Skip to main content

Machine Learning for Molecular Dynamics on Long Timescales

  • Chapter
  • First Online:
Machine Learning Meets Quantum Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 968))

Abstract

Molecular dynamics (MD) simulation is widely used to analyze the properties of molecules and materials. Most practical applications, such as comparison with experimental measurements, designing drug molecules, or optimizing materials, rely on statistical quantities, which may be prohibitively expensive to compute from direct long-time MD simulations. Classical machine learning (ML) techniques have already had a profound impact on the field, especially for learning low-dimensional models of the long-time dynamics and for devising more efficient sampling schemes for computing long-time statistics. Novel ML methods have the potential to revolutionize long timescale MD and to obtain interpretable models. ML concepts such as statistical estimator theory, end-to-end learning, representation learning, and active learning are highly interesting for the MD researcher and will help to develop new solutions to hard MD problems. With the aim of better connecting the MD and ML research areas and spawning new research on this interface, we define the learning problems in long timescale MD, present successful approaches, and outline some of the unsolved ML problems in this application field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/markovmodel/deeptime.

References

  1. A. Altis, P.H. Nguyen, R. Hegger, G. Stock, Dihedral angle principal component analysis of molecular dynamics simulations. J. Chem. Phys. 126, 244111 (2007)

    Article  ADS  Google Scholar 

  2. S. Bacallado, J.D. Chodera, V.S. Pande, Bayesian comparison of Markov models of molecular dynamics with detailed balance constraint. J. Chem. Phys. 131, 045106 (2009)

    Article  ADS  Google Scholar 

  3. C. Bartels, Analyzing biased Monte Carlo and molecular dynamics simulations. Chem. Phys. Lett. 331, 446–454 (2000)

    Article  ADS  Google Scholar 

  4. C. Bartels, M. Karplus, Multidimensional adaptive umbrella sampling: application to main chain and side chain peptide conformations. J. Comput. Chem. 18, 1450–1462 (1997)

    Article  Google Scholar 

  5. A.P. Bartók, R. Kondor, G. Csányi, On representing chemical environments. Phys. Rev. B 87, 184115 (2013)

    Article  ADS  Google Scholar 

  6. J. Behler, M. Parrinello, Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007)

    Article  ADS  Google Scholar 

  7. T. Bereau, R.A. DiStasio Jr, A. Tkatchenko, O.A. Von Lilienfeld, Non-covalent interactions across organic and biological subsets of chemical space: physics-based potentials parametrized from machine learning. J. Chem. Phys. 148, 241706 (2018)

    Article  ADS  Google Scholar 

  8. F. Bießmann, F.C. Meinecke, A. Gretton, A. Rauch, G. Rainer, N.K. Logothetis, K.-R. Müller, Temporal kernel CCA and its application in multimodal neuronal data analysis. Mach. Learn. 79, 5–27 (2010)

    Article  MathSciNet  Google Scholar 

  9. G.R. Bowman, K.A. Beauchamp, G. Boxer, V.S. Pande, Progress and challenges in the automated construction of Markov state models for full protein systems. J. Chem. Phys. 131, 124101 (2009)

    Article  ADS  Google Scholar 

  10. G.R. Bowman, D.L. Ensign, V.S. Pande, Enhanced modeling via network theory: adaptive sampling of Markov state models. J. Chem. Theory Comput. 6(3), 787–794 (2010)

    Article  Google Scholar 

  11. G.R. Bowman, V.S. Pande, F. Noé (eds.), An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation. Advances in Experimental Medicine and Biology, vol. 797 (Springer, Heidelberg, 2014)

    Google Scholar 

  12. N.V. Buchete, G. Hummer, Coarse master equations for peptide folding dynamics. J. Phys. Chem. B 112, 6057–6069 (2008)

    Article  Google Scholar 

  13. S. Chmiela, A. Tkatchenko, H.E. Sauceda, I. Poltavsky, K.T. Schütt, K.-R. Müller, Machine learning of accurate energy-conserving molecular force fields. Sci. Adv. 3, e1603015 (2017)

