Skip to main content

Kernel Methods for Quantum Chemistry

  • Chapter
  • First Online:
Machine Learning Meets Quantum Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 968))

Abstract

Kernel ridge regression (KRR) is one of the most popular methods of non-linear regression analysis in quantum chemistry. One of the main ingredients of KRR is the representation of the underlying physical system which mainly determines the performance of predicting quantum-mechanical properties based on KRR. Several such representations have been developed for both, solids and molecules; all of them with different advantages and limitations. These descriptors correspond to a similarity measure between two chemical compounds which is represented by the kernel. As recent approaches define the kernel directly from the underlying physical system, it is important to understand the properties of kernels and how these kernel properties can be used to improve the performance of machine learning models for quantum chemistry. After reviewing key representations of molecules, we provide an intuition on how the choice of the kernel affects the model. This is followed by a more practical guide of two complementary kernel methods, one for supervised and one for unsupervised learning, respectively. Finally, we present a way to gain an understanding about the model complexity by estimating the effective dimensionality induced by the data, the representation, and the kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Cortes, V. Vapnik, Mach. Learn. 20(3), 273 (1995)

    Google Scholar 

  2. V. Vapnik, S.E. Golowich, A.J. Smola, in Advances in Neural Information Processing Systems (1997), pp. 281–287

    Google Scholar 

  3. K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, B. Schölkopf, IEEE Trans. Neural Netw. 12(2), 181 (2001). https://doi.org/10.1109/72.914517

    Article  Google Scholar 

  4. B. Schölkopf, A.J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (MIT Press, Cambridge, 2002)

    Google Scholar 

  5. B. Huang, O.A. von Lilienfeld, J. Chem. Phys. 145(16), 161102 (2016). https://doi.org/10.1063/1.4964627

    Article  ADS  Google Scholar 

  6. B. Schölkopf, S. Mika, C.J. Burges, P. Knirsch, K.-R. Müller, G. Rätsch, A.J. Smola, IEEE Trans. Neural Netw. 10(5), 1000 (1999)

    Article  Google Scholar 

  7. P. Indyk, R. Motwani, in Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing (ACM, New York, 1998), pp. 604–613

    Google Scholar 

  8. J.H. Friedman, Data Min. Knowl. Disc. 1(1), 55 (1997)

    Article  MathSciNet  Google Scholar 

  9. J. Rust, J. Econ. Soc. 1997, 487–516 (1997)

    Google Scholar 

  10. K.T. Schütt, H. Glawe, F. Brockherde, A. Sanna, K.R. Müller, E.K.U. Gross, Phys. Rev. B 89, 205118 (2014). https://doi.org/10.1103/PhysRevB.89.205118

    Article  ADS  Google Scholar 

  11. S. Chmiela, H.E. Sauceda, I. Poltavsky, K.-R. Müller, A. Tkatchenko, Comput. Phys. Commun. 240, 38 (2019). https://doi.org/10.1016/j.cpc.2019.02.007

    Article  ADS  Google Scholar 

  12. F.A. Faber, L. Hutchison, B. Huang, J. Gilmer, S.S. Schoenholz, G.E. Dahl, O. Vinyals, S. Kearnes, P.F. Riley, O.A. von Lilienfeld, J. Chem. Theory Comput. 13(11), 5255 (2017). https://doi.org/10.1021/acs.jctc.7b00577

    Article  Google Scholar 

  13. F.A. Faber, A.S. Christensen, B. Huang, O.A. von Lilienfeld, J. Chem. Phys. 148(24), 241717 (2018). https://doi.org/10.1063/1.5020710

    Article  ADS  Google Scholar 

  14. K.T. Schütt, F. Arbabzadah, S. Chmiela, K.R. Müller, A. Tkatchenko, Nat. Commun. 8, 13890 (2017)

    Article  ADS  Google Scholar 

  15. K.T. Schütt, P.-J. Kindermans, H.E.S. Felix, S. Chmiela, A. Tkatchenko, K.-R. Müller, in Advances in Neural Information Processing Systems (2017), pp. 991–1001

    Google Scholar 

  16. G. Montavon, W. Samek, K.-R. Müller, Digit. Signal Process. 73, 1 (2018)

    Article  MathSciNet  Google Scholar 

  17. S. Chmiela, Towards exact molecular dynamics simulations with invariant machine-learned models. Dissertation, Technische Universität Berlin (2019). https://doi.org/10.14279/depositonce-8635

    Google Scholar 

  18. M. Rupp, A. Tkatchenko, K.-R. Müller, O.A. von Lilienfeld, Phys. Rev. Lett. 108, 058301 (2012). https://doi.org/10.1103/PhysRevLett.108.058301

    Article  ADS  Google Scholar 

  19. K. Hansen, G. Montavon, F. Biegler, S. Fazli, M. Rupp, M. Scheffler, O.A. von Lilienfeld, A. Tkatchenko, K.-R. Müller, J. Chem. Theory Comput. 9(8), 3404 (2013). https://doi.org/10.1021/ct400195d

