Skip to main content

Active Learning and Uncertainty Estimation

  • Chapter
  • First Online:
Machine Learning Meets Quantum Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 968))

Abstract

Active learning refers to collections of algorithms of systematically constructing the training dataset. It is closely related to uncertainty estimation—we, generally, do not need to train our model on samples on which our prediction already has low uncertainty. This chapter reviews active learning algorithms in the context of molecular modeling and illustrates their applications on practical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Small because evaluation of \(\bar {f}(x_i)\) is expensive.

  2. 2.

    Here we have implicitly assumed that the distribution of f(θ, x) has zero mean.

  3. 3.

    To be precise, it could be mathematically proved that only a limited number configurations will be added to the training set if the configurations are sampled from a distribution with a compact support.

References

  1. N. Artrith, J. Behler, High-dimensional neural network potentials for metal surfaces: a prototype study for copper. Phys. Rev. B 85(4), 045439 (2012)

    Google Scholar 

  2. A.P. Bartók, R. Kondor, G. Csányi, On representing chemical environments. Phys. Rev. B 87(18), 184115 (2013)

    Google Scholar 

  3. C.M. Bishop, Bayesian neural networks. J. Braz. Comput. Soc. 4(1), 61–68 (1997)

    Article  Google Scholar 

  4. S. Chmiela, H.E. Sauceda, K.-R. Muller, A. Tkatchenko, Towards exact molecular dynamics simulations with machine-learned force fields. Nat. Commun. 9(1), 1–10 (2018)

    Article  Google Scholar 

  5. G. Csányi, T. Albaret, M. Payne, A. De Vita, Learn on the fly: a hybrid classical and quantum-mechanical molecular dynamics simulation. Phys. Rev. Lett. 93(17), 175503 (2004)

    Google Scholar 

  6. A. De Vita, R. Car, A novel scheme for accurate MD simulations of large systems, in MRS Proceedings, vol. 491 (Cambridge University Press, Cambridge, 1997), p. 473

    Google Scholar 

  7. Y. Gal, Uncertainty in deep learning. PhD thesis, University of Cambridge, 2016

    Google Scholar 

  8. Y. Gal, Z. Ghahramani, Dropout as a Bayesian approximation: representing model uncertainty in deep learning, in International Conference on Machine Learning (2016), pp. 1050–1059

    Google Scholar 

  9. Y. Gal, R. Islam, Z. Ghahramani, Deep Bayesian active learning with image data. in Proceedings of the 34th International Conference on Machine Learning, vol. 70 (2017), pp. 1183–1192. www.JMLR.org

  10. K. Gubaev, E.V. Podryabinkin, A.V. Shapeev, Machine learning of molecular properties: locality and active learning. J. Chem. Phys. 148(24), 241727 (2018)

    Google Scholar 

  11. K. Gubaev, E.V. Podryabinkin, G.L. Hart, A.V. Shapeev, Accelerating high-throughput searches for new alloys with active learning of interatomic potentials. Comput. Mater. Sci. 156, 148–156 (2019)

    Article  Google Scholar 

  12. K. Hansen, F. Biegler, R. Ramakrishnan, W. Pronobis, O.A. Von Lilienfeld, K.-R. Muller, A. Tkatchenko, Machine learning predictions of molecular properties: accurate many-body potentials and nonlocality in chemical space. J. Phys. Chem. Lett. 6(12), 2326–2331 (2015)

    Article  Google Scholar 

  13. G.L.W. Hart, L.J. Nelson, R.W. Forcade, Generating derivative structures at a fixed concentration. Comput. Mater. Sci. 59, 101–107 (2012)

    Article  Google Scholar 

  14. G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R.R. Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors (2012). Preprint. arXiv:1207.0580

    Google Scholar 

  15. G. Huang, Y. Li, G. Pleiss, Z. Liu, J.E. Hopcroft, K.Q. Weinberger, Snapshot ensembles: Train 1, get M for free. Paper presented at the 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017. Conference Track Proceedings, 2017. https://openreview.net

  16. H. Huo, M. Rupp, Unified representation for machine learning of molecules and crystals for machine learning (2017). Preprint. arXiv:1704.06439

    Google Scholar 

  17. M. Kampffmeyer, A.-B. Salberg, R. Jenssen, Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2016), pp. 1–9

    Google Scholar 

  18. I. Kononenko, Bayesian neural networks. Biol. Cybern. 61(5), 361–370 (1989)

    Article  Google Scholar 

  19. Z. Li, J.R. Kermode, A. De Vita, Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. Phys. Rev. Lett. 114, 096405 (2015)

    Article  ADS  Google Scholar 

  20. Z. Lu, J. Bongard, Exploiting multiple classifier types with active learning, in Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation (ACM, New York, 2009), pp. 1905–1906

    Google Scholar 

  21. A.O. Lyakhov, A.R. Oganov, H.T. Stokes, Q. Zhu, New developments in evolutionary structure prediction algorithm USPEX. Comput. Phys. Commun. 184(4), 1172–1182 (2013)