    Article  ADS  Google Scholar 

  14. S. Chmiela, H.E. Sauceda, K.-R. Müller, A. Tkatchenko, Towards exact molecular dynamics simulations with machine-learned force fields. Nat. Commun. 9, 3887 (2018)

    Article  ADS  Google Scholar 

  15. J.D. Chodera, F. Noé, Probability distributions of molecular observables computed from Markov models. II: Uncertainties in observables and their time-evolution. J. Chem. Phys. 133, 105102 (2010)

    Google Scholar 

  16. J.D. Chodera, K.A. Dill, N. Singhal, V.S. Pande, W.C. Swope, J.W. Pitera, Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics. J. Chem. Phys. 126, 155101 (2007)

    Article  ADS  Google Scholar 

  17. R.R. Coifman, S. Lafon, A.B. Lee, M. Maggioni, B. Nadler, F. Warner, S.W. Zucker, Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. Proc. Natl. Acad. Sci. U. S. A. 102, 7426–7431 (2005)

    Article  ADS  MATH  Google Scholar 

  18. P. Das, M. Moll, H. Stamati, L.E. Kavraki, C. Clementi, Low-dimensional, free-energy landscapes of protein-folding reactions by nonlinear dimensionality reduction. Proc. Natl. Acad. Sci. U. S. A. 103, 9885–9890 (2008)

    Article  ADS  Google Scholar 

  19. P. Deuflhard, M. Weber, Robust Perron cluster analysis in conformation dynamics, in Linear Algebra Appl., ed. by M. Dellnitz, S. Kirkland, M. Neumann, C. Schütte, vol. 398C (Elsevier, New York, 2005), pp. 161–184

    Google Scholar 

  20. P.D. Dixit, K.A. Dill, Caliber corrected Markov modeling (C2M2): correcting equilibrium Markov models. J. Chem. Theory Comput. 14, 1111–1119 (2018)

    Article  Google Scholar 

  21. S. Doerr, G. De Fabritiis, On-the-fly learning and sampling of ligand binding by high-throughput molecular simulations. J. Chem. Theory Comput. 10, 2064–2069 (2014)

    Article  Google Scholar 

  22. S. Doerr, M.J. Harvey, F. Noé, G. De Fabritiis, HTMD: high-throughput molecular dynamics for molecular discovery. J. Chem. Theory Comput. 12, 1845–1852 (2016)

    Article  Google Scholar 

  23. K. Fackeldey, M. Weber, Genpcca – Markov state models for non-equilibrium steady states. WIAS Rep. 29, 70–80 (2017)

    Google Scholar 

  24. A.M. Ferrenberg, R.H. Swendsen, Optimized Monte Carlo data analysis. Phys. Rev. Lett. 63, 1195–1198 (1989)

    Article  ADS  Google Scholar 

  25. C.W. Fox, S.J. Roberts, A tutorial on variational Bayesian inference. Artif. Intell. Rev. 38, 85–95 (2012)

    Article  Google Scholar 

  26. H. Fukunishi, O. Watanabe, S. Takada, On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: application to protein structure prediction. J. Chem. Phys. 116, 9058 (2002)

    Article  ADS  Google Scholar 

  27. E. Gallicchio, M. Andrec, A.K. Felts, R.M. Levy, Temperature weighted histogram analysis method, replica exchange, and transition paths. J. Phys. Chem. B 109, 6722–6731 (2005)

    Article  Google Scholar 

  28. S. Gerber, I. Horenko, Toward a direct and scalable identification of reduced models for categorical processes. Proc. Natl. Acad. Sci. U. S. A. 114, 4863–4868 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, J. Bengio, Generative adversarial networks, in NIPS’14 Proceedings of the 27th International Conference on Neural Information Processing Systems, vol. 2 (MIT Press, Cambridge, 2014), pp. 2672–2680

    Google Scholar 

  30. H. Grubmüller, Predicting slow structural transitions in macromolecular systems: conformational flooding. Phys. Rev. E 52, 2893 (1995)

    Article  ADS  Google Scholar 

  31. U.H.E. Hansmann, Parallel tempering algorithm for conformational studies of biological molecules. Chem. Phys. Lett. 281(1–3), 140–150 (1997)

