 1–7 (2017)

    Article  Google Scholar 

  33. G. Ferré, J.B. Maillet, G. Stoltz, J. Chem. Phys. 143(10), 104114 (2015)

    Article  ADS  Google Scholar 

  34. A.P. Bartók, G. Csányi, Int. J. Quantum Chem. 115(16), 1051 (2015)

    Article  Google Scholar 

  35. C.K.I. Williams, C.E. Rasmussen, Gaussian Processes for Machine Learning (MIT Press, Cambridge, 2006)

    MATH  Google Scholar 

  36. I. Macêdo, R. Castro, Learning Divergence-Free and Curl-Free Vector Fields with Matrix-Valued Kernels (Instituto Nacional de Matematica Pura e Aplicada, Rio de Janeiro, 2008)

    Google Scholar 

  37. C.M. Bishop, in Pattern Recognition and Machine Learning. Information Science and Statistics (Springer, New York, 2006)

    Google Scholar 

  38. M. Rupp, A. Tkatchenko, K.R. Müller, O.A. von Lilienfeld, Phys. Rev. Lett. 108(5), 058301 (2012)

    Article  ADS  Google Scholar 

  39. M. Rupp, Int. J. Quantum Chem. 115(16), 1058 (2015)

    Article  MathSciNet  Google Scholar 

  40. K. Hansen, G. Montavon, F. Biegler, S. Fazli, M. Rupp, M. Scheffler, O.A. von Lilienfeld, A. Tkatchenko, K.R. Müller, J. Chem. Theory Comput. 9(8), 3404 (2013)

    Article  Google Scholar 

  41. S. Chmiela, A. Tkatchenko, H.E. Sauceda, I. Poltavsky, K.T. Schütt, K.R. Müller, Sci. Adv. 3(5), e1603015 (2017)

    Article  ADS  Google Scholar 

  42. V.L. Deringer, G. Csányi, Phys. Rev. B 95(9), 094203 (2017)

    Article  ADS  Google Scholar 

  43. H. Huo, M. Rupp (2017). Preprint. arXiv:1704.06439

    Google Scholar 

  44. A.P. Bartók, M.J. Gillan, F.R. Manby, G. Csányi, Phys. Rev. B 88(5), 054104 (2013)

    Article  ADS  Google Scholar 

  45. J. Behler, J. Chem. Phys. 134(7), 074106 (2011)

    Article  ADS  Google Scholar 

  46. B. Haasdonk, H. Burkhardt, Mach. Learn. 68(1), 35 (2007)

    Article  Google Scholar 

  47. C.A. Micchelli, M. Pontil, in Advances in Neural Information Processing Systems (University at Albany State University of New York, Albany, 2005)

    Google Scholar 

  48. C.A. Micchelli, M. Pontil, Neural Comput. 17(1), 177 (2005)

    Article  MathSciNet  Google Scholar 

  49. T. Bereau, R.A. DiStasio, A. Tkatchenko, O.A. von Lilienfeld, J. Chem. Phys. 148(24), 241706 (2018)

    Article  ADS  Google Scholar 

  50. A. Grisafi, D.M. Wilkins, G. Csányi, M. Ceriotti, Phys. Rev. Lett. 120, 036002 (2018). https://doi.org/10.1103/PhysRevLett.120.036002

    Article  ADS  Google Scholar 

  51. S.K. Reddy, S.C. Straight, P. Bajaj, C. Huy Pham, M. Riera, D.R. Moberg, M.A. Morales, C. Knight, A.W. Götz, F. Paesani, J. Chem. Phys. 145(19), 194504 (2016)

    Article  ADS  Google Scholar 

  52. G.A. Cisneros, K.T. Wikfeldt, L. Ojamäe, J. Lu, Y. Xu, H. Torabifard, A.P. Bartók, G. Csányi, V. Molinero, F. Paesani, Chem. Rev. 116(13), 7501 (2016)

    Article  Google Scholar 

  53. F.H. Stillinger, T.A. Weber, Phys. Rev. B31(8), 5262 (1985)

    Article  ADS  Google Scholar 

  54. J. Tersoff, Phys. Rev. B 37(12), 6991 (1988)

    Article  ADS  Google Scholar 

  55. K. Yao, J.E. Herr, J. Parkhill, J. Chem. Phys. 146(1), 014106 (2017)

    Article  ADS  Google Scholar 

  56. K. Hornik, Neural Netw. 6(8), 1069 (1993)

    Article  Google Scholar 

  57. R.A. Jacobs, M.I. Jordan, S.J. Nowlan, G.E. Hinton, Neural Comput. 3(1), 79 (1991)

    Article  Google Scholar 

  58. C.E. Rasmussen, Z. Ghahramani, in Advances in Neural Information Processing Systems (UCL, London, 2002)

    Google Scholar 

  59. S. De, A.P. Bartók, G. Csányi, M. Ceriotti, Phys. Chem. Chem. Phys. 18, 13754 (2016)

    Article  Google Scholar 

  60. L.M. Ghiringhelli, J. Vybiral, S.V. Levchenko, C. Draxl, M. Scheffler, Phys. Rev. Lett. 114(10), 105503 (2015)

    Article  ADS  Google Scholar 

  61. J. Mavračić, F.C. Mocanu, V.L. Deringer, G. Csányi, S.R. Elliott, J. Phys. Chem. Lett. 9(11), 2985 (2018)

    Article  Google Scholar 

  62. S. De, F. Musil, T. Ingram, C. Baldauf, M. Ceriotti, J. Cheminf. 9(1), 1–14 (2017)

    Article  Google Scholar 

  63. L. Breiman, Mach. Learn. 24(2), 123 (1996)

    Google Scholar 

  64. O. Sagi, L. Rokach, Wiley Interdiscip. Rev. Data Min. Knowl. Disc. 8(4), e1249 (2018)

    Google Scholar 

  65. M. Sewell, Technical Report RN/11/02 (Department of Computer Science, UCL, London, 2008)

    Google Scholar 

  66. I. Kruglov, O. Sergeev, A. Yanilkin, A.R. Oganov, Sci. Rep. 7(1), 8512 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding by the Engineering and Physical Sciences Research Council (EPSRC) through the Centre for Doctoral Training “Cross Disciplinary Approaches to Non-Equilibrium Systems” (CANES, Grant No. EP/L015854/1) and by the Office of Naval Research Global (ONRG Award No. N62909-15-1-N079). The authors thank the UK Materials and Molecular Modelling Hub for computational resources, which is partially funded by EPSRC (EP/P020194/1). ADV acknowledges further support by the EPSRC HEmS Grant No. EP/L014742/1 and by the European Union’s Horizon 2020 research and innovation program (Grant No. 676580, The NOMAD Laboratory, a European Centre of Excellence). We, AG, CZ and AF, are immensely grateful to Alessandro De Vita for having devoted, with inexhaustible energy and passion, an extra-ordinary amount of his time and brilliance towards our personal and professional growth.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Glielmo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Glielmo, A., Zeni, C., Fekete, Á., De Vita, A. (2020). Building Nonparametric n-Body Force Fields Using Gaussian Process Regression. In: Schütt, K., Chmiela, S., von Lilienfeld, O., Tkatchenko, A., Tsuda, K., Müller, KR. (eds) Machine Learning Meets Quantum Physics. Lecture Notes in Physics, vol 968. Springer, Cham. https://doi.org/10.1007/978-3-030-40245-7_5

Download citation

Publish with us

Policies and ethics