    Article  ADS  Google Scholar 

  22. A.G. de G. Matthews, J. Hron, M. Rowland, R.E. Turner, Z. Ghahra-mani, Gaussian process behaviour in wide deep neural networks. Paper presented at the 6th International Conference on Learning Representations, ICLR 2018, Vancouver, Canada, 30 April–3 May 2018. Conference Track Proceedings, 2018. https://openreview.net

  23. M.J. Mehl, D. Hicks, C. Toher, O. Levy, R.M. Hanson, G.L.W. Hart, S. Curtarolo, The AFLOW library of crystallographic prototypes: part 1. Comput. Mater. Sci. 136:S1–S828 (2017)

    Article  Google Scholar 

  24. D. Molchanov, A. Ashukha, D. Vetrov, Variational dropout sparsifies deep neural networks, in Proceedings of the 34th International Conference on Machine Learning, vol. 70 (2017), pp. 2498–2507. www.JMLR.org

  25. K. Neklyudov, D. Molchanov, A. Ashukha, D.P. Vetrov, Structured Bayesian pruning via log-normal multiplicative noise, in Advances in Neural Information Processing Systems (2017), pp. 6775–6784

    Google Scholar 

  26. A. Oganov (ed.), Modern Methods of Crystal Structure Prediction (Wiley-VCH, Weinheim, 2010)

    Google Scholar 

  27. D.W. Opitz, J.W. Shavlik, Generating accurate and diverse members of a neural-network ensemble, in Advances in Neural Information Processing Systems (1996), pp. 535–541

    Google Scholar 

  28. E.V. Podryabinkin, A.V. Shapeev, Active learning of linearly parametrized interatomic potentials. Comput. Mater. Sci. 140, 171–180 (2017)

    Article  Google Scholar 

  29. E. Podryabinkin, E. Tikhonov, A. Shapeev, A. Oganov, Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning. Phys. Rev. B 99(6), 064114 (2019)

    Google Scholar 

  30. R. Ramakrishnan, P.O. Dral, M. Rupp, O.A. Von Lilienfeld, Quantum chemistry structures and properties of 134 kilo molecules. Sci. Data 1, 140022 (2014)

    Article  Google Scholar 

  31. C.E. Rasmussen, Gaussian processes in machine learning, in Advanced Lectures on Machine Learning (Springer, Berlin, 2004), pp. 63–71

    Book  Google Scholar 

  32. M.D. Richard, R.P. Lippmann, Neural network classifiers estimate Bayesian a posteriori probabilities. Neural Comput. 3(4), 461–483 (1991)

    Article  Google Scholar 

  33. K. Schütt, P.-J. Kindermans, H.E.S. Felix, S. Chmiela, A. Tkatchenko, K.-R. Müller, SchNet: a continuous-filter convolutional neural network for modeling quantum interactions, in Advances in Neural Information Processing Systems (2017), pp. 991–1001

    Google Scholar 

  34. B. Settles, Active learning. Synth. Lect. Artif. Intell. Mach. Learn. 6(1), 1–114 (2012)

    Article  MathSciNet  Google Scholar 

  35. A.V. Shapeev, Moment tensor potentials: a class of systematically improvable interatomic potentials. Multiscale Model. Simul. 14(3), 1153–1173 (2016)

    Article  MathSciNet  Google Scholar 

  36. J.S. Smith, B. Nebgen, N. Lubbers, O. Isayev, A.E. Roitberg, Less is more: sampling chemical space with active learning. J. Chem. Phys. 148(24), 241733 (2018)

    Google Scholar 

  37. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  38. M. Teye, H. Azizpour, K. Smith, Bayesian uncertainty estimation for batch normalized deep networks, ed. by J.G. Dy, A. Krause, in Proceedings of the 35th International Conference on Machine Learning, ICML2018, Stockholm, Sweden, 10–15 July 2018, vol. 80. Proceedings of Machine Learning Research PMLR (2018), pp. 4914–4923

    Google Scholar 

  39. E. Tsymbalov, M. Panov, A. Shapeev, Dropout-based active learning for regression, in International Conference on Analysis of Images, Social Networks and Texts (Springer, Cham, 2018), pp. 247–258

    Google Scholar 

  40. E. Tsymbalov, S. Makarychev, A. Shapeev, M. Panov, Deeper connections between neural networks and Gaussian processes speed-up active learning, in Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Main track (2019), pp. 3599–3605

    Google Scholar 

  41. Z.-H. Zhou, J. Wu, W. Tang, Ensembling neural networks: many could be better than all. Artif. Intell. 137(1–2), 239–263 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work was supported by the Skoltech NGP Program No. 2016-7/NGP (a Skoltech-MIT joint project). The authors acknowledge the usage of the Skoltech CEST cluster (Magnus) from Prof. Shapeev’s group for obtaining the results presented in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Shapeev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shapeev, A., Gubaev, K., Tsymbalov, E., Podryabinkin, E. (2020). Active Learning and Uncertainty Estimation. In: SchĂĽtt, K., Chmiela, S., von Lilienfeld, O., Tkatchenko, A., Tsuda, K., MĂĽller, KR. (eds) Machine Learning Meets Quantum Physics. Lecture Notes in Physics, vol 968. Springer, Cham. https://doi.org/10.1007/978-3-030-40245-7_15

Download citation

Publish with us

Policies and ethics