    Article  ADS  Google Scholar 

  32. S. Harmeling, A. Ziehe, M. Kawanabe, K.-R. Müller, Kernel-based nonlinear blind source separation. Neural Comput. 15, 1089–1124 (2003)

    Article  MATH  Google Scholar 

  33. M.P. Harrigan, V.S. Pande, Landmark kernel tICA for conformational dynamics (2017). bioRxiv, 123752

    Google Scholar 

  34. C.X. Hernández, H.K. Wayment-Steele, M.M. Sultan, B.E. Husic, V.S. Pande, Variational encoding of complex dynamics. Phys. Rev. E 97, 062412 (2018)

    Article  ADS  Google Scholar 

  35. A. Hyvärinen, J. Karhunen, E. Oja, Independent Component Analysis (Wiley, New York, 2001)

    Book  Google Scholar 

  36. N.S. Hinrichs, V.S. Pande, Calculation of the distribution of eigenvalues and eigenvectors in Markovian state models for molecular dynamics. J. Chem. Phys. 126, 244101 (2007)

    Article  ADS  Google Scholar 

  37. G. Hummer, J. Köfinger, Bayesian ensemble refinement by replica simulations and reweighting. J. Chem. Phys. 143, 243150 (2015)

    Article  ADS  Google Scholar 

  38. G. Hummer, A. Szabo, Optimal dimensionality reduction of multistate kinetic and Markov-state models. J. Phys. Chem. B 119, 9029–9037 (2015)

    Article  Google Scholar 

  39. B.E. Husic, V.S. Pande, Ward clustering improves cross-validated Markov state models of protein folding. J. Chem. Theory Comp. 13, 963–967 (2017)

    Article  Google Scholar 

  40. B.E. Husic, V.S. Pande, Markov state models: from an art to a science. J. Am. Chem. Soc. 140, 2386–2396 (2018)

    Article  Google Scholar 

  41. B.E. Husic, R.T. McGibbon, M.M. Sultan, V.S. Pande, Optimized parameter selection reveals trends in Markov state models for protein folding. J. Chem. Phys. 145, 194103 (2016)

    Article  ADS  Google Scholar 

  42. A. Jain, G. Stock, Identifying metastable states of folding proteins. J. Chem. Theory Comput. 8, 3810–3819 (2012)

    Article  Google Scholar 

  43. W. Kabsch, A solution for the best rotation to relate two sets of vectors. Acta Cryst. A32, 922–923 (1976)

    Article  Google Scholar 

  44. B.G. Keller, X. Daura, W.F. van Gunsteren, Comparing geometric and kinetic cluster algorithms for molecular simulation data. J. Chem. Phys. 132, 074110 (2010)

    Article  ADS  Google Scholar 

  45. D.P. Kingma, M. Welling, Auto-encoding variational Bayes, in Proceedings of the 2nd International Conference on Learning Representations (ICLR) (2014). arXiv:1312.6114

    Google Scholar 

  46. P. Koltai, G. Ciccotti, Ch. Schütte, On metastability and Markov state models for non-stationary molecular dynamics. J. Chem. Phys. 145, 174103 (2016)

    Article  ADS  Google Scholar 

  47. P. Koltai, H. Wu, F. Noé, C. Schütte, Optimal data-driven estimation of generalized Markov state models for non-equilibrium dynamics. Computation 6, 22 (2018)

    Article  Google Scholar 

  48. S. Kube, M. Weber, A coarse graining method for the identification of transition rates between molecular conformations. J. Chem. Phys. 126, 024103 (2007)

    Article  ADS  Google Scholar 

  49. A. Laio, M. Parrinello, Escaping free energy minima. Proc. Natl. Acad. Sci. U. S. A. 99, 12562–12566 (2002)

    Article  ADS  Google Scholar 

  50. O. Ledoit, M. Wolf, Honey, I shrunk the sample covariance matrix. J. Portfolio Manag. 30, 110–119 (2004)

    Article  Google Scholar 

  51. Q. Li, F. Dietrich, E.M. Bollt, I.G. Kevrekidis, Extended dynamic mode decomposition with dictionary learning: a data-driven adaptive spectral decomposition of the Koopman operator. Chaos 27, 103111 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. K. Lindorff-Larsen, S. Piana, R.O. Dror, D.E. Shaw, How fast-folding proteins fold. Science 334, 517–520 (2011)