    Article  Google Scholar 

  20. K. Hansen, F. Biegler, R. Ramakrishnan, W. Pronobis, O.A. von Lilienfeld, K.-R. Müller, A. Tkatchenko, J. Phys. Chem. Lett. 6(12), 2326 (2015). https://doi.org/10.1021/acs.jpclett.5b00831

    Article  Google Scholar 

  21. W. Pronobis, K.T. Schütt, A. Tkatchenko, K.-R. Müller, Eur. Phys. J. B 91(8), 178 (2018). https://doi.org/10.1140/epjb/e2018-90148-y

    Article  ADS  Google Scholar 

  22. W. Pronobis, A. Tkatchenko, K.-R. Müller, J. Chem. Theory Comput. 14(6), 2991 (2018). https://doi.org/10.1021/acs.jctc.8b00110

    Article  Google Scholar 

  23. B.E. Boser, I.M. Guyon, V.N. Vapnik, in Proceedings of the Fifth Annual Workshop on Computational Learning Theory (ACM, New York, 1992), pp. 144–152

    Google Scholar 

  24. K.-R. Müller, A. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, V. Vapnik, in Advances in Kernel Methods—Support Vector Learning, pp. 243–254 (1999)

    Google Scholar 

  25. M. James, F.A. Russell, Philos. Trans. R. Soc. Lond. A 209(441–458), 415 (1909). https://doi.org/10.1098/rsta.1909.0016

    Google Scholar 

  26. A.J. Smola, B. Schölkopf, K.-R. Müller, Neural Netw. 11(4), 637 (1998). https://doi.org/10.1016/S0893-6080(98)00032-X

    Article  Google Scholar 

  27. A. Zien, G. Rätsch, S. Mika, B. Schölkopf, T. Lengauer, K.-R. Müller, Bioinformatics 16(9), 799 (2000)

    Article  Google Scholar 

  28. A.P. Bartók, R. Kondor, G. Csányi, Phys. Rev. B 87, 184115 (2013). https://doi.org/10.1103/PhysRevB.87.184115

    Article  ADS  Google Scholar 

  29. G. Montavon, K. Hansen, S. Fazli, M. Rupp, F. Biegler, A. Ziehe, A. Tkatchenko, A.V. Lilienfeld, K.-R. Müller, in Advances in Neural Information Processing Systems (2012), pp. 440–448

    Google Scholar 

  30. R. Ramakrishnan, O.A. von Lilienfeld, CHIMIA Int. J. Chem. 69(4), 182 (2015)

    Article  Google Scholar 

  31. G. Ferré, T. Haut, K. Barros, J. Chem. Phys. 146(11), 114107 (2017)

    Article  ADS  Google Scholar 

  32. S. Chmiela, A. Tkatchenko, H.E. Sauceda, I. Poltavsky, K.T. Schütt, K.-R. Müller, Sci. Adv. 3(5), e1603015 (2017)

    Article  ADS  Google Scholar 

  33. D. Hu, Y. Xie, X. Li, L. Li, Z. Lan, J. Phys. Chem. Lett. 9(11), 2725 (2018). https://doi.org/10.1021/acs.jpclett.8b00684

    Article  Google Scholar 

  34. C.K. Williams, C.E. Rasmussen, Gaussian Processes for Machine Learning, vol. 2 (MIT Press, Cambridge, 2006)

    MATH  Google Scholar 

  35. B. Schölkopf, A. Smola, K.-R. Müller, in International Conference on Artificial Neural Networks (Springer, Berlin, 1997), pp. 583–588

    Google Scholar 

  36. Z. Liu, D. Chen, H. Bensmail, Biomed Res. Int. 2005(2), 155 (2005)

    Google Scholar 

  37. D. Antoniou, S.D. Schwartz, J. Phys. Chem. B 115(10), 2465 (2011)

    Article  Google Scholar 

  38. B. Schölkopf, A. Smola, K. Müller, Neural Comput. 10(5), 1299 (1998). https://doi.org/10.1162/089976698300017467

    Article  Google Scholar 

  39. Y.M. Koyama, T.J. Kobayashi, S. Tomoda, H.R. Ueda, Phys. Rev. E 78(4), 046702 (2008)

    Article  ADS  Google Scholar 

  40. X. Han, IEEE/ACM Trans. Comput. Biol. Bioinform. 7(3), 537 (2010)

    Article  Google Scholar 

  41. A. Varnek, I.I. Baskin, Mol. Inf. 30(1), 20 (2011)

    Article  Google Scholar 

  42. X. Deng, X. Tian, S. Chen, Chemom. Intell. Lab. Syst. 127, 195 (2013)

    Article  Google Scholar 

  43. M.L. Braun, J.M. Buhmann, K.-R. Müller, J. Mach. Learn. Res. 9, 1875 (2008)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus-Robert Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pronobis, W., Müller, KR. (2020). Kernel Methods for Quantum Chemistry. In: Schütt, K., Chmiela, S., von Lilienfeld, O., Tkatchenko, A., Tsuda, K., Müller, KR. (eds) Machine Learning Meets Quantum Physics. Lecture Notes in Physics, vol 968. Springer, Cham. https://doi.org/10.1007/978-3-030-40245-7_3

Download citation

Publish with us

Policies and ethics