    Article  ADS  Google Scholar 

  53. F. Litzinger, L. Boninsegna, H. Wu, F. Nüske, R. Patel, R. Baraniuk, F. Noé, C. Clementi, Rapid calculation of molecular kinetics using compressed sensing. J. Chem. Theory Comput. 24, 2771–2783 (2018)

    Article  Google Scholar 

  54. B. Lusch, S.L. Brunton J.N. Kutz, Deep learning for universal linear embeddings of nonlinear dynamics (2017). arXiv:1712.09707

    Google Scholar 

  55. A. Mardt, L. Pasquali, H. Wu, F. Noé, VAMPnets: deep learning of molecular kinetics. Nat. Commun. 9, 5 (2018)

    Article  ADS  Google Scholar 

  56. R.T. McGibbon, V.S. Pande, Variational cross-validation of slow dynamical modes in molecular kinetics. J. Chem. Phys. 142, 124105 (2015)

    Article  ADS  Google Scholar 

  57. P. Metzner, F. Noé, C. Schütte, Estimation of transition matrix distributions by Monte Carlo sampling. Phys. Rev. E 80, 021106 (2009)

    Article  ADS  Google Scholar 

  58. P. Metzner, C. Schütte, E. Vanden-Eijnden, Transition path theory for Markov jump processes. Multiscale Model. Simul. 7, 1192–1219 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  59. A.S.J.S. Mey, H. Wu, F. Noé, xTRAM: Estimating equilibrium expectations from time-correlated simulation data at multiple thermodynamic states. Phys. Rev. X 4, 041018 (2014)

    Google Scholar 

  60. I. Mezić, Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41, 309–325 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  61. L. Molgedey, H.G. Schuster, Separation of a mixture of independent signals using time delayed correlations. Phys. Rev. Lett. 72, 3634–3637 (1994)

    Article  ADS  Google Scholar 

  62. Y. Naritomi, S. Fuchigami, Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: the case of domain motions. J. Chem. Phys. 134(6), 065101 (2011)

    Google Scholar 

  63. F. Noé, Probability distributions of molecular observables computed from Markov Models. J. Chem. Phys. 128, 244103 (2008)

    Article  ADS  Google Scholar 

  64. F. Noé, C. Clementi, Kinetic distance and kinetic maps from molecular dynamics simulation. J. Chem. Theory Comput. 11, 5002–5011 (2015)

    Article  Google Scholar 

  65. F. Noé, C. Clementi, Collective variables for the study of long-time kinetics from molecular trajectories: theory and methods. Curr. Opin. Struct. Biol. 43, 141–147 (2017)

    Article  Google Scholar 

  66. F. Noé, F. Nüske, A variational approach to modeling slow processes in stochastic dynamical systems. Multiscale Model. Simul. 11, 635–655 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  67. F. Noé, I. Horenko, C. Schütte, J.C. Smith, Hierarchical analysis of conformational dynamics in biomolecules: transition networks of metastable states. J. Chem. Phys. 126, 155102 (2007)

    Article  ADS  Google Scholar 

  68. F. Noé, C. Schütte, E. Vanden-Eijnden, L. Reich, T.R. Weikl, Constructing the full ensemble of folding pathways from short off-equilibrium simulations. Proc. Natl. Acad. Sci. U. S. A. 106, 19011–19016 (2009)

    Article  ADS  MATH  Google Scholar 

  69. F. Noé, S. Doose, I. Daidone, M. Löllmann, J.D. Chodera, M. Sauer, J.C. Smith, Dynamical fingerprints for probing individual relaxation processes in biomolecular dynamics with simulations and kinetic experiments. Proc. Natl. Acad. Sci. U. S. A. 108, 4822–4827 (2011)

    Article  ADS  Google Scholar 

  70. F. Noé, H. Wu, J.-H. Prinz, N. Plattner, Projected and hidden Markov models for calculating kinetics and metastable states of complex molecules. J. Chem. Phys. 139, 184114 (2013)

    Article  ADS  Google Scholar 

  71. F. Noé, S. Olsson, J. Köhler, H. Wu, Boltzmann generators – sampling equilibrium states of many-body systems with deep learning (2019). arXiv:1812.01729

    Google Scholar 

  72. F. Nüske, B.G. Keller, G. Pérez-Hernández, A.S.J.S. Mey, F. Noé, Variational approach to molecular kinetics. J. Chem. Theory Comput. 10, 1739–1752 (2014)

    Article  Google Scholar 

  73. S. Olsson, F. Noé, Dynamic graphical models of molecular kinetics. Proc. Natl. Acad. Sci. U. S. A. 116, 15001–15006 (2019)

    Article  Google Scholar 

  74. S. Olsson, H. Wu, F. Paul, C. Clementi, F. Noé, Combining experimental and simulation data of molecular processes via augmented Markov models. Proc. Natl. Acad. Sci. U. S. A. 114, 8265–8270 (2017)

    Article  Google Scholar 

  75. S. Orioli, P. Faccioli, Dimensional reduction of Markov state models from renormalization group theory. J. Chem. Phys. 145, 124120 (2016)

    Article  ADS  Google Scholar 

  76. S.E. Otto, C.W. Rowley, Linearly-recurrent autoencoder networks for learning dynamics (2017). arXiv:1712.01378

    Google Scholar 

  77. F. Paul, C. Wehmeyer, E.T. Abualrous, H. Wu, M.D. Crabtree, J. Schöneberg, J. Clarke, C. Freund, T.R. Weikl, F. Noé, Protein-ligand kinetics on the seconds timescale from atomistic simulations. Nat. Commun. 8, 1095 (2017)

    Article  ADS  Google Scholar 

  78. F. Paul, H. Wu, M. Vossel, B.L. de Groot, F. Noé, Identification of kinetic order parameters for non-equilibrium dynamics. J. Chem. Phys. 150, 164120 (2019)

    Article  ADS  Google Scholar 

  79. G. Perez-Hernandez, F. Noé, Hierarchical time-lagged independent component analysis: computing slow modes and reaction coordinates for large molecular systems. J. Chem. Theory Comput. 12, 6118–6129 (2016)

    Article  Google Scholar 

  80. G. Perez-Hernandez, F. Paul, T. Giorgino, G. De Fabritiis, F. Noé, Identification of slow molecular order parameters for Markov model construction. J. Chem. Phys. 139, 015102 (2013)

    Article  ADS  Google Scholar 

  81. N. Plattner, S. Doerr, G. De Fabritiis, F. Noé, Protein-protein association and binding mechanism resolved in atomic detail. Nat. Chem. 9, 1005–1011 (2017)

    Article  Google Scholar 

  82. J. Preto, C. Clementi, Fast recovery of free energy landscapes via diffusion-map-directed molecular dynamics. Phys. Chem. Chem. Phys. 16, 19181–19191 (2014)

    Article  Google Scholar 

  83. J.-H. Prinz, J.D. Chodera, V.S. Pande, W.C. Swope, J.C. Smith, F. Noé, Optimal use of data in parallel tempering simulations for the construction of discrete-state Markov models of biomolecular dynamics. J. Chem. Phys. 134, 244108 (2011)

    Article  ADS  Google Scholar 

  84. J.-H. Prinz, H. Wu, M. Sarich, B.G. Keller, M. Senne, M. Held, J.D. Chodera, C. Schütte, F. Noé, Markov models of molecular kinetics: generation and validation. J. Chem. Phys. 134, 174105 (2011)

    Article  ADS  Google Scholar 

  85. R. Ramakrishnan, P.O. Dral, M. Rupp, O.A. von Lilienfeld, Quantum chemistry structures and properties of 134 kilo molecules. Sci. Data 1, 140022 (2014)

    Article  Google Scholar 

  86. J.M.L. Ribeiro, P. Bravo, Y. Wang, P. Tiwary, Reweighted autoencoded variational Bayes for enhanced sampling (RAVE). J. Chem. Phys. 149, 072301 (2018)

    Article  ADS  Google Scholar 

  87. S. Röblitz, M. Weber, Fuzzy spectral clustering by PCCA+: application to Markov state models and data classification. Adv. Data Anal. Classif. 7, 147–179 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  88. M.A. Rohrdanz, W. Zheng, M. Maggioni, C. Clementi, Determination of reaction coordinates via locally scaled diffusion map. J. Chem. Phys. 134, 124116 (2011)

    Article  ADS  Google Scholar 

  89. E. Rosta, G. Hummer, Free energies from dynamic weighted histogram analysis using unbiased Markov state model. J. Chem. Theory Comput. 11, 276–285 (2015)

    Article  Google Scholar 

  90. C.W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, D.S. Henningson, Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. M. Rupp, A. Tkatchenko, K.-R. Müller, O.A. Von Lilienfeld, Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108, 058301 (2012)

    Article  ADS  Google Scholar 

  92. M. Sarich, F. Noé, C. Schütte, On the approximation quality of Markov state models. Multiscale Model. Simul. 8, 1154–1177 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  93. J. Schäfer, K. Strimmer, A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics, in Statistical Applications in Genetics and Molecular Biology, vol. 4 (Walter de Gruyter GmbH & Co. KG, Berlin, 2005), pp. 2194–6302

    Google Scholar 

  94. M.K. Scherer, B. Trendelkamp-Schroer, F. Paul, G. Perez-Hernandez, M. Hoffmann, N. Plattner, C. Wehmeyer, J.-H. Prinz, F. Noé, PyEMMA 2: a software package for estimation, validation and analysis of Markov models. J. Chem. Theory Comput. 11, 5525–5542 (2015)

    Article  Google Scholar 

  95. M.K. Scherer, B.E. Husic, M. Hoffmann, F. Paul, H. Wu, F. Noé, Variational selection of features for molecular kinetics. J. Chem. Phys. 150, 194108 (2019)

    Article  ADS  Google Scholar 

  96. P.J. Schmid, Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  97. P.J. Schmid, J. Sesterhenn, Dynamic mode decomposition of numerical and experimental data, in 61st Annual Meeting of the APS Division of Fluid Dynamics (American Physical Society, Philadelphia, 2008)

    Google Scholar 

  98. B. Schölkopf, A. Smola, K.-R. Müller, Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10, 1299–1319 (1998)

    Article  Google Scholar 

  99. K.T. Schütt, F. Arbabzadah, S. Chmiela, K.R. Müller, A. Tkatchenko, Quantum-chemical insights from deep tensor neural networks. Nat. Commun. 8, 13890 (2017)

    Article  ADS  Google Scholar 

  100. K.T. Schütt, H.E. Sauceda, P.J. Kindermans, A. Tkatchenko, K.R. Müller, SchNet – a deep learning architecture for molecules and materials. J. Chem. Phys. 148(24), 241722 (2018)

    Google Scholar 

  101. C. Schütte, A. Fischer, W. Huisinga, P. Deuflhard, A direct approach to conformational dynamics based on hybrid Monte Carlo. J. Comput. Phys. 151, 146–168 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  102. C.R. Schwantes, V.S. Pande, Improvements in Markov state model construction reveal many non-native interactions in the folding of NTL9. J. Chem. Theory Comput. 9, 2000–2009 (2013)

    Article  Google Scholar 

  103. C.R. Schwantes, V.S. Pande, Modeling molecular kinetics with tICA and the kernel trick. J. Chem. Theory Comput. 11, 600–608 (2015)

    Article  Google Scholar 

  104. D.E. Shaw, J.P. Grossman, J.A. Bank, B. Batson, J.A. Butts, J.C. Chao, M.M. Deneroff, R.O. Dror, A. Even, C.H. Fenton, A. Forte, J. Gagliardo, G. Gill, B. Greskamp, C.R. Ho, D.J. Ierardi, L. Iserovich, J.S. Kuskin, R.H. Larson, T. Layman, L.-S. Lee, A.K. Lerer, C. Li, D. Killebrew, K.M. Mackenzie, S. Yeuk-Hai Mok, M.A. Moraes, R. Mueller, L.J. Nociolo, J.L. Peticolas, Anton 2: raising the bar for performance and programmability in a special-purpose molecular dynamics supercomputer, in SC ’14: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (IEEE, Piscataway, 2014)

    Google Scholar 

  105. F.K. Sheong, D.-A. Silva, L. Meng, Y. Zhao, X. Huang, Automatic state partitioning for multibody systems (APM): an efficient algorithm for constructing Markov state models to elucidate conformational dynamics of multibody systems. J. Chem. Theory Comput. 11, 17–27 (2015)

    Article  Google Scholar 

  106. M.R. Shirts, J.D. Chodera, Statistically optimal analysis of samples from multiple equilibrium states. J. Chem. Phys. 129, 124105 (2008)

    Article  ADS  Google Scholar 

  107. N. Singhal, V.S. Pande, Error analysis and efficient sampling in Markovian state models for molecular dynamics. J. Chem. Phys. 123, 204909 (2005)

    Article  ADS  Google Scholar 

  108. W.C. Swope, J.W. Pitera, F. Suits, Describing protein folding kinetics by molecular dynamics simulations: 1. Theory. J. Phys. Chem. B 108, 6571–6581 (2004)

    Article  Google Scholar 

  109. W.C. Swope, J.W. Pitera, F. Suits, M. Pitman, M. Eleftheriou, Describing protein folding kinetics by molecular dynamics simulations: 2. Example applications to alanine dipeptide and beta-hairpin peptide. J. Phys. Chem. B 108, 6582–6594 (2004)

    Google Scholar 

  110. G. Székely, M. Rizzo, Testing for equal distributions in high dimension. InterStat 5, 1249–1272 (2004)

    Google Scholar 

  111. J.B. Tenenbaum, V. de Silva, J.C. Langford, A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  ADS  Google Scholar 

  112. D.L. Theobald, Rapid calculation of RMSDs using a quaternion-based characteristic polynomial. Acta Cryst. A61, 478–480 (2005)

    Article  Google Scholar 

  113. G.M. Torrie, J.P. Valleau, Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 23, 187–199 (1977)

    Article  ADS  Google Scholar 

  114. B. Trendelkamp-Schroer, F. Noé, Efficient Bayesian estimation of Markov model transition matrices with given stationary distribution. J. Phys. Chem. 138, 164113 (2013)

    Article  Google Scholar 

  115. B. Trendelkamp-Schroer, F. Noé, Efficient estimation of rare-event kinetics. Phys. Rev. X (2015). Preprint. arXiv:1409.6439

    Google Scholar 

  116. B. Trendelkamp-Schroer, H. Wu, F. Paul, F. Noé, Estimation and uncertainty of reversible Markov models. J. Chem. Phys. 143, 174101 (2015)

    Article  ADS  Google Scholar 

  117. J.H. Tu, C.W. Rowley, D.M. Luchtenburg, S.L. Brunton, J.N. Kutz, On dynamic mode decomposition: theory and applications. J. Comput. Dyn. 1(2), 391–421 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  118. O. Valsson, M. Parrinello, Variational approach to enhanced sampling and free energy calculations. Phys. Rev. Lett. 113, 090601 (2014)

    Article  ADS  Google Scholar 

  119. W. Wang, R. Gómez-Bombarelli, Variational coarse-graining for molecular dynamics (2018). arXiv:1812.02706

    Google Scholar 

  120. J. Wang, C. Wehmeyer, F. Noé, C. Clementi, Machine learning of coarse-grained molecular dynamics force fields. ACS Cent. Sci. 5, 755–767 (2019)

    Google Scholar 

  121. C. Wehmeyer, F. Noé, Time-lagged autoencoders: deep learning of slow collective variables for molecular kinetics. J. Chem. Phys. 148, 241703 (2018)

    Article  ADS  Google Scholar 

  122. C. Wehmeyer, M.K. Scherer, T. Hempel, B.E. Husic, S. Olsson, F. Noé, Introduction to Markov state modeling with the PyEMMA software. LiveCoMS 1, 5965 (2018)

    Google Scholar 

  123. M.O. Williams, C.W. Rowley, I.G. Kevrekidis, A kernel-based approach to data-driven Koopman spectral analysis (2014). arXiv:1411.2260

    Google Scholar 

  124. M.O. Williams, I.G. Kevrekidis, C.W. Rowley, A data-driven approximation of the Koopman operator: extending dynamic mode decomposition. J. Nonlinear Sci. 25, 1307–1346 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  125. W. Wojtas-Niziurski, Y. Meng, B. Roux, S. Bernèche, Self-learning adaptive umbrella sampling method for the determination of free energy landscapes in multiple dimensions. J. Chem. Theory Comput. 9, 1885–1895 (2013)

    Article  Google Scholar 

  126. H. Wu, F. Noé, Optimal estimation of free energies and stationary densities from multiple biased simulations. Multiscale Model. Simul. 12, 25–54 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  127. H. Wu, F. Noé, Variational approach for learning Markov processes from time series data (2017). arXiv:1707.04659

    Google Scholar 

  128. H. Wu, A.S.J.S. Mey, E. Rosta, F. Noé, Statistically optimal analysis of state-discretized trajectory data from multiple thermodynamic states. J. Chem. Phys. 141, 214106 (2014)

    Article  ADS  Google Scholar 

  129. H. Wu, F. Paul, C. Wehmeyer, F. Noé, Multiensemble Markov models of molecular thermodynamics and kinetics. Proc. Natl. Acad. Sci. U. S. A. 113, E3221–E3230 (2016)

    Article  Google Scholar 

  130. H. Wu, F. Nüske, F. Paul, S. Klus, P. Koltai, F. Noé, Variational Koopman models: slow collective variables and molecular kinetics from short off-equilibrium simulations. J. Chem. Phys. 146, 154104 (2017)

    Article  ADS  Google Scholar 

  131. H. Wu, A. Mardt, L. Pasquali, F. Noé, Deep generative Markov state models, in NIPS (2018). Preprint. arXiv:1805.07601

    Google Scholar 

  132. Y. Yao, J. Sun, X. Huang, G.R. Bowman, G. Singh, M. Lesnick, L.J. Guibas, V.S. Pande, G. Carlsson, Topological methods for exploring low-density states in biomolecular folding pathways. J. Chem. Phys. 130, 144115 (2009)

    Article  ADS  Google Scholar 

  133. Y. Yao, R.Z. Cui, G.R. Bowman, D.-A. Silva, J. Sun, X. Huang, Hierarchical Nyström methods for constructing Markov state models for conformational dynamics. J. Chem. Phys. 138, 174106 (2013)

    Article  ADS  Google Scholar 

  134. L. Zhang, J. Han, H. Wang, R. Car, W. E, DeePCG: constructing coarse-grained models via deep neural networks. J. Chem. Phys. 149, 034101 (2018)

    Google Scholar 

  135. A. Ziehe, K.-R. Müller, TDSEP – an efficient algorithm for blind separation using time structure, in ICANN 98 (Springer Science and Business Media, New York, 1998), pp. 675–680

    Google Scholar 

  136. A. Ziehe, P. Laskov, G. Nolte, K.-R. Müller, A fast algorithm for joint diagonalization with non-orthogonal transformations and its application to blind source separation. J. Mach. Learn. Res. 5, 777–800 (2004)

    MathSciNet  MATH  Google Scholar 

  137. M.I. Zimmerman, G.R. Bowman, Fast conformational searches by balancing exploration/exploitation trade-offs. J. Chem. Theory Comput. 11, 5747–5757 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

I am grateful to Brooke E. Husic and Klaus-Robert Müller for valuable comments on this chapter. Funding is acknowledged from the European Commission (ERC CoG 772230 “ScaleCell”), Deutsche Forschungsgemeinschaft (SFB 1114/A04) and the MATH+ excellence cluster (Projects AA1-8, EF1-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Noé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Noé, F. (2020). Machine Learning for Molecular Dynamics on Long Timescales. In: Schütt, K., Chmiela, S., von Lilienfeld, O., Tkatchenko, A., Tsuda, K., Müller, KR. (eds) Machine Learning Meets Quantum Physics. Lecture Notes in Physics, vol 968. Springer, Cham. https://doi.org/10.1007/978-3-030-40245-7_16

Download citation

Publish with us

Policies and ethics